²⁵²Cf 随机脉冲源法 测量深次临界瞬发中子衰减常数

宋凌莉,周浩军,金 宇,李建胜,张 翼,李春远

(中国工程物理研究院核物理与化学研究所,四川 绵阳 621900)

摘要:运用²⁵² Cf 随机脉冲源法时幅变换(TAC)方式测量系统,实验获得高浓缩铀椭球壳核系统的瞬发 中子衰减常数 $_{\alpha}$ 。采用单指数和双指数最小二乘法拟合, $_{\alpha}$ 值均为 100 μ s⁻¹。用蒙特卡罗方法模拟实验 过程, $_{\alpha}$ 计算值为 110 μ s⁻¹。结果表明,该系统对深次临界 $_{\alpha}$ 的测量是有效的。 关键词:²⁵² Cf;次临界;瞬发中子衰减常数 中图分类号:TL811.2 文献标识码:A 文章编号:1000-6931(2006)06-0714-04

Measurement of Prompt Neutron Decay Constant for Deep Subcritical Assembly Using ²⁵²Cf as Randomly Pulsed Neutron Source

SONG Ling-li, ZHOU Hao-jun, JIN Yu, LI Jian-sheng, ZHANG Yi, LI Chun-yuan (China Academy of Engineering Physics, P. O. Box 919-210, Mianyang 621900, China)

Abstract: Experiments were performed for determing prompt neutron decay constant α of highly enriched uranium spherical shell by randomly pulsed neutron method with a ²⁵²Cf source. α values from both least squares analysis of single exponential and two exponential fittings are in agreement and it is 100 μ s⁻¹. α value calculated of 110 μ s⁻¹ is also obtained by Monte-Carlo method. It is proved that the time-to-amplitude converter measuring system is effective for α determination of deep subcritical assemblies. **Key words**: ²⁵²Cf; subcriticality; prompt neutron decay constant

²⁵² Cf 随机脉冲源法是测量次临界核系统 瞬发中子衰减常数 α 的有效方法之一,其基本 原理于上世纪 60 年代由美国科学家首先提出。 70 年代中期,J. T. Mihalczo 等^[1] 成功研制出 ²⁵² Cf快电离室,建立了²⁵² Cf 随机脉冲源测量系 统,并用以测得圆柱形浓缩铀及带有聚乙烯反 射层核系统的 α 值。本工作采用²⁵² Cf 随机脉 冲源法时幅变换(TAC)方式测量系统测量高 浓缩铀椭球壳核系统的 α 值。

 ²⁵²Cf 随机脉冲源法测量原理 利用²⁵²Cf 自发裂变时同时(10⁻¹¹ s 以内) 发射 2 个裂变碎片和平均 3.76 个瞬发中子的 特性,研制1种纳秒级响应的快电离室^[2]。 若²⁵² Cf 自发裂变平均时间间隔远大于核系统 瞬发中子衰减时间,则可认为²⁵²Cf 自发裂变中 子在核系统内诱发的裂变链在时间上相互独 立,相互之间不产生影响。将电离室置于核系 统旁,1 x^{252} Cf 自发裂变时,电离室探测1个裂 变碎片,准确确定裂变时刻,相应地给出²⁵² Cf 自发裂变中子入射核系统的时刻信号。将该信 号作为起始信号触发时间分析器。用快响应中 子探测器探测裂变链泄漏中子,准确确定泄漏 中子入射探测器时刻,并用时间分析器记录泄 漏中子入射时刻分布。时间分析器1次测量的 量程 T 由裂变链衰减时间确定, 一般取 αT 值 为7。在1次测量时间量程范围内,若无中子 信号,达到满量程后,时间分析器自动停止,恢 复到初始状态,等待下1次²⁵²Cf 自发裂变提供 的起始信号:若有中子信号,时间分析器记录各 中子脉冲信号到达的时刻分布,达到满量程后, 时间分析器自动停止、恢复,等待下1次起始信 号的到来。经过上千万次重复测量,获得核系 统裂变链泄漏中子数随时间的统计分布,即瞬 发中子衰减时间分布谱。由于每次²⁵² Cf 裂变 相当于 1 次脉冲中子注入核系统,且 252 Cf 自发 裂变时刻具有随机性,故称这种方法为²⁵²Cf 随 机脉冲(中子)源法。

根据点堆动力学理论,1次²⁵² Cf 自发裂变 中子入射核系统后,*t* 时刻 d*t* 时间内探测到的 与入射的²⁵² Cf 中子相关的裂变泄漏中子数 dC为:

$$dC = \frac{\nu_{252} IWk}{\nu S l \bar{I}} \exp((-\alpha t) dt$$
(1)

式中: $\bar{\nu}_{252}$ 为1次²⁵² Cf 自发裂变产生的平均中 子数;I为²⁵² Cf 自发裂变中子价值; \bar{I} 为核系统 平均中子价值;W为1次²⁵² Cf 自发裂变探测器 对核系统中子的总探测计数;k为核系统瞬发 中子增殖系数; $\bar{\nu}$ 为核系统每次裂变平均中子 数;S为1次²⁵² Cf 自发裂变诱发核系统裂变 数;l为瞬发中子寿命。

实际测量时,需考虑非相关计数,则由多道 时间分析器测到的由式(1)累计的相关中子计 数统计分布和非相关计数统计分布两部分用单 指数形式表示为:

$$p(t)dt = wdt + Lexp(-\alpha t)dt \qquad (2)$$

若考虑瞬发中子高次谐波的影响,则探测到 的累计中子计数统计分布用双指数形式表示为:

$$p(t)dt = wdt + Hexp(-\alpha_1 t)dt +$$

$$Lexp(-\alpha t)dt$$
 (3)

式中:w为非相关计数率; α_1 为高次谐波衰减 常数;H为瞬发中子高次谐波计数率幅度; L为瞬发中子基波项计数率幅度。

对所测的中子时间衰减谱,根据式(2)或(3) 采用最小二乘法拟合,即可获得核系统的 α 值。

2 测量系统

²⁵²Cf随机脉冲源测量系统可采用一起多 停的多路定标方式和一起一停的 TAC 方式。

采用 TAC 方式时,测量系统框图示于图 1。该系统由 4 部分组成:第1 部分主要由自发 裂变率为 1 700 s⁻¹的²⁵²Cf 快电离室、前置放大

图 1 ²⁵² Cf 随机脉冲中子源法时幅变换(TAC)方式测量系统框图

Fig. 1 Schematic diagram of time-to-amplitude converter(TAC) measuring system in randomly pulsed neutron method with ²⁵²Cf as neutron source

器、主放大器和恒比定时器构成,通过探测²⁵²Cf 自发裂变碎片,为时幅变换器提供开始信号;第 2部分主要由快中子探测器和恒比定时器构 成,探测器探测核系统泄漏中子或γ射线,为时 幅变换器提供停止信号;第3部分采用脉冲上 升时间法实现 n-γ分辨功能,向多道分析器提 供符合门控信号,用于甄别γ射线^[3];第4部分 为记录系统,由时幅变换器和多道分析器组成, 记录裂变链泄漏中子随时间的统计分布。

测量时,探测中子能量下阈为 0.5 MeV, 时幅变换器量程为 200 ns。

3 深次临界核系统

被测量核系统由高浓缩铀上、下球冠壳组 成。上半球冠壳内径 107 mm,外径 148 mm; 下半球冠壳内径 107 mm,外径 148 mm。测量 时,电离室、探测器布局示于图 2。核系统放置 于不锈钢支架上,中心距地面 1 m。

图 2 探测器布局示意图

Fig. 2 Sketch for configuration of detector and ionization chamber

采用蒙特卡罗方法对所建核系统由球心抽 样注入中子,模拟²⁵² Cf 随机脉冲源法探测核系 统裂变链泄漏中子统计分布,获得核系统瞬发 中子衰减曲线。根据式(2)和(3),用最小二乘 法拟合抽样结果,获得该深次临界核系统瞬发 中子衰减常数 α 为 110 μ s⁻¹。

4 测量结果和讨论

实验重复 11 次测量深次临界核系统的瞬 发中子衰减曲线,每谱总计数大于 30 000,测量 时间大于 2 h。对于测得的谱,根据谱形特点 及起始道选取的不同,采用双指数拟合或单指 数最小二乘法拟合。若从谱峰后较前面时间道 开始拟合,则采用双指数拟合;若避开高次谐波 衰减而从较靠后的时间道开始拟合,则采用单 指数拟合。

表 1 所列为各谱单指数拟合结果及对应的 最小二乘标准偏差 σ_i , α 平均值为 100 μ s⁻¹, 对 应贝塞尔标准偏差 σ 为 4 μ s⁻¹。

表 1 深次临界核系统 TAC 方式 α 测量结果 Table 1 Experimental results of α for deep subcritical uranium assembly from TAC measuring system

测量次序	$lpha/\mu { m s}^{-1}$	$\sigma_{ m i}/\mu{ m s}^{-1}$
1	101	4
2	104	4
3	97	3
4	103	3
5	101	2
6	98	4
7	99	2
8	97	4
9	101	2
10	98	3
11	97	2

测量得到的 1 个瞬发中子衰减谱示于图 3。对该谱 10 ns 道以后数据采用双指数最小 二乘法拟合,高次谐波项和基波项衰减常数分 别为 $(317\pm9) \mu s^{-1} \pi (101\pm2) \mu s^{-1}$,基波项衰 减常数与单指数拟合结果一致,为所要测量的 α 值。

图 3 核系统瞬发中子衰减曲线和双指数拟合结果

Fig. 3 Prompt neutron decay
 in randomly pulsed neutron measurements
 ○ — 瞬发中子衰减曲线;实线 — 双指数拟合曲线
 α1 = (317±9) μs⁻¹; α=(101±2) μs⁻¹

TAC 方式测量系统定时精度为 1.2 ns,定 时准确。测量中,²⁵²Cf 源自发裂变率为 1 700 s⁻¹,两次裂变之间的平均时间间隔为 588 μs;核系统 α 为 100 μs⁻¹,瞬发中子数衰减 到0.1%所用时间为 70 ns,远小于两次裂变之 间的平均时间间隔。因此,不同裂变链之间相 互影响很小。深次临界核系统中子增殖小,平 均每次²⁵²Cf源自发裂变瞬发中子探测计数 W 为 2.45×10⁻³,1个 TAC 量程范围内出现两个 以上停止信号的几率很小。因此,采用一起一 停的 TAC 方式测量深次临界核系统 α 与严格 的一起多停的测量效果几乎相同,能够准确测 量核系统瞬发中子衰减过程。

综上所述,采用 TAC 方式的²⁵² Cf 随机脉 冲源系统能够有效测量深次临界 α ,测量下限 可达到 100 μ s⁻¹。

²⁵² Cf 随机脉冲源系统建立初期,中国原子 能科学研究院张焕乔院士给予自行研制的建 议,在此特别表示感谢。感谢与中国工程物理 研究院核物理与化学研究所贺仁辅老师有价值 的讨论。

参考文献:

- [1] MIHALCZO J T. The use of californium-252 as a randomly pulsed neutron source for promptneutron decay measurements[J]. Nucl Sci Eng, 1974, (53): 393-414.
- [2] 李建胜,张翼,金宇,等.²⁵²Cf 快裂变室研制[J].
 核电子学与探测技术,2001,21(4):264-267.
 LI Jiansheng, ZHANG Yi, JIN Yu, et al. Development of ²⁵²Cf fast fission chamber[J]. Nuclear Electronics & Detection Technology,2001, 21(4):264-267(in Chinese).
- [3] 周浩军,张翼,李建胜,等. n-γ分辨应用于²⁵²Cf
 自发裂变中子飞行时间谱测量[J].核电子学与
 探测技术(待发表).

ZHOU Haojun, ZHANG Yi, LI Jiansheng, et al. The application of n- γ discrimination in ²⁵²Cf spontaneous neutron TOF spectra measurement [J]. Nuclear Electronics & Detection Technology (in press, in Chinese).