Atomic Energy Science and Technology

核电站工程模拟器中的 RELAP5 建模

林 萌.苏 云.胡 锐.杨燕华

(上海交通大学 机械与动力学院 核科学与系统工程系,上海 200030)

摘要:文章涉及数值反应堆系统(DRS)组成部分之一的核电站热工水力模块的 PELAP5 建模方法。建模分为:RELAP5 源程序的改造;利用原始 RELAP5 进行电厂的常规建模;利用改造后的 RELAP5 进行电厂的特殊建模。该电厂模型构造方法不仅可动态采集 RELAP5 模型节点上的参数,且可动态控制节点上的部分参数,满足核电站工程模拟器的要求。

关键词:RELAP5;数值反应堆系统;工程模拟器

中图分类号: TL 364.4 文献标识码: A 文献编号: 1000-6931 (2005) 05-0429-04

Modeling by RELAP5 in Nuclear Power Plant Engineering Simulator

LIN Meng, SU Yun, HU Rui, YANG Yan-hua

(Department of Nuclear Science and System Engineering, School of Mechanics and Power Engineering, Shanghai Jiaotong University, Shanghai 200030, China)

Abstract: Thermal hydraulic calculation module RELAP5 is one part of digital reactor system (DRS). The modeling method by RELAP5 is described. There are mainly following 3 steps: The first is modification of RELAP5 source code; the second is constructing normal model; the third is establishing special model. Thus besides plant-running parameters can be dynamically extracted from RELAP5, it can be dynamically changed in RELAP5. This model is strong enough to meet the needs of nuclear power plant engineering simulator.

Key words: RELAP5; digital reactor system; engineering simulator

数值反应堆系统(DRS)是基于轻水反应堆 瞬态最佳估算程序RELAP5而开发的针对巴基 斯坦恰希玛(CHASHMA)^[1]核电站的实时工程模拟器,主要由热工计算水力模块RELAP5、控制系统模块 PROSYS、显示与操作平台 SNUSIM、数据离线后处理平台 DRSGRA 及运行控制工具 RUNBOX 等部分构成。本文将对 DRS 的 RELAP5 核电站建模作

详细介绍。

1 建模范围

DRS 的基础是核电站一、二回路主系统的 热工水力计算,这一功能由 RELAP5 完成。 RELAP5核电站建模包括一、二回路的主要设 备和系统。为模拟核电站破口事故,在 RELAP5输入模型中专门建立了破口模型。

收稿日期:2004-02-04;修回日期:2004-03-22

作者简介:林 萌(1978-),男,四川攀枝花人,博士研究生,核能科学与工程专业

430 原子能科学技术 第39卷

2 建模方法

2.1 基本思想和方法

DRS对于核电站的建模首先要求能够模 拟真实核电站的热工水力过程,其次要求能够 动态地监测核电站参数,并对模型进行控制。 其主要思想是动态修改程序变量的值,为此,修 改了 RELAP5 源程序,在原有模型的基础上改 进和增加了新的模型。

建模的基本方法如下。

- 1) 程序改造。修改 RELAP5 源程序的输 入输出部分,为后面即将建立的特殊模型奠定 基础。由于修改未改动 RELAP5 源程序的计 算模型,因此,可确保计算模型本身的正确性。
- 2) 建立常规模型。根据 RELAP5 输入文 件规则,对某一具体的核电站进行常规建模,包 括堆芯、管道、稳压器、蒸发器、主泵、热构件等 常规模型,以及在这些模型中所使用的开关 (TRIP)参数和表格(TABLE)参数。
- 3) 建立特殊模型。该部分不属于原有 RELAP5 输入文件的内容,是经程序改进后的 新增内容,主要用于动态采集 RELAP5 计算的 核电站参数和动态修改模型上的值。

2.2 改造后的 RELAP5 程序

修改后的 RELAP5 程序框架示于图 1。 内容主要包括:输入数据处理 INPUTD:瞬态 计算 TRNCTL;数据抽取 STRIP。IPRTCN、 RPRTCNT是 INPUTD 中的两个子程序,仅 在初始化时调用。更改这两个程序是对 RELAP5输入文件中的新输入模型进行处理。 RDSGN 是 TRNCTL 中的一个子程序,在初始 化和每一个计算步长内均调用该程序。修改后 的 RDSGN 调用独立于 RELAP5 程序之外的 控制与保护系统程序 PROSYS。在 RDSGN 中,动态采集的核电站参数送至 PROSYS, PROSYS计算所得的控制信息也在 RDSGN 中 交换用于动态修改 RELAP5 模型上的值[2]。

2.3 核电站一、二回路常规建模

图 2 所示为 DRS 所模拟的 CHASHMA 两环路压水堆核电站[1]的 RELAP5 建模示意 图。建模规则遵循 RELAP5 输入文件规则。

一回路模拟堆芯、热管段、U 型管、主泵、 冷管段以及稳压器等部件,它是一封闭系统。 二回路模拟蒸发器、蒸汽出口管道、蒸汽母管、

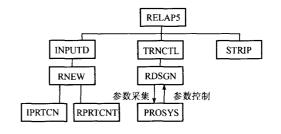


图 1 改造后的 RELAP5 程序框架图

Fig. 1 Structure of modified RELAP5 code

蒸汽旁排以及汽门等部件,它不是一封闭系统, 边界设在给水和汽门处。给水进口为定流量边 界条件,汽门出口有两种方式可选择,一种为定 流量边界条件和定背压边界条件,由程序参数 决定。

2.4 特殊模型工作原理及构造

DRS 中的特殊模型分为:显示用特殊模 型,主要是动态采集参数申明特殊模型;控制用 特殊模型,分为开关(TRIP)型参数动态修改 申明特殊模型和浮点型参数动态修改申明 特殊模型。

1) 动态采集参数申明特殊模型

RELAP5 的所有参数值存储于一大数组 中,再使用不同的小数组与大数组共用一个数 据块。大数组只提供一个存储区域,无特殊名 字,而小数组有自己特有的名称及含义。 RELAP5常规模型中的每一节点在大数组中均 占据一定位置。特殊模型中建立的是对所需要 采集参数的申明,即只有申明过的参数才进行 动态采集。程序根据特殊模型中申明的参数名 称寻找相应的小数组名称,由节点编号确定该 参数在数组中的位置,最后将所有采集到的参 数组合在一起形成一新的采集参数数组。得到 该数组后,则可通过不同方式将该参数输出显 示,即实现 RELAP5 计算的核电站参数的动态 采集。DRS 中采用动态连接库的方式,连接控 制与保护系统程序 PROSYS,以子程序参数的 形式将采集参数数组的值送出,用以控制保护 和显示。

在改造后的 RELAP5 输入文件中,该部分 申明的卡号为 5 000~5 999。对图 2 所示的 CHASHMA 核电站,共申明 189 个动态采集 数,现举例列于表1。

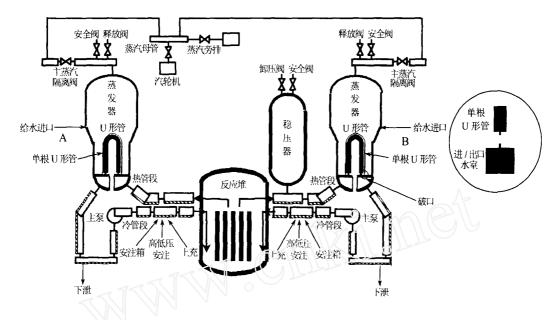


图 2 CHASHMA 核电站建模示意图

Fig. 2 Model chart of CHASHMA nuclear power plant

表 1 动态采集参数申明模型定义表 Table 1 Special declaration model of parameters extracted dynamically

卡号	参数名	节点编号	类型	说明
5005	p	280 060 0001)	1	*prz-p
5017	mflowj	425 010 000 ²⁾	1	*arc-mflowj

注:1) 该节点压力为稳压器内的汽相压力

2) 该节点流速为一回路冷却剂的质量流速

2) TRIP 型参数动态修改申明特殊模型

在 RELAP5 模型中,阀门等模型的开关由 TRIP 型参数来控制。通常,TRIP 为 TRUE 代表开,为 FALSE 代表关。修改节点上的 TRIP 值即可控制阀门的开关。TRIP 值在 RELAP5 程序中的存储方式与压力等参数的存储方式类似。TRIP 变量按照 TRIP 编号存储于大数组中的不同位置上,一个具有特殊名称的小数组专门用于记录所有 TRIP 变量,根据 TRIP 编号可确定需要修改的 TRIP 位置,修改该变量的存储值则实现动态修改开关型参数。同样,在特殊模块中对需要进行动态控制的开关型参数予以申明。

在 RELAP5 输入文件中,该特殊模型的申明与原有 RELAP5 的 TRIP 申明格式一致,不同点是,TRIP 申明的顺序确定后不能随意调换。该部分申明是作为控制使用,TRIP 申明的顺序与 DRS 中修改 TRIP 的数组顺序需保

持一致。图 2 所示的 CHASHMA 核电站共申明 66 个动态修改的开关 (TRIP) 型参数,其格式说明参见文献[3]中的 TRIP 部分。

3) 浮点型参数动态修改申明特殊模型

在 DRS 的控制中,除开关阀门控制外,还涉及到调节型参数的控制,如加热功率调节、温度调节、流量控制、阀门开度控制等,这些归纳为浮点型参数的控制。浮点型参数的修改通过修改 TABLE 值实现。当某一浮点型参数需动态地进行修改时,在RELAP5建模时就使用一个 TABLE 表来控制该参数的大小(表 2、3)。

表 2 RELAP5 输入表格说明表 Table 2 Common RELAP5 input table

_					
	卡号	查询变量值	参数 1	参数 2	参数 3
	7010201	- 1.0	271.350	0.0	0.0
	7010202	0.0	271.350	0.0	0.0
	7010203	1.0 ×10 ⁴	271.350	0.0	0.0
	7010204	1.0 ×10 ⁵	271.350	0.0	0.0

表 3 RELAPS 的 TABLE 输入表 Table 3 Standard RELAPS input table

卡号	查询变量值	参数
20211301	- 1.0	0.4
20211302	0.0	0.4
20211303	1.0 ×10 ⁴	0.4
20211304	1.0 x 10 ⁵	0.4

432 原子能科学技术 第39卷

表 2 用于控制 RELAP5 模型节点编号为 701 上的质量流速。参数 1 为液体质量流速, 参数 2 为气体质量流速 .参数 3 为相间速度 .参 数的含义与节点的输入参数控制符相关。 RELAP5程序根据 TABLE 上输入的值,按查 询变量,如时间,进行线性插值,得到该节点上 的液体质量流速、气体质量流速和相间速度。 表 3 是 RELAP5 标准的 TABLE 输入格式,也 是根据查询变量进行线性插值的参数值。若对 应于任何查询变量,插值点上的参数均相同,即 由插值点连成的曲线为一直线时,则无论查询 变量为何值,得到参数值都一样。若再能修改 这些插值点上相同的参数值,则可实现控制表 格输出参数值大小的目的。因此,找到存储该 表格的数组变量,并修改表格上相应位置的参 数值,可实现动态修改浮点型参数。如表2,质 量流速线性插值点的参数值均为 271.350,位 于该表格存储数值组的 1、4、7、11 位置上,此时 无论查询变量为何值,插值得到的该控制的液 体质量流速均为 271.350 kg/s。若将该表格这 些位置上的值修改为要求的控制值 280.0,则 实现控制该节点的液体质量流速为 280.0 kg/s。同理,表3的参数值0.4位于该 表格存储数组的 1、3、5、7 位置上,更改表格上 这些位置的值则可控制该表的输出参数值。

在改造后的 RELAP5 输入文件中,该部分申明的卡号为 5000 ~ 5999。图 2 所示的 CHASHMA 核电站共申明 31 个将动态修改的浮点型参数,并举例列于表 4。其中,5166 卡定义将动态修改编号为 128 号的 TABLE表,该表用于控制 B 环路主蒸汽释放阀的开度;5168 卡定义说明将动态修改节点号为701 000 000上的质量流速,该流速为 B 环路的给水质量流速。

表 4 浮点型参数动态修改申明特殊模型定义表 Table 4 Special declaration model of float parameters modified dynamically

卡号	参数名	节点编号	类型	说明
5166	table	128	- 1	* sl rel vlv b 715
5168	mflowj	701 000 000	- 2	*fw flow b

针对动态修改浮点型参数的申明,还需对所涉及的节点中的表格或标准 TABLE 的格式进行规范统一,以满足改造后的 RELAP5 程序要求。标准格式如表 2、3。表格列数由节点的输入参数控制符决定,行数规定至少为 4 行。第 1 行为时间 - 1.0 s 时的值,第 2 行为时间0.0 s 时的值,第 3 行的时间任意,但需大于0.0,第 4 行的时间应选择比需要模拟计算的时间大得多的值,以保证插值时间落入其中。

3 结论与展望

核电站工程模拟器中的 RELAP5 建模主要分为:1) RELAP5 源程序改造,改造仅涉及输入输出部分,为参数的动态采集和控制奠定基础;2) 常规建模,按原 RELAP5 输入文件规则,建立核电站一、二回路的常规模型,此模型能够进行基本的核电站热工水力回路计算;3) 特殊建模,在核电站常规模型的基础上,通过申明以及部分格式修改,实现热工水力参数的动态采集及控制。这样的电站建模方式满足实时仿真分析系统的要求,在 RELAP5 电厂模型外模拟复杂的核电站控制系统,通过动态参数采集获得核电站基本信息,计算所得的控制信号通过 RELAP5 的特殊模型再反馈回电厂,完成电厂仿真工作。

考虑到核电站工程模拟器 RELAP5 建模将来的发展,可采用可视化建模并改进参数动态采集方法。目前建模仍采用手工编写 RELAP5 输入文件的格式,工作繁琐,若采用可视化建模既节省劳动又易于修改。目前参数的采集方式是单参数采集,个数有限,可考虑根据节点号进行每个节点上所有数据的采集,同时实时动态地在可视化模型上进行显示,便于系统调试和分析。

参考文献:

- [1] 耿其瑞,沈增耀,史沛华,等. 巴基斯坦恰希玛核 电工程设计总结(工程技术篇)[R]. 上海:上海 核工程研究设计院,2001.
- [2] 林 萌,张荣华,杨燕华. 核电站先进主控室和数字 化仪控系统设计研究项目软件服务报告[R]. 上海: 上海交通大学,上海核工程研究设计院,2003.
- [3] The RELAP5 Code Development Team. SC-DAP/ RELAP5/ MOD 3. 2 Code Manual [M]. USA: Idaho National Engineering Laboratory, 1995. A5-1 ~ A5-4.