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Abstract. In the past, differential optical absorption spec-
troscopy (DOAS) has mostly been employed for atmospheric
trace gas retrieval in the UV/Vis spectral region. New spec-
trometers such as SCIAMACHY onboard ENVISAT also
provide near infrared channels and thus allow for the detec-
tion of greenhouse gases like CH4, CO2, or N2O. However,
modifications of the classical DOAS algorithm are necessary
to account for the idiosyncrasies of this spectral region, i.e.
the temperature and pressure dependence of the high reso-
lution absorption lines. Furthermore, understanding the sen-
sitivity of the measurement of these high resolution, strong
absorption lines by means of a non-ideal device, i.e. having
finite spectral resolution, is of special importance. This ap-
plies not only in the NIR, but can also prove to be an issue
for the UV/Vis spectral region.

This paper presents a modified iterative maximum a
posteriori-DOAS (IMAP-DOAS) algorithm based on opti-
mal estimation theory introduced to the remote sensing com-
munity by Rodgers (1976). This method directly iterates the
vertical column densities of the absorbers of interest until
the modeled total optical density fits the measurement. Al-
though the discussion in this paper lays emphasis on satellite
retrieval, the basic principles of the algorithm also hold for
arbitrary measurement geometries.

This new approach is applied to modeled spectra based on
a comprehensive set of atmospheric temperature and pressure
profiles. This analysis reveals that the sensitivity of measure-
ment strongly depends on the prevailing pressure-height. The
IMAP-DOAS algorithm properly accounts for the sensitivity
of measurement on pressure due to pressure broadening of
the absorption lines. Thus, biases in the retrieved vertical
columns that would arise in classical algorithms, are obvi-
ated. Here, we analyse and quantify these systematic biases
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as well as errors due to variations in the temperature and pres-
sure profiles, which is indispensable for the understanding of
measurement precision and accuracy in the near infrared as
well as for future intercomparisons of retrieval algorithms.

1 Introduction

Absorption spectroscopy in the UV/Vis spectral region has
been widely and successfully employed as a method for de-
termining total column densities of several trace gases in the
atmosphere (cf. Platt, 1994; Wagner and Platt, 1998). Satel-
lite borne measurement devices such as GOME or SCIA-
MACHY use solar radiation reflected from the earth’s sur-
face and scattered within the earth’s atmosphere as light
source.

In addition to UV/Vis channels, SCIAMACHY onboard
ENVISAT provides 3 near infrared channels covering wave-
lengths from 1–1.75µm, 1.94–2.04µm and 2.26–2.38µm
with moderate spectral resolution (Bovensmann et al., 1999).
Among the absorbers in these regions are the greenhouse
gases CO2, CH4, N2O and H2O as well as CO. SCIA-
MACHY thereby paves the way for the first global mea-
surements of tropospheric CO2 and CH4 from space. Since
these greenhouse gases are longlived, their spatial and tem-
poral variations are fairly low, posing the problem of mea-
suring small deviations from a large background total col-
umn. Thus, high measurement precision is needed in order
to gain information in addition to the existing sparse but pre-
cise ground based measurements (Tans et al., 1996; Rayner
and O’Brien, 2001; Levin et al., 2002; Olsen and Randerson,
2004). Furthermore, the retrieval has to be bias-free which
will be one of the main issues addressed in this paper.
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Some authors have already noticed the drawbacks of the
classical DOAS algorithm under certain conditions. Maurel-
lis et al. (2000) parameterised the DOAS algorithm for highly
structured spectra, while Solomon et al. (1989) and Volka-
mer et al. (1998) analysed the interference between differ-
ent absorbers. A more general approach was introduced by
Buchwitz et al. (2000) in the form of a new weighting func-
tion based modified DOAS approach for retrieval in the near
infrared. This work firstly implemented the use of lineari-
sation points in the classical DOAS approach which is vi-
tally important for the retrieval of strongly absorbing gases.
Also Schrijver (1999) focussed on retrieval in the near in-
frared and first results from SCIAMACHY are available from
both groups (Buchwitz et al., 2004a,b; Gloudemans et al.,
2004). Especially for the precise retrieval of longlived gases,
some progress has been made on quantifying the influence of
clouds and aerosols on the retrieval (Buchwitz et al., 2000;
O’Brien and Rayner, 2002; Rayner et al., 2002).

The major focus of this work is the general treatment of
strong absorbers, interferences between different absorbers
and the characteristic features of the near infrared spectral
region, viz. the shape of the spectral absorption lines and
how they determine the sensitivity of the measurement in-
spite of often not being fully resolved by the spectrometer.
This issue is hence analyzed in conjunction with instrumen-
tal lineshape issues, in particular with respect to measure-
ment devices having moderate spectral resolution. This en-
compasses the influence of the actual atmospheric state on
the retrieval and the effect of the nonlinearity of the forward
model. Till date, only few climatological profiles have been
used in other studies to analyze this effect. Our study makes
use of a comprehensive set of atmospheric profiles to cover a
realistic set of atmospheric states.

2 Basic Theory

The classical DOAS approach (Platt, 1994) uses the
Lambert-Beer law to obtain a linear system of equations
where the column density to be retrieved is directly propor-
tional to the measured differential optical density, i.e. to the
high frequent part of the optical density:

I (ν) = I0(ν) exp

(
−

∫
σ(ν, p, T )c(s)ds

)
(1)

τ = ln

(
I0(ν)

I (ν)

)
≈ σ(ν, p̄, T̄ ) ·

∫
c(s)ds

= σ(ν, p̄, T̄ ) · S , (2)

whereS denotes the slant column density, which is defined
as the path integral of the concentration of the respective
absorber along the actual lightpath. The ratio of the slant
column densityS and the vertical column density (V CD or
simplyV , the integral of the concentration along the vertical

from the surface to the top of atmosphere) is called airmass
factor (A) and depends on many factors such as measurement
geometry, albedo, wavelength and concentration profile. Ne-
glecting scattering, the airmass factor can be approximated
by simple geometric considerations of the slant light path.
If aerosols and clouds are absent, this is a reasonable ap-
proximation in the near infrared and assumed in this study.
However, airmass factors calculated by means of a radiative
transfer model taking consideration of multiple scattering,
refraction and spherical geometry can be directly used in the
IMAP-DOAS algorithm.

Since absorption in the NIR is only due to rotational and
vibrational transitions, the respective absorption lines are
rather narrow and strongly temperature and pressure depen-
dent. Thus, the integral in Eq. (1) cannot be simplified since
σ(ν, p, T ) is not constant along the light pathds. The total
vertical optical densities of the respective absorbers therefore
have to be calculated as the sum of the vertical optical den-
sities of several height layers, each having nearly constant
pressure and temperature.

Except for longpath-systems with reasonably well defined
T and P , the simplification of Eq. (1) is generally only a
rough approximation and almost all cross sections of species
measured show a certainT -dependence. This also holds for
the UV/Vis, where we have electronic transitions as well but
where this dependence often plays only a minor role in the
DOAS retrieval. However, we have to distinguish between
a temperature effect which changes also the line intensity
and is thus also important for weak absorbers, and pressure
broadening which alters merely the lineshape and is thus only
important if we are dealing with strong absorbers. As will
be shown later, the importance of the actual lineshape will
increase with the nonlinearity of the problem. Since most
DOAS measurements in the UV/Vis deal only with weak ab-
sorbers which can be described by a linear problem, these
issues have largely been neglected in the past.

2.1 Spectral line shape

In the case of Local Thermodynamic Equilibrium the absorp-
tion cross section of a single transition lineσi(ν) can be writ-
ten as the product of the line intensitySi (not to be confused
with the slant column density) and a frequency dependent
part determining the line shape8i(ν) (Thomas and Stamnes,
1999):

σi(ν) = Si8i(ν) . (3)

The line shape is mainly determined by doppler (Gaussian
shape) and pressure broadening (Lorentzian shape). If both
processes are assumed to be independent of each other, the
resulting Voigt profile is a convolution of a Gaussian and a
Lorentzian line shape (Goody and Yung, 1989):

8(a, b) =
b

π3/2γD

∫
∞

−∞

exp(−t2)

(a − t)2 + b2
dt , (4)

Atmos. Chem. Phys., 5, 9–22, 2005 www.atmos-chem-phys.org/acp/5/9/



C. Frankenberg et al.: IMAP DOAS 11

with b denoting the ratio of the Lorentzian and the Gaus-
sian halfwidthγL/γD anda the distance from the line cen-
ter in units of the Gaussian halfwidth (a=(ν−ν0)/γD). The
Lorentzian halfwidth,γL, is directly proportional to the pres-
surep while γD is independent ofp. All parameters used in
this study have been taken from the latest release of the HI-
TRAN database (Rothman et al., 2003). The Voigt function
is computed in an efficient way as demonstrated by Kuntz
(1997).

The total absorption cross section of a single molecule
σtot (ν), or simplyσ(ν), considering all transitions can then
be described as the sum of the cross sections of all individual
transitions:

σ(ν) =

∑
i

σi(ν) . (5)

Strictly speaking, Eq. (5) is only valid when each transition
can be treated separately (i.e. as an isolated line). If lines
of different transitions overlap, e.g. due to pressure broad-
ening, the wave functions of different rotational energy lev-
els are no longer independent and simple summation is no
more valid, since Eqs. (3) and (4) were based on the assump-
tion of independence of rotational levels (Goody and Yung,
1989). This effect, called line-mixing, can alter the line shape
and thus also the sensitivity of the measurements (Strow and
Reuter, 1988) as it has a narrowing effect on the linewidths.
Apart from line-mixing, the behavior of the line wings of a
single transition could differ from a classical Lorentz shape
(Goody and Yung, 1989). This deviation from the classi-
cal Lorentz theory is more likely for vigorously interacting
molecules such as H2O with the known problems of contin-
uum absorption (Clough et al., 1989; Ma and Tipping, 1999).
However, Pine (1997) found deviations from the Voigt profile
as well as line mixing in theν3 band of CH4 at about 3300 nm
(3000 cm−1). Since line mixing leads to a narrowing of the
absorption lines, it is supposed to decrease the sensitivity of
the measurement. So far, these effects have been neglected
for the model analysis of CO2 and CH4 presented in this pa-
per and we use the Voigt profile throughout this study.

2.2 Instrumental line shape

For grating spectrometers such as SCIAMACHY, a convo-
lution of the high resolution structure of the incoming light
with the instrumental slit function constitutes the actually
recorded spectra. Dealing with narrow lines exhibiting rel-
atively strong absorptions (optical densities>0.1) and mod-
erate spectral resolution of the spectrometer (in our case 0.2–
1.5 nm) is a crucial aspect in the NIR spectral region: the
actual shape of the absorption lines cannot be fully resolved
by the spectrometer. In order to account for all spectral fea-
tures, the transmission has to be calculated using a fine wave-
length grid before convolution with the instrumental func-
tion. This convolution has to be performed in the intensity
space. Hence, the direct convolution of the optical densities,

τ , or cross sections, often used as a reasonable approximation
for weak absorbers in the DOAS approach, is inappropriate
in this case:

< I0 exp(−τ ) >6=< I0 > exp(< −τ >) , (6)

where I0 is the Fraunhofer spectrum and< · > denotes
the convolution with the (normalised) instrumental function
φI (λ):

< I (λ) >=

∫
∞

−∞

I (λ′) · φI (λ − λ′)dλ′ (7)

Hence, the convolution is applied only in the intensity space
throughout this study.

2.3 Sensitivity of the measurement

Since convolution and logarithm are not associative and we
are dealing with strong, non-resolved absorption lines, the
sensitivity of the measurement with respect to a perturbation
in τ decreases with increasingτ and Eq. (2) is not valid any
more. Pressure broadening decreases the maximum values
of τ and therefore increases the sensitivity. In other words,
the line wings contribute most to the sensitivity of strong ab-
sorption lines. However, since the shape of the line wings is
generally less well known and cannot be always treated as a
Voigt shape (Goody and Yung, 1989), this uncertainty could
introduce further errors.

In the case of a moderate spectral resolution, the measured
optical density is thus no longer linearly dependent on the
vertical column density of the respective absorbers. Ignoring
scattering, the theoretically measured slant optical density of
a single absorber can be written as

τmeas
λ (x) = − ln

(
< exp(−x · A · τ

ref
λ ) >

)
. (8)

where
x = retrieved scaling factor for V (V/Vref )
τ

ref
λ = total vertical optical density

A = Airmass factor (A=S/V) .

Figure 1 shows an idealized case, where the transmission
through a medium with constant pressure and temperature
and with a column density of 7·1019 molec/cm2 CH4 is com-
puted at two different pressures. In panels (b1) and (b2) the
high resolution transmission as well as their convolution with
the instrumental slit function is shown. The width of the slit
function is far larger than the actual width of the absorption
lines. One can see that the resulting apparent optical densi-
ties, which would theoretically be measured by an instrument
with the given slit function, in Fig. 1c differ for both pres-
sures although the column density is the same. The medium
with higher ambient pressure clearly exhibits a stronger ap-
parent optical density due to the broader absorption lines as
shown in the cross sections in panels (a1) and (a2).

www.atmos-chem-phys.org/acp/5/9/ Atmos. Chem. Phys., 5, 9–22, 2005
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Fig. 1. Panel(a1)and(a2)show the cross sections of methane for two different ambient pressures. From these cross sections, the theoretical
transmissions through a column of 7·1019molec/cm2 CH4 are depicted in panels(b1) and(b2). Also shown are the convolutions of the high
resolution transmission with the instrumental slit function (FWHM=0.24 nm). Panel(c) then shows the negative logarithm of the convolved
transmissions.
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Fig. 2. Curve of growth for CH4. Depicted is the apparent slant
optical density at one single detector pixel (at about 2328 nm) due
to CH4 absorptions modeled with a gaussian slit function with dif-
ferent Full Width at Half Maximum. For the sake of simplicity, the
air mass factor was chosen to be 2 (i.e.S=2·V ). The weighting
functions atS=7.5 molec/ cm−2 are indicated by the black, dotted
lines (strictly speaking by the slope of these lines).

Assuming an inhomogeneous path, the total vertical opti-
cal densityτ ref

λ of the respective species is computed numer-

ically from the integralτ ref
λ =

∫ zT

0 σλ (p(z), T (z)) c(z)dz

wherec(z) is the volume number concentration of the respec-
tive species andzT the top of atmosphere. In our algorithm,
typically 40–60 height layers are chosen in order to account
for the changes in temperature and pressure.

Figure 2 shows the theoretically measured (apparent) op-
tical density due to CH4 absorptions at a given wavelength
where the (unconvolved) vertical optical density of methane
is rather high (about 1.7 for a reference vertical column den-
sity of 3.6·1019 molec/cm−2). One can clearly see that the
measured optical density is not linearly dependent on the
slant column density of CH4. Furthermore, the nonlinear-
ity decreases with decreasing FWHM of the slit function but
is still present even for a FWHM of 0.1 nm. The degree of
nonlinearity also depends on the actual slant optical density
itself. Thus, a classical DOAS approach which assumes strict
linearity is not well applicable in the near infrared spectral
region in particular and for strong absorbers in general.

Atmos. Chem. Phys., 5, 9–22, 2005 www.atmos-chem-phys.org/acp/5/9/
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2.4 Linearisation points and derivatives

Buchwitz et al. (2000) introduced the concept of weighting
functions to the classical DOAS approach. The basic idea
is to linearise the problem about a linearisation point inS,
the expected slant column density derived using climatolog-
ical profiles of meteorological parameters such as pressure,
temperature and vertical profiles of all absorbers. This has
been an important step in adjusting the DOAS algorithm to
meet the needs of the near infrared spectral region. However,
this approach does not treat different height layers separately,
which can result in systematic biases as will be shown in the
following. If the actual atmospheric state deviates strongly
from the first a priori assumption (e.g. due to the highly vari-
able amount of water vapour or clouds shielding significant
parts of the atmosphere), further iterations are necessary in
order to yield unbiased results. This can be seen in Fig. 2,
where the actual slope of each curve depends on the slant
column densityS of CH4, indicating that the sensitivity of
the measurement decreases with an increase in the slant col-
umn density. Thus, the linearisation point has to be close
to the actual state which is only possible by means of it-
erations. This is of special importance for the retrieval of
strongly absorbing gases with highly variable concentrations
such as water vapor (see e.g. Buchwitz et Burrows (2004)).
A generalised and comprehensive approach to nonlinear and
linear inverse problems for atmospheric remote sounding is
given by Rodgers (2000).

Given a linearisation point, the derivatives of the measured
optical density with respect to perturbations of the respective
trace gas columns in different height layers, to temperature
changes and other affecting factors can be calculated.

The general concept is a linearisation of the forward model
F(x) atx0 (nomenclature according to Rodgers (2000):

y = F (x0) +
∂F (x)

∂x

∣∣∣∣
x0

· (x − x0) + ε , (9)

wherey denotes the measurement ln(I/I0) andF (x0) the
theoretical value of ln(I/I0) evaluated at a state vectorx0
by means of a radiative transfer model (in the non-scattering
case simply the Beer-Lambert law). The state vector com-
prises the vertical column densities of each absorber as well
as deviations from the a priori temperature profile.

The derivativesK0=
∂F (x)

∂x

∣∣∣
x0

can be represented as a Ja-

cobian Matrix where each column is the derivative vector of
the measurement with respect to an element of the state vec-
tor. The forward model also has to include the instrumental
function which is of special interest in the NIR spectral re-
gion.

Thus, we can combine the Beer-Lambert law consisting of
a low order polynomial accounting for broadband absorption
structures and the instrumental function to obtain the result-

ing simplified forward model, i.e.

I lr

I lr
0

= < T hr > , (10)

or with I0 correction (cf. Aliwell et al. (2002) and
Sect. 4.2.1):

I lr

I lr
0

=
< Ihr

0 · T hr >

< Ihr
0 >

, (11)

where the indiceslr andhr denote low resolution (instru-
ment resolution) and high resolution (resolution high enough
to account for all spectral features; for this study we used
0.001 nm).Ihr

0 is a high resolution Fraunhofer spectrum (in
our case taken from Livingston and Wallace, 1991) andT hr

the high resolution modeled transmission:

T hr
= exp

−

∑
j

A ·
τ

ref
j

V
ref
j

Vj −

∑
k

ak · λk

 . (12)

We can now regard the ratio of the vertical column to be re-
trieved and the reference vertical column asxj :

xj
=

Vj

V
ref
j

. (13)

Neglecting theI0-effect (cf. Sec. 4.2.1), the derivatives of
F (x) atx0 with respect toxj can be easily deduced:

∂F (x)

∂xj

∣∣∣∣
x0

=
∂ ln

(
< T hr(x) >

)
∂xj

∣∣∣∣∣
x0

=
1

< T hr(x0) >

∂ < T hr(x) >

∂xj

∣∣∣∣
x0

=
1

< T hr(x0) >
< −T hr(x0) · A · τ

ref
i > .(14)

For the computation of the linearisation point, we include an
I0 correction:

F (x0) = ln

(
I lr

I lr
0

)
= ln

(
< Ihr

0 · T hr(x0) >

< Ihr
0 >

)
. (15)

Figures 3a and b show the vertical optical densitiesτ ref

of CH4 and H2O at about 2.3µm. The derivatives with re-
spect to change in CH4 column densities in different height
layers as well as the derivative with respect to the total ver-
tical column of CH4 at different VCD’s of H2O are depicted
in Figs. 3d and e. It can clearly be seen that the derivatives
with respect to CH4 column density depend on the height at
which the actual perturbation takes place. This dependence
on height can be readily explained as a result of different
mean ambient temperatures and different line-shapes at the
respective pressure levels.

Thus, the sensitivity to a perturbation taking place in lower
parts of the atmosphere is almost always higher since the

www.atmos-chem-phys.org/acp/5/9/ Atmos. Chem. Phys., 5, 9–22, 2005
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Fig. 3. Panel(a) shows the spectrally fully resolved total optical densities for a vertical path for CH4 (V =3.6·1019molec/cm−2) and H2O
(V =6.5·1022 molec/cm−2) while panel(b) depicts the vertical optical densities of CH4 for different height layers in the atmosphere. The ex-
pected total slant optical density (here forA=2.41) is now shown in panel(c). Shown is the high resolution optical density and the convolved
one that is seen by the instrument, i.e. convolved withφI (here: SCIAMACHY slit function in channel 8: Gaussian, FWHM=0.24 nm).
Starting from this linearisation point, the effect of a change in the vertical column density of CH4 of +1018molec/cm2 (i.e.≈3% of the total
column) in different height layers is shown in panel(d). Panel(e)shows the derivatives (also with respect to CH4 perturbations) for different
linearisation points, viz. for different water vapour columns (1.3, 6.5 and 32.5·1022molec/cm−2, respectively). The optical densities in (a)
and (b) are not convolved.

pressure broadened line wings contribute most to the sen-
sitivity. The opposite holds for upper parts of the atmosphere
where rather narrow lines exhibit less sensitivity. However,
this effect strongly depends on the actual optical density and
the slit function of the instrument. The high sensitivity close
to the surface can be seen as an advantage, since the bound-
ary layer is of special importance for atmospheric chemistry
and atmosphere-geosphere exchange processes.

Interestingly, Fig. 3e shows that the derivatives also de-
pend on the amount of water vapour present. In the case
of direct overlapping of the absorption lines, this is obvious
because it increases the degree of saturation, and thereby re-
ducing the sensitivity (e.g. at about 2331.75 nm). However,
even distinct absorption lines can influence each other if they

are close enough to lie within the width of the instrumental
function. This can be seen, for instance, at about 2335 nm
where enhanced water vapour increases the sensitivity with
respect to CH4 perturbations. In principle, this effect is simi-
lar to the well knownI0 effect (Aliwell et al., 2002) differing
in that the interfering strong absorption lines are not constant
as in case of Fraunhofer lines. This implies that different ab-
sorbers cannot be treated separately any more as in the clas-
sical DOAS approach.

All these effects are due to the following inequality with
respect to convolution:

< I0 · e−τ a · e−τ b > 6=< I0 > · < e−τ a > · < e−τ b > (16)

Atmos. Chem. Phys., 5, 9–22, 2005 www.atmos-chem-phys.org/acp/5/9/
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2.4.1 Implementation of Optimal Estimation

We have seen that we are dealing with a nonlinear problem,
i.e. the derivatives of the forward model with respect to the
column densities of strong absorbers depend on the actual
state. Thus, we need an iterative scheme for retrieving the
state vector. Further constraints are also necessary since we
are dealing with moderate spectral resolution and thus the
derivatives at different height layers for the same species are
nearly linearly dependent. Thus, the information content of
the measurement is not high enough to discriminate between
different height layers. In our case, the linear system of equa-
tions would be badly conditioned and necessary constraints
have to be introduced by the covariance matrixSa , i.e. by the
expected covariances of the a priori state vector before any
measurement has been made. Assuming the elements of the
state vector to have gaussian distributions, the state vector
maximising the a posteriori probability density function of a
nonlinear problem can then be written by means of Newto-
nian iteration (Rodgers, 2000)

xi+1 = xa +

(
KT

i S−1
ε K i + S−1

a

)−1
KT

i S−1
ε

· [y − F (xi) + K i(xi − xa)] , (17)

where
xa = a priori state vector ,
xi = state vector at the i-th iteration ,
Sε = (pixel) error covariance matrix ,
Sa = a priori covariance matrix ,
F (xi) = forward model evaluated atxi ,
K i = Jacobian of the forward model atxi .

In this paper, optimal estimation according to (17) is ap-
plied with a state vector that is comprised of the scaling fac-
tors for the vertical columns of the respective trace gases in
different height layers, a climatological index for tempera-
ture change in the atmosphere (see next Section) and polyno-
mial coefficients accounting for low frequency absorptions
and scattering. In the following, this implementation of opti-
mal estimation is referred to as IMAP-DOAS (iterative max-
imum a posteriori DOAS). Shift and squeeze, a procedure of-
ten used in DOAS to account for any slight spectral mismatch
between the expected and the actual wavelengths attributed
to each detector pixel, can also be easily implemented in this
scheme. The Jacobian matrixK i is evaluated in each itera-
tion i by computingT hr with xi−1 as input values. At every
iteration, several convolutions are involved. Since the numer-
ical computation of a convolution is rather time consuming,
neat and fast methods are indispensable. Fast Fourier Trans-
form can in general be used to perform a fast convolution
with all kinds of slit functions (Press et al., 2002). Multi-grid
binomial filters further decrease the computation time for slit
functions having Gaussian shape (cf. Jähne (2002) and refer-
ences therein).

Allowing only for small variances inSa for the scaling
factors of theV CD’s of higher atmospheric layers, the fit

can be constrained to changes in the lower atmosphere where
the variance is expected to be high. In case of long lived
trace gases like CO2, this is a reasonable assumption since
the stratospheric variations are negligible.Sε is usually a
diagonal matrix whose elements represents the expected er-
rors (variances, e.g. due to shot-noise or uncertainties in the
dark current) ofy. Each diagonal element ofSε shows a dif-
ferent value, since the variance (in the intensity space) of a
particular detector pixel depends on the intensity itself (for
shot-noise) transformed via the logarithm (Jähne, 2002). Es-
pecially in the near infrared the uncertainties of the dark cur-
rent can also vary from pixel to pixel which can be accounted
for in a proper choice ofSε .

2.4.2 Temperature derivatives

Since the temperature determines the population of the lower
state of each transition, the optical densities also depend on
temperature, which therefore has to be taken into account.
The temperature derivative can be chosen as the derivative of
F (x) with respect to temperature. Theoretically, we would
have to consider these derivatives for each height layer sep-
arately but this would lead to an under-determined linear
system of equations. Buchwitz et al. (2000) computed this
derivative by assuming a constant temperature change at all
height layers. For our study, we choose the temperature dif-
ference at each height layer to correspond to a typical dif-
ference between two distinct climatologies. This means that
we compute the difference quotient1F (x)/1(T , p), where
1(T , p) is chosen to correspond to the differences between
both climatologies. This method is used throughout this
study.1(T , p) can be regarded as the deviation of the pres-
sure and temperature profile from the a priori climatology
toward another climatological standard profile, e.g. a devi-
ation from the US standard atmosphere toward a standard
mid-latitude winter climatology.

Using this method allows not only for different temper-
ature changes in each height layer, but also changes in the
scale height of the atmosphere.1(T , p) can be scaled by
a scalar entityCI (here climatological index). The clima-
tological indices are then part of the state vector and the
derivatives are computed for each strong absorber separately,
water vapour almost always exhibiting the strongest sensi-
tivity to temperature change. Since water vapour content is
highly variable, the temperature (or climatological) deriva-
tive should not be directly coupled to, e.g., the temperature
derivative of CH4 or CO2. However, a covariance of these
elements can be assumed and represented inSa .

The derivative with respect to a climatological index can
be computed as the difference of the vertical optical densities
of each absorber for different climatologies (theV CD has,
of course, to be scaled to a common value), e.g.

1τ i = τ
clima1
i − τ clima2

i (18)
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Fig. 4. Example of F(x0) and temperature derivatives
(SZA=60◦, V (CO2)=7.75·1021 molec/cm−2, V (H2O)=6.5·1022

molec/cm−2) for a typical SCIAMACHY CO2 retrieval with poor
spectral resolution (FWHM=1.33 nm).

Here, we have chosen the difference between the US standard
atmosphere (a priori climatology) and a mid-latitude winter
atmosphere (profiles taken from Kneizys et al., 1996). If
scattering is ignored, the derivative can be written analyti-
cally as

∂F (x)

∂CI

=
1

< T hr >

∂ < T hr >

∂CI

=
1

< T hr >
< −T hr

· A · 1τ i > .

Even though this method presumes linear sensitivity with re-
spect to perturbations in the actual pressure/temperature pro-
file, it turned out to yield reasonably precise results.

If computational time were not an issue, vertical optical
densities could be computed for each scan using more real-
istic temperature and pressure profiles, for instance from ac-
tual meteorological forecasts or infrared sounders. However,
computation of the optical densities is still considerably time
consuming, due to which such an approach would not be fea-
sible for the analysis of millions of spectra. Fig. 4, for exam-
ple, showsF(x0) (i.e. the expected ln(<I/I0>)) in panel (a)
and the derivatives ofF(x0) with respect to perturbation in
the CO2 and H2O columns in panel (b). Panel ( c) depicts the
derivative with respect to a change in climatology, separately
for CO2 and H2O. One can clearly see that this derivative for
CO2 leads to reduced as well as enhanced optical densities in
different spectral regions. This facilitates the discrimination
of a change in total column from a temperature change.
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Fig. 5. Range of ECMWF temperature profiles used for the simula-
tion of the retrieval.
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Fig. 5. Range of ECMWF temperature profiles used for the simula-
tion of the retrieval.

3 Simulated retrieval

3.1 Standard profiles

In order to analyze the effect of atmospheric pressure and
temperature variability on the retrieval, a comprehensive set
of 2000 (for the CH4 retrieval) and 5000 (for CO2) ECMWF
vertical profiles of temperature (see Fig. 5), pressure and wa-
ter vapour (Chevallier, 2001) was used to compute optical
densities of the absorbers of interest. For CO2 and CH4 the
profiles were taken from Kneizys et al. (1996) and scaled to
actual mixing ratios (tropospheric mixing ratios of 370 ppm
for CO2 and 1.7 ppm for CH4, corresponding to vertical col-
umn densities of 7.75·1021 and 3.6·1019, respectively).

Starting from these optical densities, theoretical measure-
ments of ln(I/I0) with the spectral resolution of SCIA-
MACHY were simulated (scattering as well as instrumental
noise were neglected and a solar zenith angle of 45◦ was cho-
sen). These simulated measurements then were used as input
parameters for different versions of the retrieval algorithm.
Since the set of profiles also includes surface elevation and
was chosen especially to cover a wide range of possible at-
mospheric states, a comprehensive and realistic simulation
could be performed.

The following retrieval schemes were used for the simula-
tion:

a1. For all species of interest, the vertical column density
of the entire atmosphere was used in the state vector.
Thus, the whole column was scaled with a single factor
without accounting for where the change actually takes
place. No temperature derivative was included in the
state vector. Thus, the state vector only included the
total vertical columns of each absorber.

Atmos. Chem. Phys., 5, 9–22, 2005 www.atmos-chem-phys.org/acp/5/9/
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Table 1. Fit windows used for the ECMWF simulated retrieval.

FWHM [nm] spectral range[nm] SZA [
◦
]

CH4 0.24 2261–2277 45
CO2 1.3 1562–1585 45

a2. Same as a1) but a climatological indexCI accounting
for changes in temperature was introduced (U.S. stan-
dard atmosphere – mid-latitude winter, cf. Sect. 2.4.2)
as an additional entry in the state vector.

b. A full IMAP fit was used: the state vector comprises
a climatological index as well asV CD’s of strong ab-
sorbers divided into different height layers (as an ex-
ample we chose 3 layers, viz. 0–3 km, 3–12 km, 12–
120 km). The fit was confined to the lowermost layer
(0–3 km) by setting the variance of higher layers close
to zero.

Table 1 shows the fit windows for CO2 and CH4 chosen to
represent very different instrumental resolutions (given as
Full Width at Half Maximum FWHM of the slit function).

For all retrievals, the a priori temperature and pressure pro-
file was the US-standard atmosphere with trace gas concen-
trations scaled to current values. No surface elevation was
included, i.e. the surface pressure was 1013 hPa.

3.1.1 Retrieval results

Figure 6 shows the theoretical errors of a methane fit in
a typical SCIAMACHY fit window (see Table 1) plotted
against the actual surface pressure. The error is given as the
percentage deviation from the true vertical column density
1Vrel=

Vmeas−Vtrue

Vtrue
·100%. The upper panel shows a retrieval

which does not include a temperature derivative in the fit.
It can be clearly seen that the errors are far larger than de-
sired for longlived trace gases although only ECMWF pro-
files within a latitude band between−60◦ to −45◦ were con-
sidered. The errors for latitudes above−45◦ were slightly
larger. Thus, a derivative of the forward model with respect
to temperature is indispensable if high precision is desired.
Having analysed a small sample of climatological profiles,
Buchwitz et al. (2000) also came to the conclusion that this
derivative has to be included in most cases.

The fit window should be chosen such that the absorption
lines exhibit a wide variety of lower state energies and thus
different responses to temperature changes. In this case, a
change in temperature can be well distinguished from an ac-
tual change in concentration. Another solution would be to
choose only absorption lines with a negligible temperature
dependence.

Water vapour, in general, poses a more severe problem due
to the predominantly higher values of the lower state ener-
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Fig. 6. Error of the retrievedCH4 vertical column for different
ECMWF profiles and retrieval methods (see text for the explana-
tion of (a1), (a2) and(b)) in a latitude band of−60◦ to 45◦. Only
method (b) avoids huge errors due the atmospheric variability of
temperature and pressure (dominant in (a1) ) and the systematic bias
dominant in (a2)).
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Fig. 6. Error of the retrieved CH4 vertical column for different
ECMWF profiles and retrieval methods (see text for the explanation
of a1, a2andb) in a latitude band of−60◦ to 45◦. Only method (b)
avoids huge errors due the atmospheric variability of temperature
and pressure (dominant in a1) and the systematic bias dominant in
a2.
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Fig. 7. Error of the retrievedCO2 vertical column for different
ECMWF profiles. Please note the different scale for both panels. A
second iteration would yield nearly identical results as using only
one iteration for both algorithms.
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Fig. 7. Error of the retrieved CO2 vertical column for different
ECMWF profiles. Please note the different scale for both panels.
A second iteration would yield nearly identical results as using only
one iteration for both algorithms.

gies, which implies a stronger temperature dependence of the
absorption line. Furthermore, the actual water vapour profile
can vary considerably and thus vary in concentration in lay-
ers of different sensitivities inducing systematic errors. This
could be of great significance in, e.g., a precise water vapour
retrieval with moderate spectral resolution where no height
information can be extracted from the spectra.

www.atmos-chem-phys.org/acp/5/9/ Atmos. Chem. Phys., 5, 9–22, 2005
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Fig. 8. Error of the retrievedCO2 vertical column for different
ECMWF profiles with respect to surface temperature. Profiles with
a surface elevation of more than 200 m have been excluded.
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Fig. 8. Error of the retrieved CO2 vertical column for different
ECMWF profiles with respect to surface temperature. Profiles with
a surface elevation of more than 200 m have been excluded.

Also, it can be seen that scaling the entire column
(method a2) creates an artificial bias in the retrieved column
and would lead to averaging kernels above unity in the lower
parts of the atmosphere. As mentioned before, this problem
can be alleviated by including surface elevation in the a priori
(i.e. when the a priori optical density is not computed from
z=0 to the top of atmosphere but fromz=surface elevation
to the top of atmosphere). On the other hand, the nonlinearity
is also not negligible on scales of actual meteorological sur-
face pressure changes (±≈30 hPa). Confining the fit to the
lower atmosphere circumvents these problems, since it prop-
erly accounts for the higher sensitivity to the boundary layer.
In order to account for, for instance, seasonal changes in CO2
column which occur throughout the troposphere, the fit could
be extended to encompass the entire troposphere (e.g. by us-
ing a height layer of 0–10 km instead of only 0–3 km or by
setting higher variances inSa for height layers above 3 km
and below 10 km).

As already pointed out, the impact of nonlinearity be-
comes substantial when either the actual state deviates
strongly from the a priori state (e.g. when clouds shield most
parts of the lower atmosphere or mountains are present) or
the state vector is not properly chosen (e.g. scaling the whole
column instead of only the lower atmosphere). Figure 7 un-
derlines this effect in several ways: Without iteration, an ad-
ditional bias is introduced at low surface pressures. This
effect could be only partly obviated by a more accurate a
priori estimation of the surface pressure (e.g. an elevation
database). Moreover, scaling the entire column creates an
artificial bias of up to 20% because the actual change in con-
centration takes place in the lower atmosphere whereas the
fit algorithm scales the whole column. The slope of this bias
depends on the degree of saturation, and thereby also on the
slit function and the air mass factor.
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Fig. 9. Error of the retrievedCO2 vertical column for different
ECMWF profiles with and without enhancement of 50 ppmCO2 in
the lowermost kilometer. Profiles with a surface elevation higher
than 200 m and a surface temperature lower than 270 K have been
discarded.
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Fig. 9. Error of the retrieved CO2 vertical column for different
ECMWF profiles with and without enhancement of 50 ppm CO2
in the lowermost kilometer. Profiles with a surface elevation higher
than 200 m and a surface temperature lower than 270 K have been
discarded.

To summarise, it can be said that Fig. 7 shows two dif-
ferent types of biases, one induced by different sensitivities
in different height layers (the slope of the upper panel using
one iteration, avoided by the IMAP-DOAS algorithm in the
lower panel), and the other induced by the general nonlin-
earity of the problem (see curve of growth in Fig. 2), which
explains the differences of both methods using no and one it-
eration. Furthermore, it reveals a source of error, namely the
uncertainty in pressure and temperature profiles leading to a
scatter of up to 1–2% of the retrieved column.

The IMAP algorithm in the lower panel (using one iter-
ation) starts to overestimate the total column when the sur-
face pressure drops below values corresponding to a height
of 3km since the height layer between 0–3 km has been used
as entry in the state vector (which does not exist any more
since this layer has been clipped by mountains). This is pre-
vented by supplying a priori information about the surface
elevation, e.g. by setting the lower level of the lowest height
layer to the actual surface elevation.

Figure 8 shows that the errors caused by the IMAP fit in-
crease with decreasing surface temperature. This is mainly
because the a priori has been based on the US-standard at-
mosphere. In most cases, this is a fair approximation, in ex-
tremely cold atmospheres, though, a more appropriate a pri-
ori profile needs to be adopted in order to yield more precise
results.

3.2 Simulating enhanced CO2 in the boundary layer

The short term variability of longlived trace gases is expected
to be highest in the boundary layer, close to the surface where
the sources and sinks (Olsen and Randerson, 2004) are lo-
cated. If the algorithm does not properly account for this
additional information, the retrieved column will be biased.
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To quantify this effect, artificial measurements (see
Sect. 3.1) with an enhancement of 50 ppm CO2 in a bound-
ary layer of 1 km vertical extent have been simulated and
retrieved by different algorithms. The results of two meth-
ods, viz. a2 and b, are depicted in Fig. 9. Using method a2,
the bias produced receives an additional offset of about 0.6%
while the IMAP-DOAS algorithm remains unaffected by this
change in concentration profile (lower panel).

4 Other parameters influencing the retrieval

4.1 Radiative transfer

4.1.1 Effect of atmospheric scattering

In the near infrared spectral region, Rayleigh scattering is
nearly negligible and plays only a minor role. However,
aerosols and clouds can significantly alter the distribution of
the light paths. Thick clouds alter the light path dramatically
and often render measurements useless. However, they are
far easier to detect than aerosols or thin cirrus clouds, serving
to generate a mask according to which measurements can be
discarded. As O’Brien and Rayner (2002) pointed out, also
thin cirrus can significantly shorten the light path, thus also
biasing the retrieved column by up to a few percent. Depend-
ing on their optical properties, surface reflectance and other
parameters, aerosols can shorten as well as enhance the light
path by up to a few percent (see e.g. O’Brien and Rayner
(2002), Dufour and Breon (2003) or Buchwitz et Burrows
(2004)). To alleviate the difficulties posed by these factors
in the estimation of the actual light path distribution, O2 can
be used as a proxy for the light path distribution (Pfeilsticker
et al., 1998; Pfeilsticker, 1999). O’Brien and Rayner (2002)
proposed the nearby 1.27µm region for the retrieval of O2
since the scattering properties of the spectral retrieval win-
dow of the proxy species have to be as similar as possible to
that of the retrieval windows of the target species.

Using a proxy for the light path primarily requires an un-
biased spectral analysis of both species, e.g. O2 and CO2.
Being outside the scope of this paper, a comprehensive anal-
ysis of the influence of single and multiple scattering will not
be given. It should be mentioned that especially the O2 A-
band at 765 nm which is often used for the determination of
airmass factors, exhibits very strong absorptions, thus also
strong height-dependence of the sensitivity. Neglecting the
issues addressed in this paper would lead to systematic bi-
ases in the retrieved airmass factor and subsequently also in
the target species.

4.1.2 Effect of surface elevation and albedo

When the footprint of a measurement is relatively coarse
(e.g. 30×60 km for SCIAMACHY), cross-correlations be-
tween the surface altitude and surface albedo can introduce
systematic errors. If, for instance, 50% of the ground pixel

has a height of 500 m and an albedo of 0.02 and the other
50% a height of 200 m and an albedo of 0.2, the system-
atic error would be about 1.5% in the total column (for an
nearly equally distributed gas such as CH4 or CO2). Espe-
cially snow covered areas above a certain altitude with a low
albedo in the NIR can create cross-correlations between the
surface altitude and albedo.

One could use broadband measurements with a finer spa-
tial resolution to provide a more accurate weighting for dif-
ferent areas of a given ground-pixel or exclude pixels with a
surface altitude variance higher than a predefined threshold.
SCIAMACHY provides broadband detectors having higher
spatial resolution that can be used to derive this information.
In using proxies such as O2, care has to be taken that the
albedos for the O2 retrieval are similar to the retrieval win-
dow used for, e.g., CO2.

4.2 Spectroscopical aspects

4.2.1 I0 effect

Although the density of the Fraunhofer lines in the near in-
frared is not as pronounced as in the UV/Vis, the spectral
structure of the incoming solar radiationI0 and their under-
sampling may introduce errors (Aliwell et al., 2002). This
effect is similar to the effect of overlapping strong absorbers
as in Fig. 3d. TheI0 corrected slant optical density can be
written as

τ corr
λ (x) = − ln

(
< I0 exp(−x · A · τ

ref
λ ) >

< I0 >

)
. (19)

The I0 effect is implemented in the evaluation of the for-
ward modelF (x) and is thus properly corrected. The highly
resolved solar atlas used in this study was obtained from Liv-
ingston and Wallace (1991).

As can be seen in Fig. 10, theI0 effect can have a relatively
strong influence on the slant optical densities. Especially the
absorption bands at about 1575 nm that are used for CO2 re-
trieval from SCIAMACHY show a strong effect.

4.2.2 Effect of the uncertainty of broadening parameters

As already stated, the actual shapes of the absorption lines
are important for the retrieval of strong absorbers. Thus, if
the broadening coefficients are larger than given in the lit-
erature, the sensitivity of ln(I/I0) with respect to concen-
tration changes of the respective absorber will be underes-
timated and vice versa. This is due to the reduced degree
of saturation of broader lines. However, wrong broadening
parameters not only introduce systematic errors in the total
columns of strong absorbers but also systematic residuals in
the fit which can become stronger than spectral structures of
some weak absorbers of interest.

According to Rothman et al. (2003), the effective pressure
broadened halfwidthγL(p, T ) of a molecule with a partial
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Fig. 10. Slant optical densities of CO2 with and withoutI0 correc-
tion (AMF=3, FWHM=1.3 nm). The lower panel shows the differ-
ence of theI0 corrected and the uncorrected slant optical density.
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Fig. 11. Influence of the pressure broadening coefficientγ air
L

on the
apparent differential slant optical densities of H2O. The remaining
residual of a linear fit of both is shown in the lower panel.

pressure far lower than the actual pressurep [atm] is calcu-
lated as

γL(p, T ) =

(
Tref

T

)n

γ air
L (pref , Tref ) · p , (20)

wheren is the coefficient of temperature dependence ofγL.
Especially for water vapour the line parameters exhibit large
uncertainties and the absorptions in many areas in the near in-
frared are very strong (optical density in the line centre>10).

Figure 11 shows the effect of a change of 10% inγ air
L

for H2O at US standard atmosphere concentrations and an
air mass factor of 3 (corresponding to a solar zenith angle
of 60◦). The upper panel depicts the two optical densities
at SCIAMACHY resolution (FWHM=0.24 nm) for the same
vertical column density. If the actual value ofγ air

L would be

10% higher than expected, the total column would be over-
estimated by approximately 4%. It would also introduce a
stable residual which is shown in the lower panel of Fig. 11.
Washenfelder et al. (2003), for instance, found wrong broad-
ening parameters for CH4 at about 1680 nm which lies in
a wavelength region of special importance for the CH4 re-
trieval with SCIAMACHY.

Since the influence of an error inγ air
L depends on the

strength of the absorption lines, it also depends on the so-
lar zenith angle. Thus, the systematic bias introduced by a
wrong value ofγ air

L also depends on the solar zenith angle.
Hence, a simple correction factor cannot be applied.

4.2.3 Effect of the uncertainty of the slit function

Since the slit function mainly determines the sensitivity and
the nonlinearity of the measurement (see Fig. 2), errors can
be introduced if the slit function is incorrectly specified. We
analysed this effect on a rather simple example, viz. the ef-
fect of a change of the FWHM of a gaussian slit function
on the CH4 retrieval at about 2270 nm. If the true FWHM
deviates by 0.02 nm from the assumed one (0.24 nm), the er-
rors in the retrieved CH4 columns are +3.1% and−2.6%,
respectively for a true FWHM of 0.22 and 0.26 nm. This er-
ror varies only slightly (0.3%) over a large range of air mass
factors (2–5).
However, in some cases the actual slit function deviates
strongly from the expected one such as in the case of chan-
nels 7 and 8 of SCIAMACHY where an ice layer leads to
largely extended wings of the slit function. This could give
rise to errors in the retrieved columns of up to 25% (Gloude-
mans et al., 2004). Thus, a precise knowledge of the slit
function is indispensable.

5 Conclusions

We have investigated several important aspects that can com-
plicate the spectroscopic analysis of atmospheric trace gases
in the presence of strong absorbers. The nonlinearity of the
classical DOAS approach in situations where non-resolved
lines prevail, e.g. in the near infrared spectral region, was
analysed and a new IMAP-DOAS algorithm based on opti-
mal estimation was implemented to account for the peculiar-
ities of this spectral region.

The nonlinearity of the problem requires the use of itera-
tions which are implemented in the IMAP-DOAS algorithm.
In the iterative procedure, the vertical column densities are
directly fitted such that the total slant optical density of all
absorbers matches the measurement. By using convolutions
with the instrumental slit function in every iteration, any in-
terference between different absorbers or with the Fraunhofer
spectrum that may occur in the classical DOAS approach is
resolved. This is of importance in all cases where strong ab-
sorbers have to be retrieved (e.g. CO2, CH4 or O2) or when
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strong absorbers interfere with the target species to be re-
trieved (e.g. O3 interferences with SO2).

Furthermore, we showed that for strong absorbers in the
near infrared, the sensitivity of ln(I lr/I lr

0 ) with respect to
perturbations in concentration mostly increases with increas-
ing ambient pressure due to pressure broadening of the ab-
sorption lines. This effect can lead to a strong systematic
bias, if the whole atmosphere is scaled with a single factor as
is often done in conventional DOAS algorithms. The IMAP-
DOAS method circumvents this problem by confining the fit
to the lowermost layers of the atmosphere.

The analysis also shows that a further derivative for
changes in the temperature profile is indispensable. In Ab-
sence of this derivative, errors of up to several percent in the
total column may arise.

Although spectrometers with moderate spectral resolution
cannot fully resolve the absorption lines, it has been shown
that the actual lineshape is of special importance since it de-
termines the sensitivity of the measurement. Thus, an accu-
rate knowledge of the lineshape, especially the broadening
parameters, is necessary to avoid further biases.

The techniques elaborated in this paper are applicable to
all cases where non-resolved strong spectral structures are
encountered. Some error sources still remain: uncertainties
in the light-path due to aerosols, inhomogeneous surface el-
evation or partial cloud cover giving rise to errors of a few
percent that can only be circumvented by using a suitable
proxy. Incorrect specification of the instrumental slit func-
tion can lead to a rather constant bias of 1–5%, in extreme
cases of up to 25%. Using a climatological derivative, the er-
rors induced by perturbations in the temperature and pressure
profile can be reduced to mostly below 1%.
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Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY –
mission objectives and measurement modes, J. Atmos. Sci., 56,
127–150, 1999.

Buchwitz, M., Rozanov, V., and Burrows, J.: A near-infrared opti-
mized DOAS method for the fast global retrieval of atmospheric
CH4, CO, CO2, H2O, and N2O total column amounts from
SCIAMACHY Envisat-1 nadir radiances, J. Geophys. Res., 105,
15 231–15 245, 2000.

Buchwitz, M. , de Beek, R. ,Bramstedt, K. , Noël, S. , Bovensmann,
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