10 MW 高温气冷堆的集总参数动态模型

李海鹏,黄晓津,张良驹

(清华大学 核能与新能源技术研究院,北京 100084)

摘要:应用基本的质量、能量和动量守恒原理,建立了 10 MW 高温气冷堆的动态数学模型。该模型采用 了集总参数的建模方法,将反应堆按照不同热工水力学属性划分为多个节块,并采用了具有 6 组缓发中 子的点堆中子动力学公式。对建立的模型进行了动态仿真。结果表明,所建立的模型能够用来进行反 应堆的动态特性仿真。

关键词:10 MW 高温气冷堆;动态模型;集总参数;仿真 中图分类号:TL36 文献标志码:A 文章编号:1000-6931(2008)05-0442-05

Lumped Parameter Dynamic Model of 10 MW High-Temperature Gas-Cooled Reactor

LI Hai-peng, HUANG Xiao-jin, ZHANG Liang-ju

(Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)

Abstract: Based on the fundamental conservation of mass, energy and momentum, a mathematical dynamic model of the 10 MW High-Temperature Gas-Cooled Reactor (HTR-10) was developed. The reactor was nodalized to a lot of sections which were lumped to display uniform thermal-hydraulic properties. The point kinetics equations with six precursor groups of delayed neutrons were coupled to the developed model. The transient simulation result shows that the model developed is effective to simulate the reactor dynamics. Key words: 10 MW High-Temperature Gas-Cooled Reactor; dynamic model; lumped parameter; simulation

10 MW 高温气冷堆(HTR-10)是一座球 床模式的实验堆^[1-2]。为研究高温气冷堆的动态特性,建立反应堆的动态数学模型是必需 的。

目前,针对高温气冷堆的数学模型主要分 为:1)分布参数模型^[3-7],主要用于反应堆的稳 态热工水力设计、事故序列计算及安全评价等, 这种模型是详细的,但也是复杂的,不利于快速 的仿真应用;2)集总参数^[8]模型,主要用于反 应堆的快速实时仿真、控制特性研究以及控制 系统的设计。

本文研究建立 10 MW 高温气冷堆集总参数动态数学模型,以用来研究反应堆的动态特性及进行反应堆控制系统设计。

收稿日期:2007-09-16;修回日期:2007-11-27

基金项目:高等学校博士学科点专项科研基金资助项目(20050003027)

作者简介:李海鹏(1981一),男,山东新泰人,博士研究生,核能科学与工程专业

1 物理描述

10 MW 高温气冷堆的堆体结构示于图 1^[2]。一回路冷却剂氦气进入压力壳后,向下流 过堆芯和压力壳间的环形通道,在压力壳下部 区域气流改变方向,一小部分气体流入卸料管, 大部分气流绕过堆底的支撑结构,进入侧反射 层石墨块内的冷却剂通道。氦气在冷却剂通道 内自下向上流动。在反射层顶部,一回路冷却 剂汇集于堆顶反射层上部的冷氦气联箱,主气 流从堆顶自上而下相继流过堆芯和底反射层通 道后流入反应堆底部热氦气联箱,不同温度的 气流在热氦气联箱中得到充分混合后,通过热 气导管流出反应堆压力壳^[1]。

图 1 HTR-10 堆体结构示意图 Fig. 1 Structure scheme of HTR-10

为建立集总参数的动态模型,现作如下假 设:1)所有氦气流道上的流体特性均匀;2)换 热特性采用单个平均通道计算;3)不考虑流体 工质沿流动方向的传热;4)模型应用于反应堆 正常运行工况,未考虑启动停堆等工况。将反 应堆划分为堆芯、反射层、下封头、下联箱、上升 管、上联箱、下降管和出口联箱 8 个节块,结构 示于图 2。

2 数学模型

集总参数描述的数学方程如下。 质量守恒:

图 2 HTR-10 集总参数模块划分示意图 Fig. 2 Nodalization scheme of lumped parameter dynamic model for HTR-10

$$\frac{\mathrm{d}m}{\mathrm{d}t} = G_{\mathrm{in}} - G_{\mathrm{out}} \tag{1}$$

能量守恒:

$$\frac{\mathrm{d}(mh)}{\mathrm{d}t} = G_{\mathrm{in}}h_{\mathrm{in}} - G_{\mathrm{out}}h_{\mathrm{out}} + Q_{\mathrm{in}} - W \quad (2)$$

动量守恒:

$$p_{\rm out} = p_{\rm in} - \xi \frac{G_{\rm in}^2}{\rho_{\rm in}} \tag{3}$$

式中:m 为质量;G 为流量;h 为比焓;Q 为热 量;W 为做功;p 为压力;ρ 为密度; ξ 为阻力压 降系数;下标"in"和 "out"分别表示输入和输 出。

2.1 堆芯

反应堆堆芯是由燃料球组成的球床,为简 化计算,将整个堆芯区域考虑成带有均匀空隙 率的固体空间,裂变能在堆芯中产生并传递到 向下流动的氦气中,同时向反射层固体传热。 这一过程描述如下。

$$(1-\varepsilon_5)V_5\rho_{\rm c}c_{\rm c}\,\frac{\mathrm{d}T_{\rm c}}{\mathrm{d}t}=P_{100}n_{\rm r}-$$

 $\alpha_5 A_5 (T_c - T_5) - \alpha_{cr} A_{cr} (T_c - T_r)$ (4) 式中: ϵ 为体积空隙率; V 为体积; c 为比热容; T为温度; P_{100} 为额定功率; n_r 为相对中子密度 (功率百分比); αA 为相应的换热系数; 下标"5" 为下降管; 下标"c"为堆芯; 下标"cr"为堆芯向 反射层的传热。

整理可得:

$$\frac{\mathrm{d}T_{\mathrm{c}}}{\mathrm{d}t} = \frac{1}{\rho_{\mathrm{c}}c_{\mathrm{c}}V_{5}(1-\varepsilon_{5})} [P_{100}n_{\mathrm{r}} - \alpha_{5}A_{5}(T_{\mathrm{c}} - T_{5}) - \alpha_{\mathrm{cr}}A_{\mathrm{cr}}(T_{\mathrm{c}} - T_{\mathrm{r}})] \quad (5)$$

反应堆中子动力学方程采用具有 6 组缓发 中子的归一化的模型,方程为:

$$\frac{\mathrm{d}n_{\mathrm{r}}}{\mathrm{d}t} = \frac{\rho - \beta}{\Lambda} n_{\mathrm{r}} + \sum_{i=1}^{G} \frac{\beta_{i}}{\Lambda} C_{ii} \tag{6}$$

$$\frac{\mathrm{d}C_{\mathrm{r}i}}{\mathrm{d}t} = \lambda_i n_{\mathrm{r}} - \lambda_i C_{\mathrm{r}i} \quad i = 1, 2, \cdots, 6 \quad (7)$$

式中:ρ为反应性;β为缓发中子份额;Λ为中子 代时间;C为缓发中子先驱核密度;λ为先驱核 衰变常量。

反应性方程考虑了堆芯和反射层的温度反 馈,其中,堆芯由燃料和石墨平均组成,同时考 虑它们的反馈。总反应性为:

$$\rho = \rho_{\rm rod} + (\alpha_{\rm f} + \alpha_{\rm m})(T_{\rm c} - T_{\rm c0}) + \alpha_{\rm r}(T_{\rm r} - T_{\rm r0})$$
(8)

式中: ρ_{rod} 为控制棒引入的反应性; α_f 为燃料反应性系数; α_m 为慢化剂反应性系数; α_r 为反射层反应性系数;下标"r"表示反射层。

2.2 反射层

反射层接收堆芯的热传导,并与上升管的 氦气对流换热,过程为:

$$V_{\rm r}\rho_{\rm r}c_{\rm r}\frac{\mathrm{d}T_{\rm r}}{\mathrm{d}t} = \alpha_{\rm cr}A_{\rm cr}(T_{\rm c}-T_{\rm r}) - \alpha_3A_3(T_{\rm r}-T_3)$$

其中,下标"3"表示上升管。

整理得:

 $\frac{\mathrm{d}T_{\mathrm{r}}}{\mathrm{d}t} = \frac{1}{\rho_{\mathrm{r}}c_{\mathrm{r}}V_{\mathrm{r}}} \left[\alpha_{\mathrm{cr}}A_{\mathrm{cr}}(T_{\mathrm{c}} - T_{\mathrm{r}}) - \alpha_{3}A_{3}(T_{\mathrm{r}} - T_{3}) \right]$ (10)

2.3 下封头

假设下封头为一具有体积的均匀混合空间,不考虑压力损失,则:

$$V_1 \frac{\mathrm{d}\rho_1}{\mathrm{d}t} = G_{\mathrm{in}} - G_1 \tag{11}$$

$$V_{1}c_{p} \frac{\mathrm{d}(\rho_{1}T_{1})}{\mathrm{d}t} = G_{\mathrm{in}}c_{p}T_{\mathrm{in}} - G_{1}c_{p}T_{1} \quad (12)$$

$$p_{\rm in} = p_1 \tag{13}$$

其中:c,为氦气比定压热容;下标"1"表示下封头。

将式(11)代入式(12),并整理得:

$$\frac{\mathrm{d}T_{1}}{\mathrm{d}t} = \frac{G_{\mathrm{in}}}{\rho_{\mathrm{l}}V_{\mathrm{l}}}(T_{\mathrm{in}} - T_{\mathrm{l}})$$
(14)

根据氦气的密度公式[9],有:

$$\rho = 48.14 \frac{p}{T} \left(1 + 0.444 \ 6 \frac{p}{T^{1.2}} \right)^{-1}$$
(15)
将上式求导,得:

 $\frac{\mathrm{d}\rho}{\mathrm{d}t} = \left(\frac{\partial\rho}{\partial T}\right)_{p} \frac{\mathrm{d}T}{\mathrm{d}t} + \left(\frac{\partial\rho}{\partial p}\right)_{T} \frac{\mathrm{d}p}{\mathrm{d}t} \qquad (16)$

因压力-流量过程比焓-温过程快得多,这 里将压力变化忽略,即:

$$\frac{\mathrm{d}p}{\mathrm{d}t} = 0 \tag{17}$$

这样,密度变化则为:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 48.14 \frac{p}{T} \left(1 + 0.444 \ 6 \frac{p}{T^{1.2}} \right)^{-1} \cdot \left(-\frac{1}{T} + \frac{0.444 \ 6 \times 1.2 \frac{p}{T^{2.2}}}{1 + 0.444 \ 6 \frac{p}{T^{1.2}}} \right) \frac{\mathrm{d}T}{\mathrm{d}t} \quad (18)$$

利用式(18),可不用将氦气密度作为状态 变量,从而大幅降低了反应堆数学模型的阶数。

2.4 下联箱

下联箱的作用是描述氦气在堆芯底部的漏 流。一小部分氦气从这里直接进入卸料管流出 反应堆,大部分进入上升管。过程为:

$$G_{23} = G_1(1 - \beta_2) \tag{19}$$

$$G_{26} = G_1 \beta_2 \tag{20}$$

$$T_2 = T_1 \tag{21}$$

$$p_2 = p_1 \tag{22}$$

式中:β为泄漏率;下标"2"表示下联箱。

2.5 上升管

在上升管内,冷氦气自下向上流动,并与反 射层换热,相应的过程为:

$$V_3 \ \frac{\mathrm{d}\rho_3}{\mathrm{d}t} = G_{23} - G_3 \tag{23}$$

$$V_{3}c_{p} \frac{\mathrm{d}(\rho_{3}T_{3})}{\mathrm{d}t} = G_{23}c_{p}T_{2} - G_{3}c_{p}T_{3} + g_{2}A_{p}(T_{2} - T_{2})$$
(24)

$$p_3 = p_2 - \xi_3 \frac{G_{23}^2}{\rho_2} \tag{25}$$

将式(23)代人式(24),得:

$$\frac{\mathrm{d}T_3}{\mathrm{d}t} = \frac{1}{\rho_3 c_p V_3} [G_{23} c_p (T_2 - T_3) + \alpha_3 A_3 (T_r - T_3)]$$
(26)

2.6 上联箱

在上联箱内,上升管来的氦气来流充分混合 后,被平均分配到下降管中,这里简单描述为:

$$G_4 = G_3 \tag{27}$$

$$T_4 = T_3 \tag{28}$$

$$p_4 = p_3 \tag{29}$$

式中:下标"4"表示上联箱。

2.7 下降管

在下降管中,冷氦气自上而下流过堆芯的 空隙,将堆内的热量带走,达到冷却堆芯和传递 能量的作用。该过程为:

$$\varepsilon_5 V_5 \ \frac{\mathrm{d}\rho_5}{\mathrm{d}t} = G_4 - G_5 \tag{30}$$

$$\varepsilon_{5}V_{5}c_{p} \frac{\mathrm{d}(\rho_{5}T_{5})}{\mathrm{d}t} = G_{4}c_{p}T_{4} - G_{5}c_{p}T_{5} + g_{5}A_{5}(T_{2} - T_{5})$$
(31)

$$p_5 = p_4 - \xi_5 \frac{G_4^2}{\rho_4} \tag{32}$$

将式(30)代入式(31),得:

 $\frac{\mathrm{d}T_5}{\mathrm{d}t} = \frac{1}{\rho_5 c_{\rho} \varepsilon_5 V_5} [G_4 c_{\rho} (T_4 - T_5) + \alpha_5 A_5 (T_c - T_5)]$ (33)

2.8 出口联箱

出口联箱有2个入口流量,分别为下联箱 的泄漏流和下降管的流量。过程为:

$$V_6 \ \frac{\mathrm{d}\rho_6}{\mathrm{d}t} = G_5 + G_{26} - G_6 \tag{34}$$

$$V_6 c_p \frac{\mathrm{d}(\rho_6 T_6)}{\mathrm{d}t} = G_5 c_p T_5 + G_{26} c_p T_2 - G_6 c_p T_6$$

(35)

$$p_6 = p_5 \tag{36}$$

式中:下标"6"表示出口联箱。

将式(34)代入式(35),得:

$$\frac{\mathrm{d}T_6}{\mathrm{d}t} = \frac{1}{\rho_6 V_6} [G_5 (T_5 - T_6) + G_{26} (T_2 - T_6)]$$

(37)

2.9 状态空间模型描述

选择氦气入口压力 pin、氦气入口流量 Gin、 氦气入口温度 Tin和控制棒引入反应性 Prod 共 4 个变量作为输入变量。

同时选择中子相对密度 nr、缓发中子先驱 核相对密度 C_{ri} (*i*=1,2,...,6)、下封头温度 T_1 、上升管温度 T_3 、下降管温度 T_5 、出口联箱 温度 T₆、堆芯温度 T₆和反射层温度 T₇ 共 13 个变量为状态变量,则式(5)、(6)、(7)、(10)、 (14)、(26)、(33)和(37)组成了反应堆动态数学 模型的状态方程。

这些状态方程和相应的代数方程共同组成 了反应堆的状态空间动态模型。

3 模型仿真

为对得到的模型进行验证,对上面建立的

数学模型进行了阶跃、斜坡等输入仿真实验,得 到相应的动态结果。仿真模型中相应的参数及 关系式详见文献[9],其中,关键参数如下。

1) 堆芯均匀空隙率 $\epsilon = 0.39$;进入卸料管 的氦气泄漏率 $\beta=0.1$ 。

2) 换热公式

下降通道换热公式采用德国安全导则 KTA3102.2 所规定的公式, $Nu = 1.27 \frac{Pr^{1/3}}{c^{1.18}}$. $Re^{0.36}$ +0.033 $\frac{Pr^{1/2}}{\epsilon^{1.07}}Re^{0.86}$;上升通道采用单项 氦气流动换热公式, $Nu=0.094Re^{0.72}Pr^{0.33}$ 。 3) 压降公式 球床堆芯下降通道的压降公式采用德国安

全导则 KTA3102.3 规定的计算公式, $\frac{\Delta p}{\Delta H}$ = $\Psi \cdot \frac{1-\epsilon}{\epsilon^3} \cdot \frac{1}{d} \cdot \frac{1}{2\rho} \cdot \left(\frac{m}{A}\right)^2, \ddagger \psi, \Psi = \frac{320}{\frac{Re}{1-\rho}} +$ $\frac{6}{\left(\frac{Re}{1}\right)^{0.1}}$

$$\left(\frac{Re}{1-e}\right)^{0}$$

4) 氦气物性公式

采用德国安全导则 KTA3102.1 规定的计 算公式。

作为例证,现考察一典型的动态工况:在 100%额定功率下,其它入口参数不变,在第 50 s阶跃引入 5 分(0.05 β)的正反应性,观察系 统出口各参数的变化情况(图 3)。

开始时,系统处于稳态,控制棒反应性为 零。当在第50s阶跃引入反应性后,由于中 子动力学的作用,瞬发中子迅速增加,导致反 应堆功率迅速上升,从而使得堆芯温度迅速 上升。由于堆芯向氦气的传热作用,使得氦 气温度上升,氦气温度的上升导致流动阻力 的加大,从而出口压力有所降低。堆芯温度 的升高也引起了反射层温度的升高,但因反 射层是由大量具有大热容量的石墨组成,所 以,反射层温度上升缓慢。堆芯和反射层的 温度负反馈效应使得功率上升到一最大值后 开始渐渐震荡回落到一稳态值,其它出口参 数也相应震荡回落到各自的新的稳态值。石 墨反射层具有很大的热容量,其动态过程较 长,动态时间约为5×104 s,而其它反应堆动 态时间较短,约为350 s。

图 3 100%额定功率下控制棒阶跃引入 5 分反应性时的系统瞬态响应 Fig. 3 Transients due to 5 cents step of control rod reactivity at 100% rated power a-----堆热功率;b-----氦气出口温度;c-----氦气出口压力; d----氦气出口流量;e-----堆芯温度;f-----反射层温度

4 结论

动态仿真验证表明,本文针对 10 MW 高 温气冷堆建立的集总参数动态数学模型能够正 确反映反应堆正常运行工况范围内的动态特 性,模型可用来进行反应堆的动态特性仿真及 作为控制系统设计的基础。

参考文献:

- [1] XU Y. HTGR advances in China [J]. Nuclear Engineering International, 2005, 50(608): 22-25.
- [2] 刘俊杰,王敏稚,张征明,等.10 MW 高温气冷实 验堆的堆体结构特点[J].核动力工程,2001,22 (1):53-56.

LIU Junjie, WANG Minzhi, ZHANG Zhengming, et al. Features of reactor structure design for 10 MW High-Temperature Gas-Cooled Reactor[J]. Nuclear Power Engineering, 2001, 22 (1): 53-56(in Chinese).

[3] 黄晓津. 10 MW 高温气冷堆的动态建模及动态 特性的仿真研究[D].北京:清华大学自动化系, 1998.

- [4] 黄晓津.先进模块式高温气冷堆的建模、仿真研 究以及实时仿真系统的研制及其应用[R].北 京:清华大学核能与新能源技术研究院,2000.
- [5] GAO Z, SHI L. Thermal hydraulic calculation of the HTR-10 for the initial and equilibrium core [J]. Nuclear Engineering and Design, 2002, 218: 51-64.
- [6] GAO Z, SHI L. Thermal hydraulic transient analysis of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218: 65-80.
- [7] WOLF L. High temperature reactor core physics and reactor dynamics [J]. Nuclear Engineering and Design, 1990, 121: 227-240.
- [8] 黄晓津,冯元琨. HTR-10 堆芯的工程化动态模型[J]. 清华大学学报:自然科学版,2002,42(增刊):32-35.
 HUANG Xiaojin, FENG Yuankun. Dynamic en-

gineering model of the HTR-10 reactor core[J]. Journal of Tsinghua University: Sci & Tech, 2002, 42(Suppl.): 32-35(in Chinese).

[9] INET.10 MW 高温气冷实验堆反应堆热工水力 设计[R].北京:清华大学核能技术设计研究院, 2001.