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Abstract: A β-1,3-glucanase gene from Arthrobacter sp. driven by the 35S promoter was singly transformed into two lettuce cul-
tivars, Cobham Gree and Diana, using the binary vector system of Agrobacterium tumefaciens. Tansformation was confirmed by us-
ing Southern and Northern analysis, Npt II enzyme assays and segregation of resistance to kanamycin.

Transgenic plants were infected with the letuce downy mildew fungus, Bremia lactucae which contains β-1,3-gluncan in its cell wall
and alternations in the development the fungus could easily be monitored. Transgenic plants inoculated with B. lactucae showed dif-
ferent levels of resistant responses compared to the control and they were examined microscopically.

Bakteriyel bir ß-1,3-Glukanaz Geni Transfer Edilen Marul Bitkisinde Mildiyö 
Patojeni Bremia Lactucae’ nın Gelişimi

Özet: Marul çeşitleri Diana ve Cobham Creen’e Agrobacterium tumefaciens’in bitkilere gen transfer etme özelliğinden faydalanarak
Archrobacter sp. orjinli bir β-1,3-glukanaz geni 35S promoter kontrolünde transfer edilmiştir. Gen transferi Southern ve Northern
hibridizasyon teknikleriyle, NPT II enzim aktivite testi ve kanamisine dayanıklıktaki genetik açılma ile kanıtlanmıştır.

Gen transferi yapılan bitkiler hücre duvarında β-1,3-glukan içeren ve gelişimi kolayca izlenebilen mildyö etmeni Bremia lactucae ile
infekte edilmiştir. Kontrole oranla bu bitkilerde değişik seviyelerde dayanıklık reaksiyonları gözlenmiş ve bunlar mikroskobik olarak
incelenmiştir.

Introduction

Induced resistance in many plants is accompanied
by the induced synthesis of PR (Pathagenesis-Related)
proteins including chitinase and β-1,3-glucanase. β-
1,3-glucanases are involved in the natural defence of
plants against fungal infection (1). Plant β-1,3-
glucanases degrade β-1,3-glucan in fungal cell walls
and can inhibit fungal growth (2). In higher plants, β-
1,3-glucanase activity increases in response to patho-
gen infection or hormonal treatments. Several studies
suggest that plant β-1,3-glucanase may be components
of a general plant defence mechanism against patho-
gen invasion in a number of different plant species (3,
4, 5). Plant chitinases and β-1,3-glucanases have been
studied in detail.

Since chitinases and β-1,3-glucanases are induced
by pathogen attack, strees and ethylene treatment and
their substrates, chitin and β-1,3-glucan are important
structural elements of the cell walls of many fungi and
bacteria, these enzymes are thought to play multiple
roles in resistance. First, they may release signalling
molecules (β-glucan and chitosan oligomers) that act
as elicitors of active host defence responses and, sec-
ondly, they may inhibit pathogen growth by degrading
the pathogen cell wall or disrupting its deposition.
Purified plant hydrolases have been shown to inhibit
the growth of several fungi in vitro. The genral con-
clusion from in vitro tests in that plant chitinases are
effective against chintin containing fungi whereas β-
1,3-glucanase are effective against glucan containing
fungi, and they are more effective in combination (5,
6, 7).
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linked glucose units but it was incapable of attacking
short chain laminaridextrans, while th second glucanse
ll was capable of hydrolysing short chain lam-
inaridextrans to laminaribiose and glucose. Both were
secreted extracellularly and acted synergistically in the
degradation of yeast glucan (20). Doi and Doi (17)
cloned the glucanase l from the Arthrobacter sp. strain
YCWD3. The gene was recloned and expressed in a
Streptomyces lividans secretion system by Beynon (un-
published data).

This paper reports studies on the interactions be-
tween Bremia lactucae and lettuce plants that had
been transformed with the β-1,3-glucanase gene using
Agrobacterium- mediated transformation system. B.
lactucae- lettuce interaction was chosen as a model
system because B. lactucae is an obligate parasite of
lettuce and resistant and susceptible reactions can easi-
ly distinguish. The other important point is that B. lac-
tucae contains β-1,3-glucan, which is the substrate of
β-1,3-glucanase, in its cell wall and also the most im-
portant pathogen of lettuce.

Materials and Methods

Plant and fungal materials

Lettuce plants (Lactucae sativa) cultivar (cv) Diana
(Tozer Ltd.) with Dml, Dm3, Dm5/8 and Dm7 and
Cobham Green with no Dm gene determined for re-
sistance to downy mildew disease (21, 22, 23) were
used for the transformation and pathogneicity tests.
Seedlings were grown in a peat based compost in a
growth room at 21˚C under 16 hours photoperiod.
Larger plants with 6-8 leaves were transferred to the
glasshouse. Seedlings for pathogenity tests were
grown on 3MM paper moistened with fungicide, Rov-
ral (Rhone Poulenc) solution (20 mg/L) in clear per-
spex boxes in a growth room under the same condi-
tions. Transformed lettuce plants were grown in
approved containment conditions, in a designated cu-
bicle in the greenhouse.

Bremia lactucae isolates, CL9W and TV, used for
the experiments were maintained by mass transfer of
spore suspension to lettuce seedlings grown on 3MM
paper in a perspex box. The fungal isolates were kind-
ly provided by Mark Bennett and Matthew Gallagher,
Wye College, Department of Biological Sciences.

Preparation of spore suspension was based on the
method of Maclean and Tommerup (24). Cotyledons
showing profuse sporulation but no sign of bacterial
infection were harvested and transferred to 30 ml

Although β-1,3-glucanases are a limiting factor in
the defence reaction, some pathogens can still over-
come the effect of this hydrolase probably due to in
sufficient amount of the enzyme and relatively late
upon pathogen attack or the pathogen may develop a
resistance mechanism to this enzyme. Therefore it is
important to use a β-1,3-glucanase different from
plant one.

Chitinases and β-1,3-glucanases have also found in
several fungi and bacteria during their developmental
stages or to supply nutrient from their environment.
Some of these hydrolases genes have been cloned and
analysed (8, 9, 10). The chitinase gene from Seratia
mercencens, a gram negative soil bacterium, was
cloned and expressed in Pseudomonas ssp. The Pseu-
domonas ssp. expressing chitinase activity inhibited Fu-
sarium oxysporum f. sp. redolens germ-tubes and re-
duced disease of radish caused by the same fungus
(11). This chitinase was also expressed in Escherichia
coli and when tested on Sclerotium rolfsii and Rhi-
zoctonia solani in cotton under greenhouse conditions,
it was found to be effective as a control agent (12).
Logemann et al. (13) expressed this gene constutitvely
in tobacco, resulting in plants that when infected with
R. solani showed markedly less infection symptoms
than control and also grew as fast as uninfected
plants. A chitinase gene has also been cloned from Ba-
cillus circulans that showed possible homology to other
prokaryotic chitinases at the amino acid level (14).
Chitinolytic activity has been shown other in bacteria
including Aeromonas cavia (15) and Gliocladium virens
(16).

Since bacterial hydrolases showed encouraging anti
fungal activity in vitro and some in vivo, we were in-
terested in the use of microbial hydrolases in plant de-
fence mechanisms. A β-1,3-glucanase gene from Ar-
throbacter which was cloned by Doi and Doi (17) was
chosen. The β-1,3-glucanase has been shown to digest
long glucan molecules to a minimum of a pentaglucan
chain and it is molecules of this length or longer that
have been shown to be most effective elicitors of
plant defence responses (18).

Doi et al. (19) first analysed the two glucanases (l
and II) in the liquid culture of a Arthrobacter sp.
strain YCWD3. They found that the enzyme was stable
at 30˚C for 100 min but lost activity when incubated
above 60˚C and at pH values from 3 to 8, the op-
timum pH was found to be 5.5-6.5. Both enzymes
were found to be endo-glucanases. Glucanase l pro-
duced laminaripentaose from a linear chain of β-1,3-
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used to increase the level of β-1,3-glucanase gene ex-
pression. Downstream from the β-1,3-glucanase and
NPT ll gene is a fragment carrying the polyadenilation
signals from the A. tumefaciens (Nos polyA). pLMH24
was introduced into A. tumefaciens strain LBA 44004
by conjugation using tri-parental mating as described
earlier (27). Disarmed A. tumefaciens starin LBA
4404, competent cells of Escherichia coli starin JM
109 containing pLMH24 and E. coli starin MM294
harbouring pRK 2013 helper plasmid were used for
triparental matings.

Lettuce cultivars Cobham Green with no Dm genes
and Diana with 4 Dm genes were used for the trans-
formation. Lettuce cotyledons were infected with Ag-
robacterium tumefaciens strain LBA4404 containing
the plasmid, pLMH24. Transformation procedure was
carried out as described earlier (28) and kanamycin-
resistant plants were regenerated.

Blot analysis of nucleic acids

Plant DNA was isolated from transformed and un-
trasformed plants according to Dellaporta et al. (29).
10 µg of total DNA were digested with Hind III in the
appropriate restriction enzyme buffer for the β-1,3-
glucanase gene. The digested DNA were separated on
0.8% agarose gels in TAE buffer (40 nM Tris-Acetate
and 1 nM EDTA, pH 7.8). After electrophoresis DNA
fragments were transferred to the charged membrane
(Hybond N+ from Amersham RPN 203B) according to
Maiatis et al. (30). The filters were separately probed
with β-1,3-glucanase gene fragments labelled with
32P using a commercial random primer kit (Ol-
igolabelling kit, Promega). RNA was isolated and pur-
ified as previously described (27) and separated on a
denaturing 1.2% agarose/formaldehyde gel and trans-
ferred to nylon membranes. The filters were hybrid-
ised with the probes used in Southern analysis.

Results

Expression of bacterial ß-1,3-glucanase in trans-
genic lettuce 

The chimeric β-1,3-glucanase gene was introduced
into lettuce cultivars Cobham Green and Diana by leaf
disk transformation with the Ti-plasmid binary vector
pLMH24. This vector contanis the β-1,3-glucanase
gene from Arthrobacter sp. under the control of the
expression signals of the 35S promoter of cauliflower
mosaic virus. The vector also contains a NPTll gene
with nopaline-syntase expression signals to provide ka-
namycin resistance (KmR) as a selectable marker in

plastic Sterilin centrifuge tubes containing 20 ml ster-
ile double distilled water (SDDW) at 15˚C. The tubs
were shaken a few min to dislodge spores and the
suspension was filtered through a 50 µm sieve (Ende-
cotts Ltd.). The spores were then washed at least
twice with SDDW at 15˚C by centrifugation at 200 g
for 1 min. Spore concentration was adjusted to 105

spores/ml by counting in a haemocytometer.

To determine infection profiles in long term experi-
ments in a large population, 7-10 days seedlings were
sprayed with a spore suspension and incubated in a il-
luminated incubator at 15˚C with a 12 hour photo-
period. As soon as sporulation had been seen, about
5-6 days, after inoculation, infection was scored as
percentage of sporulating cotyledons. Scoring was car-
ried out until sporulation reached 100% on the con-
trols. The cotyledons with no sporulation were clared
and prepared for microscopy.

Leaf discs from transformants and non trans-
formants were laid with the abaxial surface up-
permost, on a plastic mesh in a perspex box base-
lined with wet tissue paper. 20 µl of the spore sus-
pension was placed on the abaxial surface and then
the boxes were incubated at 16˚C under a 12 hour
photoperiod. The discs were blotted on dry tissue
paper after 24 hours and incubated under the same
conditions. As soon as first sporulation was seen, in-
fection was scored on a scale of 0-5: 0, 0 sporulation
visible; 1, a few sites of sporulation; 2, about 25%;
3, 26-50%; 4, 51%; 5, >75% of disc covered by
sporangia (25). About 11 days after inoculation, leaf
discs with no sporulation were examined micro-
scopically. To examine the progress of fungal develop-
ment in cotyledons an leaf dtiscs, they were de-
colorized overnight in 100% methanol and cleared in
chloral hydrate solution (0.6 g/ml water). After fungal
infection structures were clearly seen, tissues were
mounted in 50% glycerol to have semipermanet slides
for light microscopy.

Non transformed parental plants were used as con-
trols in the pathogenity tests.

Plasmid construct and DNA transformation

The plasmid carrying the β-1,3-glucanase gene con-
tains a napoline synthase (NOS) promoter expressing
the neomycin phosphotransferase (NPT II) gene for
kanamycin resistance and cauliflower mosaic virus 35S
promoter (26) driven the β-1,3-glucanase gene cloned
from Arthrobacter sp. (17). The soybean ribulase bi-
phosphate carboxylase small subunit (SRS1) gene was
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and Norwood (25) reported as incomplete resistance,
were visible. These flecks did not appear on the con-
trol. In addition, no spores were produced on some
discs, these discs were microscopically examined to en-
sure that germinated spores were present at the mi-
croscopic level. The fungus developed primary and sec-
ondary vesicles, short intercellular hyphae and a few

plant cells. Southern blot analysis showed that the β-
1,3-glucanase transformants contained the 2.37 kb
Hindlll fragment of pLMH24 coding β-1,3-glucanase.
The segragation of the KmR trait in the F1 generation
(selfed primary transformants) and F2 generation
(selfed F1 plants) revealed that the transformants con-
tained only one T-DNA insert. Four transgenic Cobham
Green and five Diana lines containing the β-1,3-
glucanase gene and KmR were chosen for further
Northern blot analysis and pathogenecity tests.

Transcription of the β-1,3-glucanase gene was con-
firmed by Nothern blot analysis (Fig. 1). Total cellular
RNA was extracted from non-transformed control
plants and KmR plants of each trasgenic line. The
same but freshly prepared probe used in Southern
blots was used as a probe to the Nothern blots. As it
is seen from Fig. 1, some lines showed higher tran-
scription level than others while controls showed no
expression.

Pathogenicity of Bremia lactucae on lettuce
plants expressing a bacterial b-1,3-glucanase gene

Development of isolate CL9W isolate of B. lactucae
was examined on leaf discs of β-1,3-glucanase trans-
formed plants and controls. The results of these in-
oculations are summarised in Figure 2. Sporulation
was recorded daily from the first appearance of spor-
ulation until 11 days after inoculation (data presented
are from duplicated experiments). As can be seen
from figure 2, on the first day of sporulation (day 6)
about 60% of leaf discs from the control plants
showed sporulation with levels varying up to category
4. By contrast, in the transgenic lines, a maximum of
35% of leaf discs showed sporulation and mostly at
level 1. Transgenic line CG1-20 showed more sus-
ceptibility compare to other transgenic lins, but spor-
ulation was still less than control. On the lines, CG1-
21 and CG1-23, only a few disc showed (5%) spor-
ulation on the first day of sporulation and after 11
days only 50% sporulation was recorded indicating
that these lines showed intermediate resistance as de-
scribed by Maclean and Tommerup (25). The inter-
mediate phenotype has been categorised as being com-
patible during the initial phase of infection but
becoming incompatible in older regions of the infection
site and producing low sporulation overall. On the oth-
er hand, line CG1-29 showed only 10% sporulation
11 days after inoculation. This line showed almost
compete resitance in leaf disc experiments. It was not-
ed that on leaf discs from transgenic plants without
sporulation, necrotic flecks, similar to those that Crute

Figure 1. Northerm blot analysis of the plants transformed with the
β-1,3-glucanase carried on pLMH24. (A) RNA was isolated
from individual kanamycin resistant F2 plants of each line,
lanes are; 1 and 2, untransformed controls, 3 and 4
transgenic line CG1-202 and-204; 5 and 6, CG1-211 and
214; 7 and 8, CG1-234 and-235; 9 and 10, CG1-292 and
-294. (B) Northem blot analysis of cultivar Diana
transformants tarnsformed with pLMH24 carrying the
β-1,3-glucanase gene, Lanes are; CG1-23, (a-Cobham
Green transformant included as a positive control); 2 to 6,
Diana transformants, D1-7, D1-11, D1-5, D1-3, D1-2; 7
and 8, untransformed controls. Northem blots were
prepared and hybridised with β-1,3-glucanase fragment
extracted from pLMH23. Values at the right are the size in
kilobases of the hybridizing RNA estimated from RNA
markers. 
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haustoria. Penetrated cells appeared to undergo the
fleck to become necrotic and autofluorescent. It was
clear that macroscopically visible necrotic flecks were
due to necrosis of host cells.

Development of B. lactucae on transgenic cot-
yledons

To extend the number of plants of each transgenic
line analysed for differences in resistance compared
with controls, at least 50 seedlings were tested for
reaction to B. lactucae. Seedlings were grown for 10
days and then inoculated by spraying them with a
105/ml spore suspesion and incubated as described in
materials and methods. The numbers of cotyledons
with and without sporophores were recorded from the

fewer sight of sporulation until sporulation reached
100% in the controls. In this experiment two B. lac-
tucae isolates, CL9W and TV, were used. Isolate CL9W
has avirulence gene (A 7) matching Dm 7 genes but
TV has no matching avirulence genes in cultivar Diana
(22, 31). So the interaction between isolate CL9W and
Cobham Green is compatible whereas that between
CL9W and Diana is incompatible. Therefore, CL9W
was used to analyse the Cobham Green transformants
and cultivar Diana was included as a resistant control.
In contrast, isolate TV was used on cultivar Diana
transformants since it is compatible with this cultivar.
Results are shown in Figure 3 and 4. The controls,
untransformed and trasformed with vector, showed al-
most the same sporulation intensity (100%), 7 days

Figure 2. Sporulation of B. lactucae isolate, CL9W,
on leaf discs of letuce plants transformed
with β-1,3-glucanase gene and
untransformed controls. Sporulation on
leaf discs was recorded using a five point
assessment scale; O, no sporulation; 1, a
few sites of sporulation; 2, about 25%;
3, 26-50%; 4,51-75%; 5, >75% of disc
covered by sporophores. The data shown
represent the mean of two separate
experiments. CG1-20, CG1-21, CG1-23
and CG1-29 are different transgenic lines.
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Diana and transgenic line CGl-29 with isolate CL9W
showed necrosis after producing primary and sec-
ondary vesicle and sometimes short hyphae whereas
on the other transgenic lines the pathogen produced
long intercellular hyphae and then became necrotic.

Discussion

There is considerable direct and indirect evidence
for the role of chitinases and β-1,3-glucanases in de-
fending plants against bacterial and fungal infections
(32, 33). However some fungal pathognes still cause
disease on plant. The fungus has probably adapted to
the defence mechanisms of plants, therefore it might
be a good idea to express hydrolases from unrelated
species in plants. The new activities represented by
these hydrolases may be effective against the path-
ogenic fungi so that the new hydrolases cannot be
overcome by the invading fungus.

Therefore, we used the β-1,3-glucanase from Ar-
throbacter sp. in order to test its activity in the trans-
genic lettuce against β-1,3-glucan containing patho-
gens.

In order that the enzyme has an increased change
of coming into contact with the pathogen, the signal
sequence from a hydroxyproline rich glycoprotein was
used to secrete the β-1,3-glucanase from the plant
cells. Sela-Buurlage et al. (6) modified the chil and
glucl, gene products that are normally located in vac-

after inoculation (Figure 3). As expected no sporula-
tion was seen on the resitant control, Diana. Trasgenic
line CGI-20 showed lower sporulation than susceptible
controls for first two days but reached almost control
levels after the third day of sporulation. On the first
day of sporulation, CG1-23 showed very low sporula-
tion, high sporulation started one day later than oth-
ers and after 7 days it reached the same severity as
line CG1-21. However, no sporulation was seen on
line CG1-29 which behaved in exactly the same man-
ner as the resistant control, Diana. When high con-
centrations of inoculum were applied to this line,
sparse sporulation was seen two weeks later, similar
sporulation was also noted on Diana.

When Diana transformants were tested with isolate
TV, sporulation began 5 days after inoculation and
reached 100% on the controls within 10 days (Figure
4). Sporulation on both control cultivars Cobham
Green and Diana was very similar. Sporulation in-
tensity on tranformants was greatly delayed compared
with controls. Lines D1-3 and D1-11 showed lower
sporulation intensity than other transgenic lines and
controls. Line D1-5 showed more sporulation than
other lines until day 8 but D1-2 was the highest on
day 9 and 10. Seedlings were cleared daily for micro-
scopic examination until sporulation started. In the
case of transformants in which sporulation was not
observed 11 days after inoculation, samples were also
prepared for microscopy at this time to check for the
presence and activity of the pathogen. Inoculation of
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Figure 3. Pathogenity results on Cobham Green transformed with
β-1,3-glucanase gene and controls inoculated with isolate
CL9/W. CG1-20, -21, -23, -29; transformants, CG-vector;
Cobham Green transformed with vector, CG-control and
Diana control; untransformed susceptible and resistant
controls, respectively. The data shown represents the mean
of three separate experiments. Note; curves for Diana and
CG1-29 are superimposed.

Figure 4. Pathogenicity result on Diana transformed with
β-1,3-glucanase inoculated with B. lactucae isolate TV.
D1-2, -3, -5, -7, -11; different transformants. Diana and
Cobham Green; untrasformed susceptible controls. The
data shown here represents the mean dof two separate
experiments.
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not show any sporulation were microscopically ex-
amined to check whether non-sporulation was due to
lack of inoculum. All of the non-sporulated leaf discs
of transgenic lines had inoculum on them. The fungus
produced intercellular hyphae and haustoria but hyphae
became necrotic and stopped growing further. This re-
action type, reduced sporulation and necrotic flecks,
were similar to those of Crute and Narwood (25) re-
sults, who called it intermediate resistance.

In order to determine the differences in terms of
pathogen development between transgenic lines and
controls, large numbers of cotyledons from each trans-
genic line were used for pathogenicity test. The B. lac-
tucae isolate CL9W was used for a transgenic cultivar
Cobham Green, because this isolate has a compatible
interaction with cultivar Diana. In this experiment cul-
tivar Diana was included as a resistant control, and
untransformed and vector transformed Cobham Green
were also in included as susceptible controls. As can
seen from Figure 3, susceptible controls showed
100% sprolation 7 days after inoculation while trans-
genic lines except CG1-29 reached 95% sporulation
10 days after inoculation. This indicates clear differ-
ences between fully susceptible controls and the β-1,3-
glucanase transformed line. Line CG1-20 showed less
sporulation at day 6 and 7 but after day 7 sporulation
intensity in the population was very close to the sus-
ceptible controls. This line showed more susceptibility
than other transgenic lines confirming the leaf discs
experiment. As mentioned earlier, the level of glu-
canase gene expression is less than CG1-23 and CG1-
29, suggesting a correlation between resistance and
level of β-1,3-glucanase expression. However, line
CG1-21 was more resistant than CG1-20 but did not
show expression of the β-1,3-glucanase gene. This
suggests that the resistance is not due to the expres-
sion of the β-1,3-glucanase gene, but that it might
from somaclonal variations during regeneration in tis-
sue culture. However, line CG1-23 was more resistant
than CG1-20 and CG1-21 and this line also showed
the highest expression of the gene, suggesting a cor-
relation with resistance. It was obvious that the patho-
gen development particularly during the first two days
of sporulation was delayed on this line. So this line
showed the partial resistance as initially expected. It
has been also reported from other studies in which
PR proteins had been overexpressed that some trans-
genic plants showed enhanced but not complete re-
sistance against the fungal pathogen tested (13, 36).

The most interesting result was obtained from line
CG1-29 which demostrated resistance similar to that

uoles, so that they were secreted extracellularly. Some
transgenic plants expressing the β-1,3-glucanase of Ar-
throbacter extracellularly clearly showed resistant re-
actions, such as delayed and low sporulation.

In the first experiments, the development of B. lac-
tucae, isolate CL9W, was examined on leaf discs of
transgenic lines, CG1-20, CG1-21, CG1-23 and CG1-
29, and the control. It has been shown that spore
productivity can be used to assess host resistance to
fungal pathogens (34). Sporulation was initially re-
corded on the 6th day after inoculation, in the contro
about 60% of leaf discs showed varying levels of
sporulation (level 1 to level 4), whereas in transgenic
lines a maximum of 35% of laf discs showed sporula-
tion (level 1 only). Transgenic line CG1-20 gave more
sporulation compared to other lines, but still less than
control. The β-1,3-glucanase expression was quite low
in this line as well (Figure 1), possibly explaining why
it was more susceptible than others. On the other
hand, no gene expression was obtained from line CG1-
21, and this line showed a more pronounced reaction
than line CG1-20. These phenotypes were possibly due
to somaclonal variatons during tissue culture pro-
cessing, as earlier reported by Brown et al. (35). They
found that plants regenerated from callus derived
from cotyledons showed enchanced and reduced sus-
ceptibility to lettuce mosaic virus (LMV) and dowyn
mildew as well as other morphological changes such as
albinism, and changes in chlorophyll content. In
Brown’s studies two lines did segregate in a ratio of
3: 1 non-sporulation: sporulation, suggesting non-
sporulation was dominant. However when higher in-
oculum concentrations (>105 spores/ml) were used,
this result was not confirmed. They concluded that re-
duced or delayed sporulation may be components of
partial or field resistance and may not be fully ex-
pressed in seedling tissues.

Transgenic line CGl-23 showed a low sporulation
level. On the first day that sporulation was observed
on the control, only 5% of leaf discs were covered
with sporophores at level 1 (a few sites of sporula-
tion), while in the control 55% of discs showed spor-
ulation up to level 4. Another important point with
this line is that the β-1,3-glucanase gene expression is
much higher than others. This may explain why CG1-
23 showed delayed and less sporulation. Interestingly,
line CG1-29 showed the most resistant reaction
among the lines tested, although the gene expression
was lower than CG1-23.

Eleven days after inoculation, the leaf discs that did
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thogenicity. The would have been expressed from an
appropriate promoter in combination or individually. If
the promoter was specifically activated when the path-
ogenic fungus attacks, the plant would produce large
amounts of hyrolase only when it is challenged by the
pathogen. In this way the hydrolases can be used
more effectively by the plant against fungal attack.

In conclusion, since the resistance phenotype was
obtained and was shown to be heritable, it is a worth-
while approach to analyse these transgenic plants to
find out the reason for the resistance. The answer
might be interesting such as the formation of new re-
sistance gene that may be used in the future.

of the resistant control, cultivar Diana. Only transgenic
line CG1-29 was checked with isolate TV because this
line gave a completely resistant reaction with isolate
CL9W. From these data, line CG1-29 showed sporula-
tion with TV, but sporulation intensity was lower than
with the untrasformed controls Diana and Cobham
Green. This suggests that this line is not fully resistant
to isolate TV, the strong resistance might be specifi-
ically to isolate CL9W. However, resistance to TV is
also increased in this line which suggests that the
transgenic line may have been made more generally
resistant.

Combination of these hydrolases in the same plant
could have improved the recorded impact on pa-
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