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ABSTRACT

In this paper the linear equatorial ocean response to stress forcing is analyzed in terms of vertically propagating
waves. A new projection onto the meridional eigenfunctions of the pressure equation is derived for a single
Fourier wave component. The projection demonstrates that the solution is regular and not singular at the inertial
latitudes, and is more convenient to use than the corresponding projection onto the meridional velocity equation.
The wavenumber spectrum from the resulting forced vertical structure equation is found for four different
choices of the vertical profile for the body force. The spectrum is shown to be insensitive to the particular profile
chosen. The projection is then used to study the effects of forcing and linear damping on the vertical propagation
of space-time transformed energy in three wave modes: the Kelvin, first Rossby and mixed Rossby-gravity
waves. When the buoyancy frequency is constant, the energy decay is exponential in depth with the coefficient
proportional to the damping magnitude. Finally it is shown that linear damping effects are very different on
each vertically propagating or vertically standing wave. Thus, it is fallacious to make deductions about meridional
phase changes in the total solution to a general forced problem from the phase changes of each wave component.

1. Introduction

The problem of how energy propagates vertically
and horizontally is crucial to understanding the re-
sponse of both the upper and deep equatorial ocean to
stress and thermal forcing. Forcings have broad spectra
in time and space, the dissipation in the upper equa-
torial oceans (as well as the mixed layer response) is
only now beginning to be measured, and all of these
factors are important to understanding how well energy

propagates vertically. In observations there is evidence .

of vertical energy propagation (see section 2 of Gent
and Luyten, 1985, for a summary) and of strong hor-
izontal propagation. A Kelvin wave traversing the Pa-
cific is documented in Knox and Halpern (1982), and
Lukas et al. (1984) analyze the sea level response in
the Pacific in 1982-83 and show very strong horizontal
coherence. Model studies have also given evidence of
both vertical and horizontal energy propagation.
Rothstein et al. (1985) conclude that strong vertical
propagation occurs for a periodically forced Kelvin
wave, whereas Gent and Luyten (1985) conclude that
strong reflection of energy off the thermocline can oc-
cur. In the latter paper (p. 1006) is a discussion of three
other factors that affect the vertical propagation of en-
ergy: (1) the time and horizontal spatial structure of the
wind stress forcing of the ocean; (ii) how the wind stress
drives the ocean or the vertical profile assumed for the
body force; and (iii) the strength of friction. This paper
attempts to address the effects of these three factors
using the simplifying assumptions of no mean flow
and a constant buoyancy frequency so that the effects
can be found analytically.
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Two approaches can be used to construct forced lin-
ear equatorial solutions: the vertically standing (VS)
representation and the vertically propagating (VP) rep-
resentation. The most comprehensive discussion of the
two representations for forced oceanic waves is by Phi-
lander (1978). Nearly all forced linear equatorial ocean
solutions to date have been calculated using the VS
representation. Here the forcing is first projected onto
the vertical eigenfunctions of the ocean, and then for
each vertical mode the horizontal solution is calculated.
Finally the vertical mode solutions are summed to ob-
tain the total solution. Using the VS representation,
the vertical propagation of energy is not clear until the
total solution is obtained because there is no vertical
propagation in each of the wave components. In con-
trast, most forced linear tropical atmosphere solutions
are calculated using the VP representation. Now the
forcing is first projected onto the meridional eigen-
functions of the globe, and then for each meridional
mode the vertical solution is calculated. Finally the
meridional mode solutions are summed to obtain the
total solution. In the VP representation, the vertical
propagation of energy is more transparent because it
is calculated explicitly for each space-time Fourier
transformed wave. The VP representation used in this
paper was stimulated by Salby and Garcia (1987) who
use a similar method to calculate the global atmo-
spheric response to tropical heat forcing.

The plan of the paper is as follows. In section 2 a
new projection onto the meridional eigenfunctions of
the pressure equation is derived allowing stress forcing
to be incorporated into the VP representation. Then
the wavenumber spectrum from the forced vertical
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equation is found for four different profiles for the body
force. The response to particular stress forcings is cal-
culated in section 3. The effects of forcing and friction
on the vertical propagation of space-time transformed
energy of the Kelvin, first Rossby and mixed Rossby-
gravity waves are then studied. Section 4 shows that
linear damping effects on each VP or VS wave are very
different. Section 5 contains the discussion and con-
clusions.

2. Vertically propagating wave formulation

The hydrostatic, Boussinesq, inviscid primitive
equations linearized about a state of no motion are

—fotp=1." (1)
v+ fut+p,=71,7 (2)
p:+gp=0, (3)
—N*w/g=0, 4
U+ v,+w,=0 (5)

where u, v and w are velocities; p, p and 7 are pressure,
density and the wind stress all divided by a reference
density; g is gravity; and N the buoyancy frequency.
On an equatorial 8-plane, the Coriolis frequency ftakes

the form
f=8y. (6)

If (1) to (5) are Fourier transformed in time and lon-
gitude, then a single Fourier component with frequency
o and zonal wavenumber & is considered. Eliminating
v and u between (1) and (2) and p between (3) and (4)
gives equations for the velocities in terms of pressure:

(0= fHu= fp,+ okp+ior,— fr7, N
(6*— fAOv=—iop,— ikfp+ fr./*+ior?, ®)
w=iaop,/N> &)

These expressions can be substituted into the continuity
equation (5) to give the following equation for pressure:

[(ozliyﬁ)]f[[a(a —fﬁ] (@ —f2>] [ﬁ_]

_i k <y ife frr+ior?
{(cr s )(a‘r, +ifr”) [ — 73 ]} (10)

This equation is separable into horizontal and vertical
components providing the stress and boundary con-
ditions are also separable. In the VP representation,
the solution is now projected onto the eigenfunctions
of the horizontal operator of (10) which satisfy the
equation

Dy kf _ k? } P _
[(ﬁ—fﬁ]f[[aw—ﬂ)]y @7 en

(11
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where gh is the eigenvalue. If an equation is formed in
v instead of p, then the corresponding horizontal ei-
genfunctions satisfy the parabolic cylinder equation:

(12, Bk 2_ Y _
(k +'a)v+(6 f)gh 0

The eigenfunctions of (11) and (12) can be separated
into two sets. When gh is positive they are the familiar
Hermite function solutions:

"= Veh" [V2(n+ Dandni(y') — V2nbun (Y )1,
2 hn 1/4

V=7"(f‘167) a0

U= [V2(n+ Dapdni(y') + V200,01 (3)],

where ,, is the Hermite function of degree »

(12)

(13)

’ 2\ 1/4
Un(') = Ho(y)e ™ 227 nt) Pl y'=(£;) ¥

a, = 1/Vgh"—kjo, b, =1/Vgh"+klo. (14)

The eigenvalues are given by the dispersion relation
k
(k2 +§—)gh" + Vgh"8Q2n+1)—¢*=0. (15)
g

There is also a less familiar set of eigenfunctions when
gh is negative. These solutions of (11) and (12) are
exponential equatorward of the inertial latitude and
damped oscillatory poleward of it: exactly the opposite
of the Hermite functions. They are bounded at infinity
where they have y~'/? algebraic decay; see Abramowitz

and Stegun (1964, p. 693).

a. Horizontal projection

The pressure is now expressed as a sum over all the
eigenfunctions P”

p=20"@@)P"(y), (16)
n

and (10) is then projected onto the eigenfunction P”.

The P" are orthogonal so that the projection gives the

following equation for p™

[+l e

1 X4 - »ﬁi—_f«r_‘r{ n
[(0,2 f2)(°'Tz +lﬁ'zy) [ (02_f2) ]y}P dy
(17)

The projection of the forcing on the right-hand side
of (17) appears to be singular at the inertial latitudes y
= +¢/8 because of the (¢2 — f2) terms in the denom-
inator. This apparent singularity does not arise in the
atmospheric situation when the forcing is in the heat
equation; see Salby and Garcia (1987). It did arise in
Wunsch (1977) who addressed the same problem as in
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this section, but he did not mention the apparent sin-
gularity and avoided singular values by assumption
rather than the derivation below. The eigenfunction
equation for P", (11), also appears singular but its so-
lution (13) is not. The inertial latitudes are, in fact,
associated with removable singularities of (11); this is
also true of the forcing projection and can be dem-
onstrated by integrating the second term on the right-
hand side of (17) by parts to obtain

53] + g e
_L (] (ekP"+fP)) . (kfP"+aP))
_io- —m[TZ (0’2—f2) +ir/ (o'z—fz) ]dy.
(18)

Comparing the resulting expressions with the unforced
version of (7) and (8), which are the equations satisfied
by U", V" and P", shows that (18) can be written in
the form

[ ] ___f (TxUn‘_TyV")dy/f P7dy.
(19)

gh"
This projection equation is new and shows that the
projection is regular at the inertial latitudes. The cor-
responding projection equation in terms of v is

1 v” — 2yt
[[ ],+gh"]f (= SOV"dy
_ | [[fratiorz] ik, k),
_f_w[[ - ]Z+UT, vy, (20)

A comparison of (19) and (20) shows that the projection
onto the p equation is simpler than onto the v equation
and does not contain z derivatives of the forcing. The
forcing projection onto the v equation contains two z
derivatives, so it is difficult to apply if the body force
is assumed discontinuous at the base of the forcing
layer as is normally the case in the VS representation.
It is also convenient to work with p because the veloc-
ities are more easily derived from it than from v [see
(7>~(9)], and the p equation includes the Kelvin wave
which the v equation does not.

b. Vertical solution

In order to solve the vertical structure equation (19)
a vertical distribution for the body force has to be as-
sumed. The usual assumption is that the body force
acts uniformly over a depth d and not below. In this
case (19) becomes

[ J + 2 treq2)

p @1
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where

1, d<z<0
e(z)={ (22)

0, z<d,

and A" is a constant. For illustrative purposes and an-
alytic tractability, the buoyancy frequency N is now
assumed constant throughout the ocean. The solution
to (21)is

= gh A" 1—e™ cosmz, d<z<0
8 __l-eimz sinmd, Z<d,
N
m=——, gh">0, (23)
Ve
or
. 1 — (sinhmd + coshmd)coshmz,
p=eha d<z<0
~ sinhmd(sinhmd + coshmd)e™*=4),
z<d,
N
m=——, gh"<0. (24)
v — ghn

This solution satisfies p,” (or w”) zero at the surface, z
= 0, p" and p,” (or w") continuous at the base of the
forcing layer, z = d, and either the radiation condition
or decay in the deep ocean. The positive gh” solution
(23) is vertically propagating and has upward phase
propagation in the deep ocean which implies downward
energy propagation, whereas the negative gh" solution
(24) is trapped near the surface. These characteristics
of the solution remain true if a) N is nonuniform, b)
the forcing layer is assumed well mixed so that N = 0
down to depth d, and c) a free rather than a rigid upper.
surface is assumed.
The amplitude of the vertically propagating solution

(23) in the deep ocean is

A"N2 Oo(m™),

O(m™),

Thus, solutions in the deep ocean will exhibit red
spectra with respect to the vertical wavenumber m, be-
cause the solution amplitude will be dominated by the
longest vertical wavelengths and be small for the short-
est vertical wavelengths. A similar result is found in
Salby and Garcia (1987), who show that the tropical
stratospheric solution is red with respect to vertical
wavenumber.’

One of the questions posed at the beginning of the
paper is the sensitivity of the solution to various choices

m—0
m—> 0.

sinmd = [ (25)

! The m — 0 solution is not singular as implied by (25) since 4"
is a function of m. It is a different function for each wave component;
S€E next section,
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for the vertical distribution of the body force. In order
to answer this question e(z) is now given three different
profiles:

1: €% blarge,
cos(wzf2d), d<z<0
2
{0, z<d, (26)
3 1—-z/d d<z<0
"o, z<d.

The amplitude of the vertically pfopagating solution
below the forcing layer in these cases is

1: A"N’b/m(b*+ m?),

2
2: A'N*x cosmd/Zma'(m2 - f‘ﬁ) , @7
3: A"N*(cosmd—1)/m?d.
All these amplitudes are such that
. [O(m™), m—>0
Amplitudes = {O(m‘3), m— co, (28)

except that the last two profiles tend to zero faster as
m —> oo in the case when md is special multiples of .
Thus the behavior for all four profiles is the same in
the important long wavelength limit, whereas the uni-
form body force in the forcing layer gives a slightly less
red spectrum with slower decay than the other profiles
in the short wavelength limit. This shows that the so-
lution amplitudes in the deep ocean are insensitive to
the precise choice of the body force distribution with
depth because of the red character of the solution. This
. result is similar to one in Salby and Garcia (1987) who
show in appendix B that the solution in the stratosphere
is insensitive to the precise choice of heating profile
with height in the troposphere.

3. Space-time transformed wave solutions

In this section we will consider some spectral com-
ponents of the Fourier transformed solution, i.e., for

particular k and o, in response to particular forms of .

the wind stress forcing. It is based on a similar analysis
for atmospheric heating in Salby and Garcia (1987).
The spectral components considered will be those rel-
evant in the deep ocean when the forcing frequency is
not too high, i.e., Kelvin, Rossby and mixed Rossby-
gravity waves. The gravity wave component will not
be considered because it is small when ¢ is not too
large; the vertically trapped components with negative
equivalent depths also will not be considered because
they do not contribute to the propagating solution in
the deep ocean. We will consider the energy of these
wave modes in transformed space as a function of k%,
o, z and magnitude of damping.

In the same spirit as using a constant N profile, i.e.,
analytic tractability, the damping is chosen to be linear.
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The Rayleigh friction coefficient is » and the Newtonian
cooling coefficient «. Again for convenience » will be
taken equal to x because in the VP representation this
is not a special case; each wave component has merid-
ional phase changes; in contrast to the VS represen-
tation. This point and other linear damping wave effects
are discussed in section 4. It is now convenient to define
a complex frequency w by

(29)

because the results of section 2 carry over to the damped
case with ¢ replaced by w. The stress in the forcing
layer is chosen to be Gaussian in x, y and ¢

2 2

w=ag+iv,

2
—_— + —,
2 2 2 d
where e(z) is given in (22) and x = 0 is considered as
the center of the ocean basin. We now take the Fourier
transforms with respect to time and longitude

Forr=1° exp{—[ (30)

77(0,k,y,2)= % f_ f_ 7.~ expli(ot — kx)]dxdt.

a1

This gives the fc';rcing of the space-time transformed
equations as

70 k> o we(2)
Fror 7 =——exp|—|—+—+ 2|1 22,
Fror7 mexp{ [n - 2]] -

For positive values of o and k which result in eastward
propagation, the only long-wave propagating solution
when 7.* is symmetric about the equator is the Kelvin
wave.

(32)

a. Kelvin wave

The Kelvin wave dispersion relation and eigenfunc-
tions can be found from (15) and (13) by setting n

= ~1:

2
gh =7, a>0 P“=%U“=(§) Yo(¥),
v'=0, (33)
where
) Bk 1/2
y’=(—) Y.
w

When the forcing is in the zonal wind stress, the pro-
jection onto the Kelvin wave given by (19) is

__Toﬂ,mks —k_Zﬁ ) _ﬁ )
Aok Ve """[ (27\+27)]f—w °""[ (2”
- o0
1] —o0 [

Both integrais in (34) are along the real y axis but of
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exponentials with complex arguments when friction is
present and w is complex. However, the denominator
in (34) can be evaluated as

© 172 poo
[eontg)" v

where the integral on the right-hand side of (35) is now
taken along the real y' axis. This requires taking a con-
tour integral in the complex plane along the contour
shown in Fig. 1, noting that the integrand has no poles
within the contour and showing that the contributions
to the integral along the lines 1 and 2 are zero. The
latter requires that 2«, the phase of w/Bk, be between
+m/2 which is satisfied as long as the frequency is non-
zero. There is a similar requirement on the integral in
the numerator of (34) which is also satisfied. In general,
it will always be satisfied if the forcing has no poles
and is well behaved at infinity. Thus

Ny 7O7|'V4k3 2 172 ex N !ﬁ.l-_oj.
P\ " 291
(36)

ok —
id mw" 1429
Bk
In order to assess energy as a function of depth, we
now define the averaged space-time transformed en-
ergy E%; of a wave mode as

ne=s f ) [ﬁﬁ* + 0% + (——5 »)('——ﬁ )*]a’y', 37
-0 V ghn Vghn
where the overbar denotes the transformed variable

and * the complex conjugate. For the Kelvin wave this
space~time transformed energy below the forcing layer

is
(w)3 1 (de) (iNkz)
— ) A sin|—— ) exp|
k w w

where the vertical wavenumber m = Nk/w. Equation
(38) illustrates how forcing and friction affect the space-
time transformed energy of a VP Kelvin wave. It shows:

(35)

A

2

» (38)

—l=

ok

+
Integration Path

FIG. 1. Contour of integration in the complex plane
to prove Eq. (35).
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1) The time and longitudinal structure of the forcing
affects the energy as the square of the Fourier transform
of the forcing. This is independent of the wave being
considered. For the Gaussian forcing considered in this
section, the Fourier transform (32) is exponentially red
when A and v are small, large zonal and time scales,
and almost white when X and v are large, small zonal
and time scales.

2) The latitudinal structure affects the energy by the
square of the projection (19) onto the particular wave
in question. The projection is large when the frequency
¢ is small and the Kelvin wave is closely trapped around
the equator and is small when o is large and the Kelvin
wave is very broad meridionally, i.e., extending well
beyond 7,%.

3) Friction affects the energy through the exponen-
tial decay term with depth in (38) which for constant
Nis

exp[2Nkvz/(o? + 1¥)). (39)
When ¢ » v, the exponential decay coefficient is pro-
portional to the damping coefficient and inversely pro-
portional to ¢%, and the vertical wavenumber varies
like 6~!. When o is small, the Kelvin wave has a smaller
vertical wavelength and equivalent depth and decays
rapidly with depth. The higher frequency Kelvin waves
have large vertical wavelengths and decay slowly with
depth. Comments 2 and 3 also hold for the other long
VP waves.

An alternative to studying the energy itself is to study
the space-time transformed downward energy flux,
Re(wp*). Comments 1 and 2 apply exactly to the en-
ergy flux because it is also a quadratic quantity. Com-
ment 3 applies exactly when N is constant because the
vertical structure function for w is the same as for #,
v and p in this case. Comment 3 and this equivalence
do not apply when N is a function of depth.

In order to evaluate the Kelvin wave space-time
transformed energy, the dimensional and nondimen-
sional quantities given in Table 1 were chosen. The
stress is a Gaussian with equal horizontal e-folding
scales of 500 km and an e-folding forcing time scale
of either 10 or 30 days. The N and d are kept fixed,
but the results depend only upon the product Nd when
the depths examined are multiples of d. We use two
values of friction, weak and strong, corresponding to
spindown times of 1000 and 500 days, two wavenum-
bers corresponding to wavelengths of 12 500 and 6250
km, and two depths are examined: twice and twenty
times the mixed layer depth. The absolute scale on the
following figures is arbitrary and depends upon the
strength of the wind stress, etc., but the scales are con-
sistent between all the plots showing comparative am-
plitudes for different waves and the attenuation with
depth. Figure 2 shows E; against o for 10 day e-folding
forcing time scale with strong friction at 100 m depth
for (a) 12 500 and (b) 6250 km wavelengths. The plot
covers a frequency range from zero to 0.4 which is a
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TABLE 1. Scales and parameter values.
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Dimensional

Length scale / = 250 km, Time scale T = 2 days,
Mixed layer depth = 50 m, 8 = 2.29 X 107" m~' ™!
Buoyancy frequency N = 2.8 X 1072 s~

Nondimensional
A= u=l B=1,

{ Y,s 10-day e-folding forcing time scale
Y= 2,
/225

Nd=-10

30-day e-folding forcing time scale
~ Ys00 1000 days spindown; weak
a { Y250 500 days spindown; strong
e ‘['/B 12 500 km wavelength
Y+ 6250 km wavelength
_ { 2d 100 m depth

20d 1 km depth

z

period of about 30 days and it shows that the energy
has several peaks so that several frequencies are im-
portant to the solution at this depth. The larger value
of k for the shorter wave means that the energy oscil-
lates more rapidly with ¢ so that Fig: 2b has more peaks
than Fig. 2a. Also the amplitude of the shorter wave
response is reduced somewhat compared to that of the
longer wave, so that the spectrum is red in k. The same
plots for 30 day e-folding forcing time scale are shown
in Fig. 3. The response is shifted to lower frequencies;
¢ = 0.2 corresponds to a period of just over 60 days,
although the peak response is only shifted slightly to a
period of about 120 days. The maximum amplitude
of the response is larger than that for the 10 day forcing
time scale, and, as in Fig. 2, several frequencies con-

tribute significantly to the response. Figure 3b again

10 : : —
a)

> =
% 08} K=1
&
w
z
W ot 1
¢
g
2. 4
=z
Z
W o2 >

% Y 02 03 04

o
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shows the redness of the response in k in that the shorter
wave response is reduced compared to the longer wave,
and shows that more frequencies contribute signifi-
cantly to the shorter wave response. These properties
are consistent for the shorter Kelvin and Rossby waves,
so that only results for the longer waves are shown
subsequently. Figure 4 shows plots of E;} at 1 km depth
for (a) 10 day and (b) 30 day e-folding forcing time
scales. It shows that the amplitudes are considerably
reduced from those at 100 m, with the response to the
30 day forcing time scale decreasing faster with depth
than the response to the 10 day forcing time scale. The
maximum response is now shifted to higher frequencies
and therefore longer vertical wavelengths than at 100
m and is at different frequencies for the two forcing
time scales. Also compared with 100 m only one or
two frequencies contribute significantly to the solution,
so that observations at this depth may be able to resolve
the frequency bands shown in Fig. 4 quite well, which
was not the case at 100 m depth. Figure 5 shows the
same plots as Fig. 4 but with weak friction. It shows
considerably larger amplitudes compared with the
strong friction results; the maximum responses are at
lower frequencies and more frequencies contribute sig-
nificantly to the solutions.

b. First Rossby wave

The dispersion relation of the first Rossby wave can
be found from (15) with n = 1:

Veh'

s ).

—B/k<o<0. (40)

The eigenfunctions are given by (13) with n = 1, and
the projection coefficient Ay from (19) is given by

‘04} ‘ b)w
& K=2
&

w
= o3}
b
s
S o2 1
=
>
o orb
2
% o 02 03 04

o

FIG. 2. Space-time transformed Kelvin wave energy vs. frequency at z = 2d for 10-day e-folding
forcing time scale, strong friction for (a) 12 500 km wavelength and (b) 6250 km wavelength.
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FIG. 3. As in Fig. 2 except for an e-folding forcing time scale of 30 days.

2 0,2

2
X al(——-————- - 1) + b]] exp[—(-—— + ——>]
[ 1+;4Vgh’/13 2A 2‘Y
T\ 172 -1
X[iwgh‘( 1 +”—§£—) (2a.2+b.2)] . (41
"Thus the space-time transformed energy of the first
Rossby wave is given by

Equ= 2[2a,at + b1 bt + wow*(gh 1)1/4(gh1*) 1/4/6]

Nd iNz
Xigh'dl, sin(———) exp(———)
‘g Veh' Vgh!

Figure 6 shows plots of E!; against ¢ for the 12 500
km wavelength with strong friction at a depth of 100
m for (a) 10 day e-folding and (b) 30 day e-folding
forcing time scales. The amplitude of the first Rossby

2

. (42)

1.6x10° —————

a)
> 10 DAY
Qrexo?t
5 |
Z
wl
L -3
> 80x107 g
(=4
=
=
2 aoxig® 4
i
X

o L .
0 ol 02 03 04 05
o

FIG. 4. Space-time transformed Kelvin wave energy

06

wave response is larger than that of the Kelvin wave
and its maximum amplitude is also larger for the 30
day than the 10-day forcing time scale. The maximum
response is at a lower frequency for the 30-day than
the 10-day forcing time scale and both are at lower
frequencies than the maximum Kelvin wave response.
Several frequencies contribute significantly to the so-
lution at this depth. Figure 7 shows the corresponding
plots at a depth of 1 km. Comparison with Fig. 4 shows
that the first Rossby wave is attenuated with depth less
quickly than the Kelvin wave because of its larger
equivalent depth or smaller vertical wavenumber for
given values of ¢ and k. As for the Kelvin wave, the
dominant response compared to 100 m is shifted to
higher frequencies and therefore longer vertical wave-
lengths, and is simplified in that only one or two fre-
quencies contribute significantly to the solution. Again
the response to the 30-day forcing time scale decays
more quickly with depth than the response to the 10-
day forcing time scale.

Higher mode Rossby waves will have larger equiv-

50x107 | b) g
% 30 DAY
frd -a
& aoxi0* :
2
w
g 30x107 | 1
a
=
= 20x107° J
>
W ioxio b .

o A A \
0 006 012 08 024 030
o

vs. frequency at z = 204 for 12 500 km wavelength,

strong friction for (a) 10-day e-folding and (b) 30-day e-folding forcing time scales.
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FIG. 5. As in Fig. 4 except for weak friction.

alent depths or smaller vertical wavenumbers than the
first Rossby wave. Their responses will oscillate less
rapidly with ¢ so that, at any given depth, fewer fre-
quencies contribute significantly to the solution, and
" their responses will decay less rapidly with depth than
for the first Rossby wave. However, the latitudinal scale
of these higher mode Rossby waves increases quickly
and the projection coefficient (19) decreases compared
to (41) for the first Rossby wave.

¢. Mixed Rossby-gravity wave

This wave has the opposite latitudinal symmetry
than the other waves considered, so that now the forcing
is assumed to have zero 7, and nonzero 7,”. The dis-
persion relation of the mixed Rossby-gravity wave is
found from (15) with » = 0: -

Veh® = /(B8 + wk), o> —B/k, (43)

and the corresponding eigenfunctio-ns.are given by (13)
with n = 0 ignoring the second terms in P® and U°.
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The projection coefficient from (19) is given by
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and the mixed Rossby—gravity wave energy by
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In the low-frequency limit, the equivalent depth of
the mixed Rossby—gravity wave is much smaller than
that of the Kelvin wave so that (i) it is tightly trapped
about the equator, (ii) the response at 100 m (not
shown) oscillates very rapidly with ¢ so that very many
frequencies contribute significantly to the solution, and
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FIG. 6. Space-time transformed first Rossby wave energy vs frequency at z = 2d for 12 500 km wavelength,
strong friction for (a) 10-day e-folding and (b) 30-day e-folding forcing time scales.
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F1G. 7. As in Fig. 6 except at a depth of z = 20d.

(i1i) the response decays very rapidly with depth. The
last point is illustrated in Fig. 8 which shows plots of
E?% against o for the 12 500 km wavelength with weak
friction at a depth of 1 km for (a) 10-day e-folding and
(b) 30-day e-folding forcing time scales. Figure 8 shows
the very small amplitudes especially for the 30 day
forcing time scale and that several frequencies contrib-
ute significantly to the solution even at 1 km. The
dominant responses are at higher frequencies than for
the Kelvin and first Rossby waves. In contrast to the
Kelvin and Rossby waves, the maximum amplitude of
the mixed Rossby-gravity wave response is much larger
for the 10-day than the 30-day forcing time scale, and
the shorter wave response is increased compared to the
longer wave response.

d. Gravity waves

The equivalent depth of the first gravity wave is given
by (40) but with a plus sign before the square root term
rather than a minus sign, and is smaller than that of
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the Rossby-gravity wave. Thus (i) it is very tightly
trapped about the equator, (ii) the response oscillates
more rapidly with ¢ and (iii) the response decays even
more rapidly with depth than the mixed Rossby—gravity
wave response. These tendencies become even more
acute for higher mode gravity waves, so that no plots
of space-time transformed gravity wave energy are
shown.

4. Linear damping effects on VP and VS waves

The solutions in the last section were calculated using
linear damping with the Prandtl number (Pr = »/«) set
equal to one. The effects of linear damping on VP waves
are explored further in this section and compared and
contrasted with the effects on VS waves.

For a VP wave, ¢ and k are real and the addition of
Rayleigh friction modifies the dispersion relation (15)
by replacing ¢ by ¢ + iv. This relation is solved for the
eigenvalue \/ﬁ(a, k, v), which now becomes complex.
This affects the eigenfunctions (13) because y’ from

10x10™® T T v . T

b)
L 30 DAY

80xI0""

6.0xI10"7 g

4.0x10"7

2.0x10"7

O — L A, A
-060 -055 -050 -045 -040 -035 -030
o

FI1G. 8. Space-time transformed mixed Rossby-gravity wave energy vs frequency at z = 20d for 12 500
km wavelength, weak friction for (a) 10-day e-folding and (b) 30-day e-folding forcing time scales.
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(14) is now complex so that there are meridional phase
changes in the Hermite functions (14) which oscillate
very rapidly as y = *oo. The eigenfunctions which
have Re(Vgh") < 0 will also be complex. Addition of

Newtonian cooling affects the vertical structure equa-
tion (21) so that the vertical wavenumber m(o, k, v, k)

from (23) also becomes complex. This means that the
vertically propagating waves decay in the vertical as
analyzed in section 3, see (39), and that the solutions
(24) trapped near the surface oscillate slowly in the
vertical. This analysis shows that, in general when linear
damping is present, there are meridional phase changes
in each wave component of the VP representation. The
special case in the VP representation, when there are
no meridional phase changes in each wave component,
occurs when » = O whatever the value of . This fact
was exploited by Salby and Garcia (1987) who incor-
porated only thermal damping and so used the inviscid
set of horizontal eigenfunctions. As mentioned in sec-
tion 3, the Pr = 1 case is not special in the VP repre-
sentation because each wave component has meridi-
onal phase changes for this value of Pr.

In the VS representation the effect on a single wave
component is different; o and gh” are now real and the
dispersion relation is solved for the eigenvalue k(o, gh",

"», k), which becomes complex. The decay in each com-
ponent is in the zonal direction rather than in the ver-
tical. Yamagata and Philander (1985) analyze the gen-
eral case and show that each wave again has phase
changes in y. However, the phase changes are different
than in the VP representation because they depend

. upon both v and « rather than just v, as in the VP

representation. In the VS representation, meridional
phase changes in each wave component do not occur
either when Pr = 1, which is the special case in the VS
representation, or when ¢ = 0 and the solution is steady.

This difference in the meridional phase changes in
each wave component due to linear damping in the

VP and VS representations seems to have been over-

" looked in previous studies of the linear damping effects

on equatorial waves, several of which are listed in Table
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2. The VP wave entries in Table 2 are Chang (1977)
who studied the Kelvin wave when Pr = 1, Stevens
and White (1979) who extended this to arbitrary values
of Pr and Chang and Lim (1982) who gave the general
solution for Rossby and gravity waves. The mixed
Rossby~gravity wave dispersion relation is (43). The
VS entries in Table 2 are Martinsen and Weber (1981)
who studied the Kelvin wave in the presence of Ray-
leigh friction only, Mofjeld (1981) who studied all
waves in the same situation, and Yamagata and Phi-
lander (1985) who studied all waves in the general case
of arbitrary Pr. Meridional phase changes in a single
wave component based on linear damping effects are
discussed in all the papers listed in Table 2 except for
Stevens and White (1979).

In general, in forced wave problems it is fallacious
to make conclusions about the total forced solution
based upon the response in each wave component. For
example, linear damping affects each VS and VP wave
component quite differently, yet the total solution
summed over all the wave components in the two rep-
resentations is the same. This fallacy is especially true
about phase changes in' y; consider a solution when Pr
= 0 or 1 when one representation has phase changes
in y for each wave component and the other represen-
tation does not. The true phase changes in y only be-
come clear when all the wave components in the rep-
resentations have been summed.

5. Discussion and conclusions

This paper attempts to answer the question of how
forcing, linear friction and the body force assumption
affect the vertical propagation of energy in the equa-
torial oceans. Section 2 shows that the time and lon-
gitudinal structure of the forcing affects all VP waves
in the same way through the Fourier transforms in ¢
and x, respectively. The meridional structure of the
forcing affects each individual VP wave differently
through the projection in y onto that wave component.
A new expression for this projection onto the pressure

TABLE 2. Waves with linear damping.

Raleigh Newtonian Prandtl Complex Complex Complex Complex
Reference Wave type friction cooling number a? K y-scale? m?
Chang (1977) VP Kelvin Yes Yes 1 No No " Yes Yes
Stevens and White VP Kelvin Yes Yes Any No No Yes! Yes
(1979) .
Chang and Lim VP Rossby Yes Yes Any No No Yest Yes
(1982) and gravity
Martinsen and VS Kelvin Yes No @ Yes No Yes No
Weber (1981) :
Mofjeld (1981) VS all Yes No [ No Yes Yes No
Yamagata and VSall Yes Yes Any No Yes Yes* No

Philander (1985)

t In general yes, but no when the Prandtl number is zero.

* In general yes, but no either when the Prandtl number is one or for steady forcing with any Prandtl number.
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equation, when the forcing is in the momentum equa-
tions, is given by the right-hand side of (19). In section
3, the transforms and projections for the Kelvin, first
Rossby and mixed Rossby—gravity waves are derived
explicitly for forcings that are Gaussian in ¢, x and y.
The effects of other forcings can be written explicitly
if the Fourier transforms in ¢ and x and the projection
in y onto the Hermite functions can be done analyti-
cally.

The effects of linear friction and the body force as-
sumption studied in sections 2 and 3 can be determined
analytically when the buoyancy frequency is assumed
to be constant. When N is constant and the damping
is small compared to the frequency, friction decreases
the response amplitude exponentially with depth, with
a coefficient proportional to the damping magnitude.
As the response propagates to greater depths, friction
moves the maximum response to higher frequencies
and simplifies it because fewer frequencies contribute
significantly to the response. In section 2 the solution
well below the forcing is derived for four different pro-
files of stress forcing in the mixed layer. The behavior
in the long vertical wavelength limit as m — 0 is the
same for all four profiles and the behavior as m = o0
decays less rapidly when the body force is uniform than
for the other three profiles. However, the forcing pro-
jects strongly onto the modes with small 72 and only
weakly onto those with large m. This suggests that the
rate of vertical propagation of energy is insensitive to
the precise choice of body force profile.

These conclusions have implications for the analysis
of equatorial observations that have been Fourier
transformed in time and longitude. They imply that
the resulting spectrum with vertical wavenumber m
should be red. If the observations are just below the
forcing then they will be complicated because many
different wave components will be emphasized at sev-
eral frequencies and zonal wavenumbers. If the obser-
vations are deeper in the ocean, however, then the
forced response has had time to disperse in space and
for friction to act. Thus the observations will be simpler
as fewer wave components will dominate at fewer and
higher frequencies, which have corresponding longer
vertical wavelengths. The situation is analogous to ob-
servations taken in the tropical stratosphere. Just above
the tropopause several different wave types with vertical
wavelengths of 10 km or less have been identified.
Higher in the stratosphere Kelvin waves with higher
frequencies and longer vertical wavelengths have been
identified; see Salby and Garcia (1987). Of course dis-
persion of the response to localized forcing also occurs
in space and time. To the east of the forcing only Kel-
vin, mixed Rossby-gravity and gravity wave compo-
nents will be seen, and Rossby waves will only be seen
to the west of the forcing. If the observations are taken
almost directly below the forcing then only the high
frequency response will be seen, whereas if the obser-
vations are taken at almost the same depth as the forc-
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ing then only the low frequency response will be seen.
Also the latitudinal position of the observations is im-
portant as only wave components with a significant
amplitude at that latitude will be seen. Finally when
the response is seen in time depends upon the distance
from the forcing and the group velocity of the wave
component being observed.

These conclusions are based upon a constant N as-
sumption and are only valid well away from the forcing
in an ocean of infinite extent with no mean flow. This
is unrealistic in the equatorial oceans where the buoy-
ancy profile has a large maximum in the shallow ther-
mocline. Gent and Luyten (1985) studied the effect of
realistic N profiles and concluded that they can have
a very strong reflection effect on the vertical propaga-
tion of energy, whereas the study of Rothstein et al.
(1985) suggests a much smaller effect. Gent and Luyten
(1985) conclude that models with constant N give un-
realistic results for vertical energy propagation, but,
even so, this assumption is used in this paper in order
to get analytic forms for the effects of friction and the
body force assumption. Wave reflections from ocean
boundaries will also be important if the forcing time
scale is much longer than the values considered in this
paper. McPhaden et al. (1986) show that realistic mean
flows can also drastically affect the character of vertical
energy propagation in the equatorial oceans. Ideally
all effects should be included in a more comprehensive
model.

Section 4 shows that linear damping effects are very
different on each VP or VS wave component. A VP
wave decays with depth but not in longitude whereas
a VS wave decays in longitude but not with depth. In
general, both waves have phase changes in latitude but
they are different in the two wave types. However, the
two representations give the same solution to a general
forced problem, so that it is fallacious to make deduc-
tions about meridional phase changes in the total so-
lution from the phase changes of each wave compo-
nent.
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