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Abstract. The relation between Connes-Kreimer Hopf algebra approach
to renormalization and deformation quantization is investigated. Both
approaches rely on factorization, the correspondence being established at
the level of Wiener-Hopf algebras, and double Lie algebras/Lie bialgebras,
via r-matrices. It is conjectured that the *-product obtained by Lie bial-
gebra deformation quantization and the *-product corresponding in the
sense of Kontsevich-Cattaneo to the QFT obtained via renormalization,
correspond.
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1 Introduction

Connes-Kreimer’s Hopf algebra approach to renormalization [3, 8, 10] allows to iden-
tify an “algebraic interface” to renormalization, opening an avenue for connections
with deformation quantization.

In this research note, we point out to some connections between Lie bialgebra
quantization and Feynman path integral quantization methods.

Recall that renormalization is a factorization at the level of the convolution algebra
of “commutative points” of the Hopf algebra of Feynman graphs, corresponding to a
given renormalization scheme. We claim that this Birkhoff decomposition / Wiener-
Hopf factorization is an algebraic geometry analog of the infinitesimal factorization
[15] leading to Lie bialgebra quantization. The infinitesimal factorization is essentially
equivalent to a Lie bialgebra structure, and hence, via a “standard procedure”, to
quantization ([5, 12]; [2]).

At a more specific level, a prescription scheme satisfying the multiplicativity con-
dition is nothing else but a Baxter operator [13], leading to a solution of the modified
classical Yang-Baxter equation, and therefore to a coboundary Lie bialgebra structure
and deformation quantization [2], p.187.

Although conjectural at this point, this correspondence is supported by a pre-
liminary result, the Factorization Theorem 3.1, which recognizes the factorization of
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Poisson-Lie groups ([2], p.67) in the Birkhoff decomposition associated to a renormal-
ization prescription scheme. The “deformed antipode”, or rather deformed inverse of
the bare Feynman value ([8], p.19), is interpreted as part of the “decomposition” of
the convolution product. This prompts for an interpretation of the multiplicativity
condition: a classical Yang-Baxter equation in disguise.

The results presented here, well-known individually, are assembled in a conjec-
tural commutative diagram (section 4) which is expected to have an impact on the
understanding of perturbative QFT, besides the obvious message that the details of
the various receipts, computational schemes etc. of renormalization are essentially
irrelevant to the overall physics scheme. It is expected that a unifying point of view
including renormalization, deformation quantization and TQFTs will emerge.

The article is organized as follows. The algebraic interface to renormalization from
[3, 8] is briefly recalled in §2. The factorization point of view is stated in §3, where
Wiener-Hopf operators are defined as a special case of Baxter operators. An infinites-
imal factorization occurs conform [15], determined by a certain operator satisfying a
“Poincare-Bertrand” equation. The Lie algebra correspondent of the fore mentioned
equation is a modified Yang-Baxter equation. This leads to a “Factorization Theorem”
3.1 on the convolution algebra, as an algebraic source for the Birkhoff decomposition
in the analytic framework. The benefit is a prediction of a classical R-matrix, opening
the path to Lie bialgebra quantization. We conclude in §4 with additional comments
on the relation between deformation quantization and renormalization.

2 An algebraic interface to renormalization

We will start with a brief recall on renormalization as stated in [3, 8], using freely the
concepts introduced in [6].

The main “characters in the renormalization play” are: a Lie algebra g generated
by some Feynman graphs, with the corresponding Hopf algebra H = U(g∗), a set of
states on Feynman graphs (e.g. external structures, “colors” to distinguish various
propagators etc.), allowing to define characters φ : H → A into a commutative algebra
as bare values of the Feynman integral corresponding to Feynman rules for a given
regularization scheme, and a k-linear map R : A → A representing the renormalization
prescription (e.g. minimal subtraction (MS) with zero subtraction point).

Then, Connes and Kreimer proved in [3] that the renormalized value of the Feyn-
man integral φ+ is a factor of the Birkhoff decomposition:

φ = (φ−)−1 ? φ+

of the bare value of the dimensional regularization of the Feynman integral φ. It is
obtained via the convolution with the counter term:

φ+ = SR ? φ.

Recall that, the Birkhoff decomposition of a meromorphic function (relative to a disk)
is a factorization:

(2.1) φ+ = φ ? φ−,
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with φ± holomorphic inside/outside the disk, agreeing on the common boundary.
More generally it can be defined with respect to a decomposition of an algebra into
subalgebras.

Definition 2.1. φ : φ− → φ+ denotes the Birkhoff decomposition of the character
φ : H → A relative to the decomposition A = A−⊕A+ corresponding to the projectors
(R+, R−) iff φ± are characters satisfying the following relation:

(2.2) φ+ = φ ? φ−, R±φ± = φ±.

The renormalization procedure based on the minimal subtraction prescription is
essentially a Birkhoff decomposition, with the “finite part” of the Feynman amplitude
(without poles in the analytic renormalization picture) provided by φ+.

The above counter term is a deformation of the inverse φ−1 = φ ◦ S (with respect
to convolution), and can be obtained inductively by the formula:

(2.3) Sφ
R(Γ) = R(−φ(Γ)−

∑

γ↪→Γ→γ′
Sφ

R(γ)φ(γ′)).

In the above formula, the sum runs over certain decompositions of the graph Γ. These
possible decompositions can be encoded in a coproduct ∆ ([8]; see also [6]).

Now the linear operator R has to satisfy a multiplicative constraint:

(2.4) R(x)R(y) + R(xy) = R(R(x)y) + R(xR(y)), x, y ∈ A,

which ensure that Sφ
R is again a character ([9], p.14). This turns (A, R) into a Baxter

algebra ([10], p.18). Moreover, R is usually idempotent (e.g. MS-prescription).

3 Relation with deformation quantization

Our point of view suggests to interpret the deformed inverse Sφ
R as part of the fac-

torization enabling a Lie bialgebra deformation quantization, following [2], p.67. In
order to do this, rewrite Equation 2.3 as follows:

(3.1) Sφ
R(Γ) = R ◦m(−φ(Γ)⊗ 1) +

∑

γ↪→Γ→γ′
R ◦m(Sφ

R(γ)⊗ φ(γ′)).

Now φ is a character of the convolution algebra H∗ = (Hom(H, A), ?, η), with:

< f ? g,X >H= mA◦ < f ⊗ g, ∆X >, f, g ∈ Hom(H, A), X ∈ H,

or briefly ? = mA ◦ (· ⊗ ·)∆. Here H is regarded merely as a coalgebra and A as an
algebra with multiplication denoted by mA.

The multiplication mA can be truncated using R, yielding a new convolution:

m+ = R ◦m, ∗+ = m+ ◦ (· ⊗ ·)∆.

Although not associative when R is a (nontrivial) projector as above, the new multi-
plication m+ is associative when R is the involution associated with a Wiener-Hopf
operator (see (iii) of Lemma 3.1).
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Proposition 3.1. The deformed inverse Sφ
R is the inverse relative to the deformed

convolution product ∗+:
Sφ

R = φ−1 in (H∗
+, ∗+).

In particular, in dimensional regularization, a natural implementation of the re-
quirement that “ ... it does not modify the pole terms in ε” [10], p.18, is to consider
R = R− the projection on the pole part of the Taylor expansion.

The role of R and the relation with the deformation picture will be investigated
next.

3.1 Wiener-Hopf operators

We will address the structure of Wiener-Hopf operators and the connection with
Yang-Baxter equation.

Following [13], p.505, we introduce the following definition.

Definition 3.1. An idempotent R ∈ End(A) satisfying the Baxter identity is called
a Wiener-Hopf operator.

Note that, citing from [13], “In fact it was the algebraic study of Wiener-Hopf
operators that motivated Glen Baxter to single out the Baxter identity.” Operators
of this form arise in the theory of Wiener-Hopf factorization ([14], p.483), which
essentially corresponds to the Birkhoff decomposition via the Cayley transform.

Any Wiener-Hopf operator corresponds to a decomposition of the algebra ([14],
p.181), yielding a decomposition of the associated Lie algebra.

Since to quantize a Lie bialgebra structure is needed (double Lie algebra [15]), this
Wiener-Hopf structure seems to play in renormalization the role the double construc-
tion plays in quantization. For details we send the reader to [15], p.263 (Infinitesimal
Form of the Factorization Theorem, r-matrices, Lie bialgebra structure and double Lie
algebras), including the relation with Lax equations, Riemann problem etc. (p.262).

The “missing link”, to be studied next, is the connection between the Baxter
operator R and the classical r-matrix in the sense of [15], p.260, satisfying the modified
Yang-Baxter equation (loc. cit. p.262):

(3.2) [Rx, Ry]−R([Rx, y] + [x,Ry]) = −[x, y] MY BE.

Any solution of MYBE determines a modified bracket:

(3.3) [x, y]R = [Rx, y] + [x,Ry], x, y ∈ A.

satisfying the Jacoby identity (see [15], p.262).

3.2 Associative algebra level

The structure of a Wiener-Hopf algebra is equivalent to having a decomposition of
the algebra as a sum of two subalgebras.

If R is an idempotent of End(A), consider the associated decomposition A =
A− ⊕ A+. The symmetry about the “positive part” of the algebra (A,m) under the
decomposition along the projector R+ = R, will be called the associated conjugation:

(3.4) C = R+ −R−.
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Here R− = I −R is the complementary projector.
An example of such an idempotent R+ is the projection which cuts the pole part

of a meromorphic function. Some well-known algebraic properties are summed up in
the following lemma.

Lemma 3.1. Let R be an idempotent of A, determining the above direct sum decom-
position as k-modules. Then the following statements are equivalent:

(i) R is a Wiener-Hopf operator, i.e. it satisfies the Baxter identity;
(ii) A± are subalgebras in A;
(iii) The Hilbert transform satisfies the Poincare-Bertrand identity (PBI - follow-

ing [15], p.263):

(3.5) Rx ·Ry + xy = R(Rx · y + x ·Ry), x, y ∈ A.

Moreover, in this case the following twisted multiplication is associative:

(3.6) mC(x, y) = C(x) · y + x · C(y), x, y ∈ A.

proof 1. Since both equations, Baxter equation and PBI, are linear, we can restrict
to the corresponding subspaces, and establish the statements using a case-by-case anal-
ysis. For instance, if x ∈ A+ and y ∈ A±, then a direct computation shows that the
Baxter identity is equivalent to R(xy) = xy, etc.

The case-by-case analysis (x, y, z ∈ A±) to establish the last statement may be
reduced using the symmetry of the associator, and noting that on A+, mC = 2m, on
A− mC = −2m, while on A+ ⊗ A− mC vanishes (see also [15], p.263, Proposition
6). This completes the proof.

Now we will turn our attention to the infinitesimal level.

3.3 Lie algebra level

The alternation functor Alt =
∑

σ∈Σ ε(σ) allows to pass from associative algebras to
Lie algebras, yielding the corresponding (well-known) Lie algebra properties.

Proposition 3.2. Let R ∈ End(A) and (g, [, ]) = Alt(A, m), i.e. [x, y] = m(x, y) −
m(y, x), x, y ∈ A. If R is a Wiener-Hopf operator, then:

(i)R satisfies the modified Yang-Baxter equation:

(3.7) [Rx, Ry] + R[x, y] = R([, ]R), x, y ∈ g,

and the modified bracket [, ]U is a Lie bracket.
(ii) (g, [, ]R) is a double Lie algebra corresponding to the decomposition

g = g− ⊕ g+, g± = Alt(A±).

proof 2. (i) is plainly obtained by alternating Baxter equation.
Regarding the “infinitesimal factorization” of part (ii), we refer the reader to

Proposition 5, [15], p.262.
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As a consequence, R is an r-matrix, providing an infinitesimal factorization g =
g− ⊕ g+ via the Lie-algebra homomorphisms R ± 1 ([15], 263). Moreover, note that
an r-matrix exists iff the analogous Lie algebra factorization is uniquely solvable (loc.
cit. p.264).

As proved in Proposition 3, [15], p.261, double Lie algebras and Lie bialgebras
structures are equivalent in the case of skew symmetric solutions of MYBE, in the
presence of an invariant inner product. This opens the avenue of deformation quan-
tization, towards a QFT “a la Moyal”.

3.4 The factorization property

We return to the Birkhoff decomposition, as interpreted in Proposition 3.1.
The truncated multiplication m+ is not associative, since R is just a projector

satisfying the Baxter identity. It is “half” of the factorization picture, and for reasons
of symmetry, one has to consider the complementary projector R− = Id − R+ with
the associated truncated multiplication m− = R− ◦m.

Define the two inversion maps relative to the corresponding convolutions:

S± : H∗ → H∗, S±(φ) = φ−1 in H∗
±.

Note that since R+ + R− = id (trivial overlapping of the two “charts”) the “tran-
sition map” T = (S−)−1S+ is the identity map on H∗, establishing the following
“Factorization Theorem”.

Theorem 3.1. For any Wiener-Hopf algebra (A,m, R) and coalgebra (H, ∆), the
convolution algebra (H∗, ?) is factorizable, i.e. there is a canonical Birkhoff decom-
position:

φ = φ−1
− ? φ+, φ ∈ Hom(H, A),

where φ± = S±(φ) are the inverses relative to the truncated convolutions ∗±.

A comparison with the Poisson-Lie group factorization [2], p.67) which is cru-
cial for the Lie bialgebra quantization method prompts for the conjecture from the
introduction, which will be reconsidered next.

4 Conclusions

Among the notable consequences of the above factorization, one expects the existence
of a canonical classical R-matrix similar to the one present in the context of Poisson-
Lie groups [2], p.67. This would allow to explore the deformation quantization path
on the following diagram.

Star-products representing a quantization “a la Moyal”, can be obtained via two
quantization methods: the Lie bialgebra quantization and Feynman path integral
quantization.

Star − product
Moyal // QFT

Kontsevich/Cattaneo−Felder
oo

Lie bialgebra

EK−R

Quantization

OO
Factorization

Wiener −Hopf operator.
This articleoo

Connes−Kreimer

Renormalization

OO
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The star-product on a Poisson manifold was derived by Kontsevich [7] from a partition
function of a QFT ([1]). For details on the left edge (Lie bialgebra quantization) see
[2], Ch.6, p.170, and references therein ([5, 12] etc.).

The suggested “commutativity” of the above diagram needs a more detailed in-
vestigation, clarifying the role of the classical R-matrix expected above.

This will support the claim that renormalization is independent on the chosen
prescription R, and contribute to the understanding of the renormalization group in
the context of Weyl’s program in quantum physics [11].

Moreover, it was suggested in [6] that the Feynman graphs (as a category of cobor-
dism) should be thought of as a (quantum) “space-time”. This interpretation is con-
sistent with the duality “spectrum - convolution algebra” present in the deformation
point of view of renormalization.

Our point of view, centered on the deformation theory via the r/R-matrix frame-
work and integrable systems, was later investigated in [4]. A more detailed account,
including these subsequent developments, will appear elsewhere.
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