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ABSTRACT

The generation of an alongshore mean flow by the nonlinear interaction of forced barotropic shelf waves
over a continental margin is studied using a wind-forced, f-plane mode! with bottom friction in an attempt
to develop a model for poleward eastern boundary undercurrents. It is assumed that the Rossby number is
small and that the flow obeys a long-wave approximation. A periodic alongshore wind stress traveling along
the coast forces the fluid by a nonzero wind stress at the coast (coastal forcing) or by a wind-stress-curl-
driven oceanic flow that impinges on the slope (interior forcing). Expressions are derived for the alongshore
(v) and cross-shelf () mean velocities in terms of the lowest order periodic velocities. An expression for the
correlation coefficient of uv,, where x is the cross-shelf coordinate, is derived that depends only on the sign
of the bottom slope, the magnitude of friction, the local water depth and the forcing frequency. The mo-
mentum flux and Reynolds stress in the surface and bottom Ekman layers make a significant contribution
to the mean flow. The Eulerian and Lagrangian mean flows have similar qualitative characteristics. The flow
pattern is dependent on the type of forcing, coastal or interior, but in both cases the response is greatest at
the free wave resonant frequencies. Along eastern boundaries, the mass transport for coastal forcing is
equatorward, i.e., opposite to the direction of propagation of long, free shelf waves, at the mode 1 resonant
frequency and poleward at the mode 2 resonant frequency, with magnitudes, for a wind stress of 1 dyn cm™?,
of ~0.17 X 102 and 0.11 X 10'2 cm® 57, respectively. The mean alongshore velocities associated with these
resonances are typically of order 1 cm s™'. For interior forcing, the flow is poleward everywhere with a
maximum near the shelf break. For a periodic oceanic velocity at the slope-interior junction with an amplitude
of 1 cm s™' the maximum alongshore mean flow and mass transport, at the first mode resonant frequency,
are about 1 cm s™' and 0.1 X 10'2 cm® 5™, respectively. The results for coastal forcing are inconsistent with
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observations of eastern boundary undercurrents, whereas the results for interior forcing are qualitatively

consistent with the observations.

1. Introduction

Poleward undercurrents are a common feature at
eastern acean boundaries (Wooster and Reid, 1963).
The undercurrents over the continental margin off
California, Oregon and Peru are characterized by a
core of poleward flowing water evidently of equatorial
origin (Halpern et al., 1978; Hickey, 1979, 1982;
Brockmann ez al., 1980). The core is 20-50 km wide,
200~500 m in vertical extent, and situated near the
shelf break. At present, no theory has adequately ex-
plained why poleward undercurrents are such a ubig-
uitous feature at eastern ocean boundaries.

Laboratory experiments by Caldwell and Eide
(1976), Colin de Verdiére (1979) and McEwan et al.
(1980) have demonstrated that mean flows can be
generated by oscillatory forcing in homogeneous, ro-
tating fluids with a potential vorticity gradient due
to variations in fluid depth. Outside of the forcing
region, the mean flow generated is in the direction
of long, free shelf wave propagation, i.e., retrograde.
Colin de Verditre (1979) and McEwan et al. (1980)
demonstrated experimentally that when the forcing
travels in a retrograde sense the wave pattern is well
ordered and the mean flow relatively strong, whereas,
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when the forcing travels prograde, the wave pattern
is unsteady and the mean flow is weak.

In this paper we investigate the possibility that
mean poleward undercurrents at eastern boundaries
are forced by an oscillatory wind stress. Recent theo-
retical studies of mean flow generation are presented
in Loder (1980) and Huthnance (1981, 1973), where
references to previous studies are given. Huthnance
(1973) and Loder (1980) obtained analytical expres-
sions for the tidal-forced mean alongshore velocity
in a homogeneous fluid over a sandbank by assuming
that alongshore gradients are zero. Huthnance (1981)
derives an expression for the mean flow generated
over a shelf given the fluctnating velocities, param-
eterized bottom stress and vanishingly small friction.
These results are not directly applicable to mean flows
over continental margins forced by long-period (5-
12 days) traveling wind stress since effects of a trav-
eling forcing function, free wave resonances and a
coastal boundary condition are not considered.

We solve for the mean flow in 2 homogeneous fluid
over a continental slope with bottom friction by as-
suming the nonlinear terms are small and expanding
the variables in powers of the Rossby number. A trav-
eling wind stress is chosen such that the time mean
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FG. 1. Schematic of model geometry.

over a period is zero. Thus, the first-order variables
have a zero time mean while the second-order vari-
ables provide the lowest order contribution to the
mean flow. Frictional effects are retained at lowest
order. The alongshore length scale is assumed to be
greater than the cross-shelf length scale, i.e., a long-
wave approximation (Allen, 1976) is made. This as-
sumption simplifies the algebra and allows an ana-
lytical solution to the second-order mean flow in
terms of the first-order variables. Several important
results of the model, however, are found to be in-
dependent of the long-wave approximation. )

2. Formulation

We consider an f-plane model utilizing a straight
continental margin, with uniform alongshore topog-
raphy, adjoining a flat bottomed ocean. The fluid is
homogeneous and bottom friction is present. The
fluid is assumed to be inviscid away from the surface
and bottom boundary layers. Cartesian coordinates'
(x', ¥, z') with corresponding velocity components
(v, v', w') are used, where z’ is vertical, positive up-
wards, x' is cross-shelf, positive onshore, and ' is
alongshore.

The variables (¢', v', w', p') and (X', y/, Z/, t') are
scaled by (U, U, UH,L™', UfLp) and (L, L, H,,
(6)™"), respectively, where U = d7o(8pfHo) ™' is a
characteristic velocity, H, the depth of the interior
ocean, L a characteristic alongshore length scale, f
the Coriolis parameter, p the constant fluid density,
oc = vr/(fHH)]Y? the dimensionless Ekman layer
depth, é the ratio of cross-shelf to alongshore length
scales, 7o the characteristic wind stress, and »r the
constant vertical turbulent eddy viscosity. The char-

' Dimensional variables for which a nondimensional counter-
part will be defined are marked with primes.
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acteristic velocity U is chosen by assuming that the
surface and bottom Ekman cross-shelf transports bal-
ance at the coast (see Section 5a). The Rossby num-
ber, € = U(fL)™!, is assumed small such that a per-
turbation expansion may be made in the limit ¢ —
0. We assume the fluid is hydrostatic and bounded
above by a rigid lid. In nondimensional variables, the
governing equations are

du, + «uuy + vu, + wi,) — v = —p, + 85U, (2.1a)
30, + &uv, + vv, + wo,) + u = —p, + 8570, (2.1b)
(2.1¢c)
(2.1d)

where the subscripts (x, y, z, ) denote partial differ-
entiation.

An alongshore wind stress of the following form
is assumed:

0= —D:z

ut+v,+w,=0,

7 = sin(kx + ¢) cos(ly — wl), (2.2)

where k, I, ¢ and w are respectively the cross-shelf
and alongshore wavenumbers, an arbitrary phase,
and the forcing frequency.

The model geometry (Fig. 1) has a rigid lid at z
= 0, a variable depth bottom at z = —H(x), a coast
at x = X (xo < 0), and a flat bottom extending from
x = —8 t0 x — —oo. The boundary conditions follow
from the assumptions of an imposed alongshore wind
stress at z = 0, a no-slip condition at z = —H(x), no
net mass transport into the coast at x = Xy, and a
bounded solution as x — —oo. The resulting bound-
ary conditions are

u,=w=90, o6gv,=71, at z=0, (2.3a)
u=v=w=0, at z=-—H(x), (2.3b)
0
f udz=0, at x=x, (2.3¢)
~H
Uv,w< oo, as xX— —oo. (2.3d)

The domain is divided into four regions, inviscid
shelf, surface Ekman layer, bottom Ekman layer and
inviscid interior ocean. The variables in the last three
of those four regions are denoted by the superscripts
T, B and I, respectively. The interior ocean variables
are matched to the shelf variables by requiring that
pressure and onshore velocity be continuous at
X = —4.

The momentum equations for the inviscid fluid on
the shelf and in the interior ocean are

Su, + duu, + vu)) — v = —p,, (2.4a)
ov, + duv, + vvy)) + u = —p,, (2.4b)
u,+v,+w,=0. (2.4¢)

~ The corresponding vorticity equation is
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(v — uy) + duvy + vvy),

— W, + vu), — w, = 0. (2.5)

a. Inviscid shelf

In the shelf region, the long-wave approximation,
6 < 1, is made. As a result, the shelf variables are
expanded in the form

U=uy+eu + -, (2.6a)
v= 5_1(00 +evy + - - ‘), (2.6b)
w=238 (wy+ ew; + -+ ), (2.6¢)

P=Dotep+ .-, (2.6d)
X = 6§, (2.6¢e)

where

€ = €/8% = (U/d)/(foL) . (2.6f)

is the Rossby number formed by the alongshore ve-
locity scale U/é and the cross-shelf length scale 5L.
We order the small parameters 6, 6z and ¢ such that
8g/6, 8/¢ and dg/e are O(1) quantities. Substituting
(2.6) into (2.4) we obtain at O(1),

Vo = Dog, Vor + Up = — Doy, (2.7a,b)
. Upg + ‘Doy + _Wo: = 0, (27C)
and at O(e),
Uy = Digs (2.8a)
Uy + Uy = —p1y, — (Uolo; + Voloy),  (2.8b)
Uy + vly + Wi, = 0. (2.80)

The time mean flow is obtained by applying a time
average, '

t10+T
«w=ur [
fo

where T = 27/w and ¢, is arbitrary, to the O(e) equa-
tions. The form of the forcing (2.2) implies additional
simplifications, i.e., for all O(1) variables {( )) =0,
and for all O(¢) variables {( ),) = 0.

The depth-integrated vorticity equations are formed
by utilizing (2.6) with (2.5) and depth-integrating to
obtain at O(1),

Hvoy — [wo(z = 0) — wolz = —H)] = 0, (2.9)
and at O(e),

[(wi(z = 0)) — (wi(z = —H))] = H{ugvo; ), (2.10)
where H = H(£). The vertical velocities w, and (w,)
at z = 0, —H are obtained from the Ekman layer
solutions (see Appendix A).

The boundary condition (2.3c) at the coast, £
= &o, is, for O(1),
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0 @
H(&)uo + (65/6)(f_ do"dn + fo ﬁoﬂdr) =0, (2.11)

and for O(e),
H&o) ur)

0 ©
+ (65/6)( f (T ydn + f <al">d§) =0, (2.12)
—o0 0

where n = z/6g and ¢ = (z + H)/8 are the stretched
vertical coordinates and u” = 47/6 and u® = 18/5 are
rescaled velocities for the surface and bottom Ekman
layers, respectively (see Appendix A).

b. Inviscid interior ocean

Boundary conditions for the shelf variables at the
slope boundary, £ = —1, are obtained by matching
with the appropriate solution for the interior ocean.
The interior ocean variables are expanded as

u' ="'+ eul + - - ), (2.132)
vl = 51wl + vl + -+ 1), (2.13b)
wi=ogs ' Wh+ewl + 1), (2130)
pl=6'ph+epl + -- ), (2.13d)

Substituting (2.13) into (2.4) and collecting terms of
O(1), we obtain

I _ I _ _pl
Vo = Pox, Uo = —Poys

Uoxe + v§, = 0.

(2.14a,b)
(2.14¢)

The O(1) depth-integrated vorticity equaiion is
formed by utilizing (2.13) with (2.5) and depth in-
tegrating to obtain

(06x - u(I)y)l
— (3e/0)wi(z = 0) — wi(z = —1)] = 0.

We may write (2.15) in terms of pressure by utilizing
(2.14), (A20) and (2.2) to obtain

Vilpb + YViDh

(2.15)

= Bky cos(kx + ¢) cos(ly — wi), (2.16a)
where V2 = */9x? + 8*/dy? and _
v = 8g/(V28). (2.16b)

The conditions for matching the variables from the
interior ocean and shelf are

p'=p, (2.17a)
€u'ul + viul), + E/o)u"vl + v'vl) + dul, + pl,

at x = —9,

= Py + Suy + (€/8)(uvy + vvy) + €uu, + vuy),,

at x = -9, (2.17b)
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Expanding p’ in a Taylor series about x = 0, and uti-
lizing (2.6) and (2.13), we obtain at O(1),

po(x=10)=0, (2.18a)
Pox(x=0) = po; (6 = ~1).  (2.18b)
The solution to (2.16) with (2.18a) and (2.3d) is,
pb = —[cos(kx + ¢) — €™ cosp]G(y, 1), (2.19a)
where

G, 1) = V2kyl(k? + PY(? + YT |

X [y cos(ly — wt) — w sin(ly — wt)]. (2.19b)

. The boundary condition on p, at &= —1, from

(2.18b), is
pog (§ = —1) = (ksing + [l cosp)G(y, 1).  (2.20)

3. Analysis

The inviscid shelf motion is determined in three
steps. First, the O(1) motion is solved numerically,
which allows H(£) to be an arbitrary function. Second,
the O(¢) Eulerian time-mean solution is found ana-
lytically in terms of the O(1) solution. Finally, the
Lagrangian mean flow is found by adding the Stokes
drift to the O(e) Eulerian mean flow.

a. O(1) solution

We solve the O(1) equations governing the shelf
motions by writing (2.9) in terms of pressure. Sub-
stituting (A11) and (A17) into (2.9), and using (2.7),
yields

Hpogy + vpo + H Poy + pog) = 0.  (3.1)

The boundary condition at the coast is expressed in
" terms of pressure by substituting (A10) and (A16)
into (2.11):

Pog = V2 sing cos(ly — wt) — H(Eo)y™"(Poy + Pog),
at £=4. (3.2)

We employ a depth profile for which H(%p)
< V2v (see Table 1). Correspondingly, the second
term on the right-hand side (RHS) of (3.2) is usually
small compared to po,. When H(%) < V2« the surface
Ekman transport is primarily compensated at the
coast by a bottom Ekman layer transport. The ve-
locity scaling used in this paper is appropriate for this
depth profile.

A forced solution of the form

po = Re{y(®) explitly — wn)],  (3.3)

is sought where Y(£) is a complex function (see Ap-
pendix B).

b. O(e) solution

The mean O(e) onshore velocity is found by time
averaging (2.8b), which gives
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() = —~(ugor)- (3.4)

The O(¢) mean vorticity equation [(2.10)] may be
rewritten, utilizing (A13), (A19) and (3.4), as

~V2v {00y — ¥{v1) + (7/20)7{Vovoc);
= (H<uovos>)e- (3.5)

The boundary condition at ¢ = £, is found by sub-
stituting (A12), (A18) and (3.4) into (2.12):

—H{uoVor) — V27{7v0c) — v{(v\)
+ (7/200 (oo = 0, at £=£. (3.6)

Integrating (3.5) once with respect to ¢ and apply-
ing (3.6), we obtain

(Vi) = —Hy™'(uovog)
+ (120X vovosy — 2{7v). (3.7)

The O(¢) Eulerian mean shelf velocities in (3.4) and
(3.7) are the lowest order contributions to the mean
flow. By comparing (3.5) and (3.6), we note that the
mean cross-shelf transport in the interior is balanced
by a net cross-shelf transport in the Ekman layers.

Eqgs. (3.4) and (3.7) may be expressed in more con-
venient forms. Multiplying (3.1) by vy, and time av-
eraging, we obtain

(uovory = vH; '(v§y). (3.8)
Squaring (3.1) and time averaging, we have
(uoy = [(H/HY* + v[HZK 03,  (3.9)

where the form of the forcing (2.2) has allowed the

substitution,
8y = w*(Vh). (3.10)
Finally, using (3.8), (3.9) and (3.4), we obtain
() = —yH{( + H'o) uwe®),  (3.11)

and using (3.4), (3.7), and (3.11), we find
<Ul> = '—HHE(’YZ + H202)~1<u()2>
+ (7/20Kvovosy — V2(7ve).  (3.12)

In terms of dimensional variables, (3.11) and (3.12)
are

(u'y =~ s/ H')s
X {f\2IW/f? + (@s/ YT} (12, (3.13)
and
) =~ ~He{fH (/) + V@ H1}(u?)
+ (7/20)f " Ko'wi) — VBEEef) N (7'v%), (3.14)

respectively. The mean cross-shelf velocity (3.11) and
the first term on the RHS of (3.12) may be determined
from dg, H, H;, w, 3, and the variance of u,. It may
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be shown that (3.11) is independent of the long-wave
approximation. Similarly the first term on the RHS
of (3.12) is independent of the long-wave approxi-
mation, but the second and third terms on the RHS
are not. -

Combining (3.8) and (3.9) to form a correlation
coefficient, we have

R(up, vog) = <uovos>(<u02><”(2)e>)-]/2
= sgn(H[1 + (Hw/vY1™'?,  (3.15)
where sgn(H,) = H,/|H,. Writing 1 and vy as
Uy = |uol cos(ly — wt + 0), (3.16a)
Dog = loogl cosly — ot + ¢),  (3.16b)

where || and |vy| are the magnitudes and where 6
and x the phases of u, and vy, respectively, and sub-
stituting (3.16) into (3.15) then yields

[0 — x| = cos™'[1 + (Hw/¥)1™'2.  (3.17)

The above expression implies that the phase differ-
ence between 1, and v, has a simple relationship that
is independent of whether the driving is by wind stress
at the coast or indirectly by interior ocean wind-stress
curl, and is independent of the length scales of the
forcing and the magnitude of H,.

For a monotonically increasing depth in the off-
shore direction, i.e., H; < 0, {(u;) will always be
positive, i.e., onshore. Similarly, the first term on the
RHS of (3.12) will be positive, i.e., make a contri-
bution to the alongshore velocity in the direction of
long, free wave propagation. The second and third
terms, however, can be either positive or negative
depending on the profile of v,. For the cases inves-
tigated in this paper, the boundary condition at the
coast [(3.2)] and the interior ocean-continental mar-
gin matching condition [(2.20)] will tend to produce
a profile of v, that is large at the coast and zero at
£ = —1, ie., vovg; > 0. Thus, the second term will
normally make a positive contribution and the third
term a negative contribution. The sign of the along-
shore velocity (3.12) will therefore depend on the rel-
ative magnitudes of the three terms.

c. Lagrangian mean flow

The alongshore Lagrangian mean flow (particle
drift velocity) is the alongshore Eulerian mean flow
plus the alongshore component of the Stokes drift
(Longuet-Higgins, 1969), i.e.,

Uy = <U> + vg, (318)

where the Stokes drift with scaling (2.6) is given ap-
proximately by

vg = e< f t Uodtvo; + f' vodtvo,> + O(ez); (3.19)

and where [’ dt indicates an indefinite time integral.
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* FIG. 2. Oregon continental margin topography from Peffley and
O’Brien (1976). Contour interval is in meters. Nonshaded region
denotes extent of alongshore averaging for the depth profile H(£).

Thus, the Stokes drift velocity is the same order as
the alongshore Eulerian mean flow (3.12).

Following a procedure similar to that used to derive
(3.12) we find

Vs = HH{v* + H* " ue®y + ([/w){vo?). (3.20)
Substitutjng (3.20) and (3.12) into (3.18) we have
iz = (7/20X(vovoe) — V2{Tvoe) + ljw(ve®), (3.21)
which in dimensional variables is
vy =~ (7/20)f (') — 2(8enf?) (70}
+ (o) v?). (3.22)

d. Topography

The bottom topography used in the model, H(§), -
is an alongshore averaged depth profile from the Or-
egon continental margin. Digitized topography (Pef-
fley and O’Brien, 1976) was smoothed, then averaged
over an alongshore distance of 100 km to produce
a smooth profile (Fig. 2). An exponential tail was
fitted to the profile to extend the depth from 1000 m,
the maximum depth of the digitized data, to 2000 m,
the interior ocean depth. The above procedure pro-
duced a depth profile that is smooth, continuous and
monotonically increasing with distance offshore
(Fig. 3).

e. Forcing

The wind stress [(2.2)] can force the inviscid shelf
motion by two separate mechanisms, coastal forcing,
where the shelf currents are driven by the boundary
conditions at £ =& [(3.2)] (¢ = n/2, k=0), and
wind-stress curl forcing, where the shelf currents are
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FIG. 3. Depth profile H(¢) as a function of distance offshore.

driven by the boundary condition at £ = —1 [(2.20)]
(¢ =0, k =2x).

We have found that the wind-stress curl forced re-
sponse, for reasonable values of 7o, is small relative
to the coastal forced response. For a given 74, wind-
stress curl forcing generates an O(1) alongshore ve-
locity at £ = —1 whose magnitude varies inversely
with frequency (2.20). To help clarify the nature of
the response on the continental margin to interior
forcing, rather than holding 7, constant we vary 7
with frequency such that the magnitude of the
oceanic velocity at £ = —1 is fixed at v/ (x=—1)
=V (where V'=1cm ™).

We have found that when w// < 0, i.e., for either
the coastal or interior forcing traveling in the direc-
tion opposite to that of long, free waves, the response
away from a narrow horizontal boundary layer at
¢ = & is ~1072 times the response for w// > 0. Con-
sequently, w and / are limited to values such that
w/l > 0.

4. Analytical example

The O(1) depth-integrated vorticity equation (3.1)
may be solved analytically for the two-dimensional
case where (), = O for all variables. We may then
obtain analytical expressions for the O(1) velocities
and the O(¢) mean alongshore velocity for arbi-
trary H(§).

The O(1) vorticity equation (3.1) with the above
assumption, may be written as

(Hvo, + yvo); = 0. “.1)

Similarly, the boundary condition at the coast, £
= &, becomes

Hvg, + 0o = 2 cos(wt), at &= &,

where a wind stress,

4.2)

7 = cos(wi), 4.3)

consistent with the above assumption is used.
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The forced solution to (4.1) with the boundary con-

dition (4.2) is .

vo = V2Y[(wH)* + T

X [wH sin(wf) + v cos(wt)]. (4.4)

The boundary condition at § = —1 [(2.20)] with the
wind-stress (4.3) (/ = 0, k — 0) is also satisfied by
(4.4). The O(1) cross-shelf velocity, from (2.7b) and
(4.4), is

o = —V2ywl(wH) + v
X [wH cos(wt) — v sin(wi)]. (4.5)

The above expressions for 1, and v, satisfy (3.15).

The expression for the O(¢) Eulerian alongshore
mean velocity [(3.7)] may be simplified by utilizing
(2.7b), (4.1) and (4.2), to yield

(vl> = —(13/20)(001)05). (4.6)
Substituting (4.4) into (4.6) yields

(v,) =( 13/20)12w2HH5[(wH Y+ 412, (4.7a)
which in dimensional variables is
2s 3 21y

13 (/Y H (4.7b)

<U'> ~ % Hr3f3p2[(wl/f)2 + ]/2(5IE/HI)2]2 .

Similarly, we find the Lagrangian mean flow by uti-
lizing (4.3), (4.4), and (4.7) with (3.21), to obtain

Vi = (33/13)<Ul> (48)

For vanishingly small friction, i.e., in the limit
8r — 0, Eq. (4.7b) becomes

}ir_g(v’) ~ (13/40y2H'{H"*fp*?)™.  (4.9)

E

Thus, in the limit, 8% — 0, the Eulerian and Lagran-
gian alongshore mean velocities are nonzero (see Sec-
tion 5a).

The O(1) alongshore velocity, for a forcing period
of 5-12 days and a wind stress 7o = 1.0 dyn cm™2,
has a maximum amplitude of ~25 cm s™' at £ = &
and decays to €1 cm s™! at § = —1. The cross-shelf
velocity has an amplitude that is éw = 0.06 times the
alongshore velocity.

The mean Eulerian and Lagrangian alongshore
velocities, for the depth profile used here (H; < 0),
are negative everywhere, i.e., opposite to the direction
of propagation of long, free shelf waves. The mean
Eulerian velocity has a maximum of —0.8 cm s™" at
£t = & and decays quickly offshore. The magnitude
at the shelf break, i.e., the 200 m isobath, is less than
—0.05 cm 57!, Thus, the flow is restricted to a negative
jet at the coast with negligible velocities offshore.

A relationship between the nonlinear interactions
that occur in the surface and bottom Ekman layers
and the interior may be inferred from the fact that
the depth-integrated cross-shelf velocity [y udz is
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zero for all £, Consequently, we can write the: O(e) which equivalently is -

depth-integrated cross-shelf velocities, utilizing (3.4),
(A8b) and (A15Db), as

0 .
f_ . udz = 0 = -(65/6)[@‘?;({ = 0))
+ j:o (ubvgy — (v& j: u&d{’))dé’]
- <voE[Huo + (6#6)(]: ufds + J:om u{dn)]> .
(4.10)

The condition [°; udz = 0 also implies that the last
term in (4.10) is identically equal to zero, so that

(i€ = 0))

@© 4
== f ((u@v&) = (vé; f uo”;ds“’>)d§. (4.11)
0 0 )

When the bottom Ekman layer results (A8), (A10)
and (A12) are utilized (4.11) reduces to (4.6). Thus,
the contribution to the alongshore mean flow {v,)
from the interior is canceled by the contributions
from the surface and bottom Ekman layers and (v,)
is forced by the remaining terms from the bottom
Ekman layer. This result demonstrates that the mean
flows generated by interactions within the surface and
bottom boundary layers can make a contribution as
important to the mean alongshore flow as those in
the interior.

The mean Eulerian velocity for this example is
negative everywhere, whereas the observed mean
alongshore velocities at eastern boundaries are posi-
tive (Wooster and Reid, 1963). The two-dimensional
case, however, has the primary deficiency that the
dominant response to forcing at the free shelf wave
resonances cannot be investigated.

5. Discussion
a. Frictional effects

The existence of friction is necessary to obtain non-
zero values of (ugto;) the forcing term in the time
averaged O(¢) momentum equations. Once the so-
lution is obtained, the limiting case &z — 0 may be
examined.

In the limit, 6 — 0, (3. 13) becomes

lim{u"y ~ 0.

L] E—'O

5.1

Since (uovo;) goes to zero as & — 0 [(3.8)], the above

result 1s expected. However, a nonzero limit is ob--

tained in (3.14):
}Ei?o<vl> ~~ -H;rf(H'w'Z)_l<u'2>

+ (7_/20)f"<v’v;,> —T(x,y, 0, (5.2a)

-

E

"
- (7/20)<v’f u’dt'>] —T(x, 5,0, (52b)
where (3.1), with 6 — 0, has been utilized and

T(x, y, 1) = im2(8epf?)™'(T'v).
. 5E—>() .

1

(5.3)

The term 7 in (5.3) is finite since the component of
v’ that is in phase with 7' is proportional to 6% (Brink
and Allen, 1978). Similarly, the Lagrangian mean
flow [(3.22)] may be written as

~(7/20)f~'(v'v’)

: '
llm )3
8 E—'O

+ l'fo/(v?) — T(x, y, ). (5.4)
The nonzero value of lim({v") may be explained
8,—0

E

with reference to the boundary condition at ¢ = &
[(2.10)]. The O(e) interior onshore transport H(u,)
~ Hég{(uy®), which scales with 3z, and the surface
Ekman layer transport ~ 6E<ul> are balanced by
a transport in the bottom Ekman layer at £ = &,
which also scales with o, i.e., H(E)u;) + os{ui )

~ bg{(ut). Thus, the velocity in the bottom Ekman
layer, {u 1} has a component independent of 6, and
since (v;) ~§ D+ [(A12)], {v,) also has a
component in ependent of dk. )

A bottom boundary layer must satisfy two condl-
tions for the limits (5.2) and (5.4) to hold. First, the
stress in the layer must be proportional to vy, le., 7
=r(v + --+), where r is a “resistance coeflicient.”
Second, the transport in the layer must also be pro-
portional to v, i.e.,

20
f ubdz=rkKw+ -.-),
0

where z, is the top of the layer and K a constant
independent of r. These conditions are satisfied when
the bottom boundary layer is an Ekman layer. Bulk
or slab layers based on Ekman dynamics should also
give similar results.

The characteristic velocity used in Section 2 is in-

appropriate in the limit, 6z — 0, since im U — co.
dg—0

A general characteristic velocity valid in this limit is
determined by balancing the three terms in (3.2):

U = 7o[(85/8 + H(£0))Hopf1™". (5.5)

The appropriate characteristic velocity for é; — 0,
from (5.5), is

U = roH'(xd)pf17", (5.6)

which is the characteristic velocity normally asso-
ciated with forced inviscid shelf models.
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TABLE 1. Summary of parameter values.

f =10 l =2r

HD =2 km k =0

L =10°km 6  =u2

p =1lgcem™ ) = 0.094

70 = 1dyncm™ & = —0.05
. =4m H() = 0.0169
o = 0.002 H'(&) = 33.8 m

b. Coastal forced results

The results for the coastal forced case were cal-
culated numerically following the procedure outlined
in Appendix B with the parameter values given in
Table 1. The dimensional magnitude of the along-
shore wind stress, 7 = 79 cos(/y — wt), is chosen
so the maximum value 7o = 7, = 1 dyn cm™2. The
results presented here may be extended to other val-
ues of 7/, i.e., 7*, by multiplying the O(1) alongshore
velocity vg by 7*/ 7}, and the Eulerian and Lagrangian
mean velocities (v") and v, by (7*/7},)%.

e O(1) ALONGSHORE VELOCITY

The amplitude and phase of the O(1) alongshore
velocity, vy = |vg] cos(ly — wt + x) are plotted as
functions of { and the parameter a = '/f = dw
in Fig. 4. .

The O(1) alongshore velocity amplitude response
has two local maxima which correspond to the mode
1 resonant response at « = 0.24 and the mode 2 res-
onant response at « = 0.06. A maximum amplitude
of ~35 cm s™! occurs at £ = & for « = 0.24, i.e., the
mode 1 resonant frequency. There are two maxima
associated with the mode 2 resonant response. A
maximum of ~5 cm s™! at £ = —0.7 and ~25 cm
s™! at the coast, £ = &,.

The O(1) alongshore velocity phase, referenced to
the wind stress, has its largest change with frequency
at a resonance. At the mode 1 resonance the phase
is nearly constant cross-shelf, equal to —6° at
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£ = £y and 0° at £ = —1 so that nearshore fluctuations
lead those offshore. This compares with a 22° phase
difference in the same sense for a free wave (Appendix’
C). At the mode 2 resonant frequency, the phase is
0° at &£ = &, —180° at £ = —1, with 97% of the cross-
shelf phase difference occurring between £ = & and
—0.5, where offshore fluctuations lead those near-
shore.

e EULERIAN MEAN FLOW

The Eulerian and Lagrangian mean alongshore
velocities, (v") and v, are plotted as functions of ¢
and « in Fig. 5. Eulerian and Lagrangian mean ve-
locity profiles are plotted as a function of ¢ for dif-
ferent values of « in Fig. 6.

The Eulerian mean velocity response, in general,
has two frequency regimes, a resonant and an off-
resonant response (Fig. 5). The mode 1 resonant re-
sponse (a = 0.24) has a positive jet of ~1 cm s™! at
¢ = & and a negative maximum of ~ —0.5 cm s™!
at £ =—0.8 (Fig. 6). At the mode 2 resonant fre-
quency, a maximum of ~ —0.5 cm s™! is located at
£ = —0.85 and a coastal jet is absent. The off-resonant
response consists of a jet of ~ —1cms™ near
£ = &. ’ .

The Eulerian and Lagrangian integrated mass
transports,

M= [ Bay and M= [ Howdr, 5)
. =L —8L

are plotted as functions of « in Fig. 7. The magnitude
of the alongshore mean transport in the surface and
bottom Ekman layers is the order of v/H(£) times the
shelf contribution (v,). This is a small correction,
except near £ = £, and has been ignored.

The large peaks in mass transport occur at the free
wave resonances. The offshore velocity maxima in
deep water are the principle cause for the mass trans-
port peaks. Although the highest velocities occur
away from a resonance, these maxima are near the

|+ mode 2

Amplitude Phase
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FIG. 4. Amplitude (left) and phase (right) of coastal forced O(1) alongshore velocity as
functions of £, distance offshore, and o = «'/f, a nondimensional forcing frequency. The
amplitude contours are isotachs (5 cm s™' contour interval) and phase contours are lines of

constant phase (45° contour interval).
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FIG. 5. Coastal forced alongshore mean velocity as a function of ¢ and a = w'/f. The contours
are isotachs (cm s™'); the double weight contour is the zero velocity level. The free wave
resonant frequencies for the first two modes are marked. Eulerian (v’ (contour interval = 0.5
cm s7') and Lagrangian v} (contour interval = 1 cm s™*) alongshore mean velocities are dis-
played to the left and right, respectively. The dotted and solid contours correspond to negative

and positive values, respectively.

coast in shallow water and the resultant mass trans-
port is small relative to the mass transport at reso-
nance. A sign change in mass transport occurs near
a = 0.16; the transport is negative for mode 1 and
positive for mode 2. The maximum negative trans-
port of ~ —0.2 X 10'2 cm? s~!, associated with mode
1, is approximately twice the maximum positive
transport of ~0.1 X 10'? cm? s7!, associated with
mode 2.

o ] AGRANGIAN MEAN FLOW

The Lagrangian response has two frequency re-
gimes that are similar to those in the Eulerian re-
sponse (Fig. 5). The Lagrangian resonant response is
also characterized by a positive coastal jet of 2 cm s™!
at the mode 1 and mode 2 resonant frequencies. In
general, the Lagrangian response has larger regions
of positive flow over the shelf.

The Lagrangian and Eulerian mean alongshore
flows (Fig. 6) are nearly identical from the interior
ocean-continental margin junction to the 400 m iso-
bath (¢ = —0.6), i.e., the Stokes drift vg is small in
deep water. The Stokes drift is larger than the Euler-
ian mean flow inshore of the 400 m isobath.

The Lagrangian alongshore mass transport shown
in Fig. 7 is not qualitatively different from the Eu-
lerian mass transport. The principle differences occur
at lower frequencies, i.e., a < 0.05. The peaks in the
mass transport are caused by the resonant responses
with the main contribution coming from the along-
shore velocities offshore of the 200 m isobath.

The frequencies at which resonance occurs are de-
pendent on several parameters. These parameters ei-
ther have a large natural variation, e.g., the shelf
width, or are not well known, e.g., the atmospheric
length scales of 7. We can expect that given a forcing
function with a reasonably smooth wavenumber—fre-

Eulerian Lagrangian
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-
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F1G. 6. The dimensional Eulerian (left) and Lagrangian (right) coastal forced alongshore
velocity v’ as a function of £, distance offshore. The dot-dashed, solid and dashed lines cor-

respond to mode 1 (a = o'/f =0.24)and 2 (a =

0.06) resonant frequencies, and a non-resonant

(a = 0.16) frequency, respectively. The nonresonant frequency is chosen such that the Eulerian

mass transport is a minimum.
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F1G. 7. Eulerian (left) and Lagrangian (right) coastal forced mass transport as
a function of & = «//f. Transport is in 10'2 cm3s~',

quency spectrum the resonant response will domi-
nate.

¢. Interior forced results

The results for the interior forced case were cal-
culated numerically by varying 7, with frequency
(Section 3e) and applying the procedure described in
Appendix B. A dimensional magnitude for the im-
posed alongshore oceanic velocity V' of 1 cm s7! is
used. The results presented may be extended to other
values of V', i.e., V*, by multiplying the O(1) along-
shore velocity vy by V*/V' and the Eulerian and La-
grangian mean velocities by (V*/V").

e O(1) ALONGSHORE VELOCITY

The O(1) alongshore velocity amplitude response
is similar to the coastal forced response (Fig. 4). The
response is negligible away from the resonant fre-
quencies. A maximum of 30 cm s~ at £ = —0.1 is
associated with the mode 1 resonance, a = 0.24,
and a maximum of 3 cm s™! occurs at the mode 2
resonant frequency, a = 0.06. The mode 2 resonant

Eulerian

response for interior forcing has a single maximum
at £ = —0.1.

The O(1) alongshore velocity phase, referenced to
the imposed oceanic velocity V, rapidly decreases
from 0° at ¢ = —1 to —120° at £ = —0.8 and remains
nearly constant until £ = —0.2 where the phase de-
creases to —135° at £ = &, for the mode 1 resonant
response. The phase associated with the mode 2 res-
onant response decreases monotonically, with a nearly
constant slope, from 0° at £ =—1 to +45° at
£ = &, going through a value of —180° at £ = —0.4.

e EULERIAN MEAN FLOW

The interior forced Eulerian and Lagrangian mean
alongshore velocities, (v’y and v7, are plotted in
Fig. 8 as functions of distance offshore ¢ and fre-
quency a.

The Eulerian velocity is positive, i.e., in the direc-
tion of propagation of long, free shelf waves, every-
where, in contrast to the coastal forced mean flow.
The velocity response has two frequency regimes, a
resonant and an off-resonant response. The resonant
response has a magnitude that is several times larger

Lagrangian
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FIG. 8. Interior forced alongshore mean velocity as a function of £ and a = «//f. Notation
is the same as for Fig. 5 (contour interval is 0.1 cm s™' for Eulerian and 0.2 cm s™' for

Lagrangian).
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RG. 9. Eulerian (left) and Lagrangian (right) interior forced mass transport as

a function of a = w'/f. Transport is in 102 cm® s~

than the off-resonant response and a maximum that
usually occurs near the shelf break (¢ = —0.3), i.e.,
the 200 m isobath. A narrow positive jet, situated
between £ = & and —0.1, occurs at the mode 1 res-
onant frequency.

The mode 1 resonant response has two maxima
of 0.4 cm s™' occurring at § = —0.3 and ~0.7, i.e.,
the 200 and 600 m isobaths, respectively. A break in
slope (Fig. 3) is associated with each maximum. The
response at the mode 2 resonance is negligible relative
to the mode 1 response.

The Eulerian alongshore mass transport shown in
Fig. 9 has maxima occurring at the free wave reso-
nances. The transport at the mode 1 resonance is
~0.1 X 102 cm3 s7.

o . AGRANGIAN MEAN FLOW

The Lagrangian mean velocity is primarily positive
and has its largest values at the free wave resonances.
The response associated with the mode 1 resonance
is larger than the mode 2 response. In general, the
maxima at a resonance are inshore of the shelf break.

The mode 1 resonant response is a single maxi-
mum of 1.3 cm s™! at § = —0.15. The response ex-
tends offshore of § = —0.4, where the magnitude has
dropped to 0.8 cm s~!. A relatively small response,
associated with the mode 2 resonance, of 0.1 cm s™*
occurs at £ = —0.15.

The Eulerian and Lagrangian mass transports are
nearly identical. The Lagrangian transport is typically
97% of the Eulerian transport.

d. Comparison with other theory

Mean flow generation in a homogeneous fluid over
a shelf was studied by Huthnance (1981; henceforth
referred to as H). Small-amplitude oscillations and
weak friction were assumed. A solution was found
by assuming the Rossby number small and expanding
in Rossby number. An expression for the mean along-

—1

shore velocity (v;) given an incident oscillatory cur-
rent, parameterized bottom stress (r% = rv), and in-
finitesimal friction was derived in H [his (5.2)].

We may compare (5.2) in H with (5.2b) here by
including in the former the bottom boundary layer
momentum flux term neglected in the derivation of
(5.2) [that term is in the paragraph containing (2.3)
in H], and a uniform eddy viscosity model, i.e., a
bottom Ekman layer. The alongshore bottom stress,

for an Ekman layer, is, for O(1),
ToB = rvg,

(5.83a)

where r is a “resistance” coefficient, and for O(e),

(B = r[(vl) B (3/20)H"Hf<vo f t uodt>] . (5.8b)

Substituting the above expressions for the bottom
stress (5.8a, b) into (3.8) in H we obtain

-] )

- (7/20)<vo fl uodt>] , (5.9

which replaces (5.2) in H.
If we assume that no alongshore gradients exist,
then (5.9) may be written as

(v = (27/40)<( f ' uodt):> ,  (5.10)

which is identical to the result given in the paragraph
following (5.5) in H, where similar assumptions and
bottom stress are used. For no alongshore gradients,
Eq. (5.2)in H is

o= a))

Comparing (5.10) and (5.11) above, we see, for no
alongshore gradients that the derived alongshore

(5.11)
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mean flow is 1.48 times larger if, as in H (5.2), the
bottom layer momentum flux term is neglected and
a parameterized bottom stress, 72 = rv, is assumed.

A linear model of the wind-forced viscous flow near
a continental boundary that retained finite thickness
surface and bottom Ekman layers was developed by
Spillane (1980). The model makes use of a homo-
geneous fluid, alongshore invariant topography, and
a spectral form for the wind stress.

To assess the effects of a finite coastal wall at
£ = & [(3.2)], the O(1) results obtained here were
compared with those from the Spillane model in
which the inclusion of vertical gradients in the anal-
ysis allows a coastal wall height H(&,) of zero. The
present model was run with the topography used by
Spillane. Excellent agreement between the sea surface
elevation from his model [H(,) = 0] and the O(1)
pressure here was found for values of H'(§) from 0
to 34 m. This insensitivity to the value of wall height
was also found by Spillane, i.e., for H(£,) < v2vy the
flow offshore of the boundary was unchanged.

e. Comparison with observations

Evidence for a relatively narrow core of poleward
flow off southern Washington was presented by
Hickey (1979). The mean flow was observed from
current measurements taken from July to September
1972 at 46°N. The core was found to be 20 km wide
with a maximum velocity of 16 cm s™. The core
occurred at mid-depth in 600 m of water.

The present model demonstrates that forced baro-
tropic shelf waves with bottom friction can, through
nonlinear interactions, generate a mean flow with
non-negligible amplitudes. The mean flow generated
has a response that is frequency-dependent, and a
maximum alongshore mass transport at the free wave
resonant frequencies. The predominant sign of the
mean alongshore velocity depends on the forcing type
used.

The mean flow generated by coastal forcing is usu-
ally equatorward, i.e., in a direction opposite to the
direction of propagation of long, free shelf waves,
whereas, the undercurrents at eastern boundaries are
observed to be poleward. For this forcing, offshore
poleward flows are found only in connection with the
mode 2 resonance (see Fig. 5). This flow is offshore
at the 200 m isobath with a width of 5-20 km.

For interior forcing, the mean flow generated is
poleward, although the magnitude is generally smaller
than the coastal forced mean currents. The largest
response occurs at the mode 1 resonant frequency.
The core of poleward flow is usually centered over
the shelf break and has a width of ~20 km.

6. Summary

The generation of a mean flow over a continental
margin by the self interaction of long, forced shelf
waves has been studied. In the presence of dissipation
provided by bottom friction, the interaction generates
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a mean flow. The physical reason for the existence
of the alongshore mean velocity can be seen from the
vertically integrated vorticity balance (2.10). The lo-
cal mean vorticity change generated by {uovo;);, the
net transport of potential vorticity, is equal to the
stretching caused by the difference in the mean ver-
tical velocity at the surface and bottom boundaries.
The above net vorticity transport is nonzero when
friction is present, i.e., when vy # 0.

The expressions for the mean vertical velocities at
the surface and bottom boundaries are given by (A19)
and (A13), respectively. The mean vertical velocity
at z = 0, {w, (z = 0)), is driven by the mean net
vorticity transport in the surface Ekman layer,
{uvogey. The mean vertical velocity at z = —H, (w,
(z = —H)), is driven by three mechanisms. The first
is Ekman pumping which is proportional to the shelf
vorticity (vy;). The second is (vovg;);, the net trans-
port of vorticity in the bottom Ekman layer. The third
is the interaction of the mean onshore velocity (u;)
with the bottom slope. The mean onshore velocity
{uy) is determined by the gradient of the Reynolds
stress (uoUoey [(3.4)]. Since all terms (except (vy;)) in
the vorticity balance (2.10) are determined by the net
transport of vorticity and the gradient of a Reynolds
stress, (vy;y is determined by O(1) variables.

The mean alongshore velocity {(v,) may also be
explained by mass conservation arguments. The net
cross-shelf flow in the interior and Ekman layers
driven by the gradients of Reynolds stresses must be
balanced by a transport in the bottom Ekman layer.
That transport demands the existence of a mean
alongshore velocity [Eq. (A12)]. .

Expressions are derived for (v,) [(3.12)], the along-
shore mean flow, and (u;) [(3.11)], the cross-shelf
mean flow, that depend only on O(1) variables and
model parameter values. An expression for R(uy, Vo),
the cross-correlation coefficient for uy and v, that
depends only on the topography, friction and forcing
frequency was derived in (3.15). This form for R(uy,
vg;) is independent of the boundary conditions at £
= —1 and &, and the O(1) variables.

The alongshore mean velocity (v") was found to
be independent of &% as 6 — 0 [(5.2)]. For H(&p)
= ﬁ'y, the presence of infinitesimal friction is suf-
ficient to generate a finite alongshore mean flow, i.e.,
lim (v') # 0.
§E—-0

It was shown that the momentum flux and Reyn-
olds stress in the surface and bottom boundary layers
contribute to the mean flow. We also determined that
for H(&) < 2y the model results are not sensitive
to coastal wall height H(&,).

On eastern boundaries the alongshore Eulerian and
Lagrangian mean flow, forced by an alongshore wind
stress at the coast, has its largest response associated
with the first mode resonance and is directed equa-
torward. The second largest response is associated
with the second mode resonance and directed pole-
ward.
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The response forced by an imposed oceanic along-
shore velocity is a poleward mean velocity with a
maximum near the shelf break. The observed eastern
boundary undercurrents are poleward and exhibit an
offshore maximum.

We conclude that the model results for coastal forc-
ing are inconsistent with the observations of eastern
boundary currents, whereas the results for interior
forcing are qualitatively consistent with observations.
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APPENDIX A
Ekman Layer Solutions

We solve for the surface and bottom Ekman layers
to obtain the O(1) and O(e) shelf equations in a closed
form. The closure is achieved by writing the velocities
in the boundary layers as the inviscid interior vari-
ables plus a correction and by requiring that (2.3a)
and (2.3b) are satisfied. We then have for the Ekman
layers,

ux, y,z, ) =uk(x, y, ) +ui(x, 5, 2,0, (Al)

where superscript X denotes interior shelf or ocean

variables, superscript E denotes surface T (Z =19
= z/6g) or bottom B [Z = { = (z + H)/6£] Ekman
layer variables, and u is the velocity vector. '
Substituting (A1) into (2.1) and subtracting the in-
viscid interior momentum equation (2.4) yields

duf + duX + uBuk + uFuX + WX + vEuE
+ vEuX + wEuE] — vF = 62uk, (A2a)
wE + quX + uPwE + ufvk + (0 + vEf
+ vEoX + wEvE] + uf = 8:vE, (A2b)
(A2c)

The boundary conditions for the Ekman layer
equations are obtained by substituting (Al) into
(2.3a) and (2.3b) and by requiring the Ekman veloc-
ities go to zero away from the boundaries. The re-
sulting boundary conditions for the surface Ekman
layer are

utr +vE+wf=0.

ul'=0, éxpl=r1,
wli=-wk(z=0), at =0, (A3a)
ul, T, wT—0, as n— - - (A3b)
and for the bottom Ekman layer are
uB = —uk pE= —vK,
wl=-—wK(z=-H), at (=0, (Ada)
uf v8, wf—0, as {— oo. (A4Db)

a. Shelf

The Ekman layer velocities, in the shelf region, are
‘rescaled and expanded in powers of ¢ to yield
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E=oYuf+euf+ - --), (AS5a)
vE=5'wE+ evf+ .. 0), (A5b)
wB=5'wf+ewf+...), (A5¢)
wl= 6"(w(7; +ewl+ -..). (AS5d)

Substituting (AS5) and (2.6) into (A2) we obtain the
O(1) momentum equations,

(A6a, b)

For the bottom layer, the depth-integrated mass
conservation equation gives

Wo (z=—H) = —65" fo B ugds — Hup, (A7)

— — pE
—vf = Uz, uf = v

where (A4) has been utilized. At O(e) the time av-
eraged momentum equations are

v .
-_— = — — B !

o) = Ui <u6’ug£ uoBrJ; uods’ > , (A8a)
(uty = (Wi

B,
- <ugug'E + ublvg, — vB, f
0

¢

ugds ’> , (A8b)

and the depth-mtegrated tlme-averaged mass conser-
vation equation is

<W1 (Z = —H)>
= —556—1 J(;oo (uﬁ)d;‘ - H5<u|>. (A9)

From the standard solutions to (A6) with boundary
conditions obtained from (A4) it follows that,

fw ufdt = —vo/V2, (A10)
0

Huauy, (All)

where v = 8z(6v2)~" [(2.16b)]. The solution to (A8)
with the boundary conditions obtained from (A4)
may be readily obtained and the results correspond-
ing to (A10) and (Al1l) are

fo ® (ulyd = ~(odNE + (T120)V3 00wy (A12)
and :
<W1 (z=—-H )>

= —y[=(v1) + (7/20){vovo)e] — Heur). (A13)
For the surface Ekman layer, ’

Wo (z = —H) = yvo; —

Wi, =0 (A14)
and .
=) = {ulw), (Al5a)
uly = (i) — (udvor), (A15b)
why = =Rv(ul). (A15¢)
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From the solutions to (A6) and (A15) with boundary
conditions derived from (A3) it follows that

J‘O uddn =, (A16)
w(z=0)=0 (A17)

and . '
f_ (ulydn = —(rvgg), (AIS)
_‘é‘Y<TUoEE>. (A 1 9)

m(z=0)=

b. Interior ocean

The solutions to the Ekman layers in the interior
ocean may be formed in a similar manner. The results
for both the bottom and surface Ekman layers are at
o(1),

wh(z = —H) = (vb, — ub)\2,  (A20a)
wi(z = 0) = 1,, (A20b)
and at O(e),
Wl (z = —H)) = (VI D2, (A21a)
(Wi(z=0))=0. (A21b)
APPENDIX B

O(1) Numerical Solution

A solution to (3.1) in the form (3.3) is facilitated
by writing (3.1) as four coupled first-order ordinary
differential equations for the four real variables Y,
i=1,4:

Y =v®, (Bla)
Y® = ~HK[y(Y® — [Y®)
+ wH(wY® — [YW)], (Blb)
YP =19, (Blc)
Y = HK[v(Y® — [Y®)
— wH(@Y® - [Y®)], (Bld)

where ¢ = Y + jY® and K = [(wH)* + ¥?]".
Utilizing (3.3) with (3.2) and (2.20), we find the
boundary conditions,

Y® = 2 sing — Hy (Y™ — [Y®),
at £=0, (B2a)
YW = Hy Y wY®—IYD), at £=0, (B2b)
Y®=qJ, Y@P=w], at £=-1, (B3a,b)

where J = V2ky(k sing + I cos)[(k? + I2)w? + v)]~.

We solve (B1), with the boundary conditions (B2)
and (B3), using a fifth-order Runge-Kutta method.
Four independent initial-value problems are created
by rewriting the boundary conditions such that only
one inhomogeneous condition is specified for each
initial-value problem (Acton, 1970). For example,
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using a subscript on Y to denote the respective initial-
value problem, the boundary condition for these
problems, from (B2) and (B3), are

Y?=1, YP=vJ, Y=
YP=0, at ¢£=-1, (B4)

(1) — 0 Y(Z) = 0 Y(3) —
Y =w), at £=-—1, (B5)

Y9 =0, Y =2sing — Hy (v — 1)
Y(33)=1 Y(34)=1 at £=0,
(B6)

(l) =1, Y(2) =1

Y@=0, Y¥=Hy'(w-1)

The four independent linear solutions are then su-
perimposed to give the solution to the boundary value
problem, i.e.,

} at £=0. (B7)

’ 4
Y®H =3 B,Y(i),

j=1
A system of four linear, homogeneous equations
in the four unknowns, B, ..., B;, may be found

for i=1,4. (B8)

"from the requirement that Y? satisfy the boundary

conditions (B2) and (B3). Solving for B,, ..., B,, we
then have the solution to the boundary value problem
directly without using an iterative technique. The
method was tested by comparing the numerical so-
lutions with analytical solutions obtainable in the
small slope limit, H, < 1.

APPENDIX C
O(1) Free-Wave Solution

Equations governing the free-wave solution to
(3.1), with boundary conditions (2.20) and (3.2), are
found by setting the forcing equal to zero, i.e.
¢ = k = 0. The result is an eigenvalue problem. A
wave-like solution of the form

po = Re{y(&) explily — (« — iB)9]}  (C1)

is used, where y(£) is the complex eigenfunction and
(a — iB) is the complex eigenvalue (e, 3 real). We
determine ¥, 8 and «a with a shooting method, that
is, for each / we adjust v and « until the boundary
conditions are satisfied.

A summary of the results, using the parameter val-
ues given in Table 1, are presented in Table 2. The

TABLE 2. Free wave mode characteristics.

211'/0)' BI—I wl/ll
Mode = w'/f 8'lf (days)  (days)  (kmday™)
1 0.246 0.0142 3.0 8.2 333
2 0.061 0.0197 11.9 5.9 84
3 0.025 0.0086 29.1 13.5 34
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presence of friction in the model causes the long, free
waves to be dispersive (Fig. 10). The e-folding time
varies with frequency and wavenumber (Fig. 10). The
phase speeds and periods for modes 1 and 2 calculated
with the depth profile used here are consistent with
those obtained from calculations for Oregon by
Cutchin and Smith (1973). The decay time scale gen-
erally is longer than the period for the first mode and
shorter than the period for higher modes.

Allen and Smith (1981) examined data from the
Oregon shelf (45°16'N; see Fig. 2) taken during July
and August 1973 at a mid-shelf location (100 m
depth). Terms in the depth-integrated alongshore
momentum balance were estimated, including a cal-
culation of the bottom stress using the quadratic drag
law on hourly data (Cp, = 1.5 X 1073). They showed
that for low-pass filtered (40 h half-power point) data
the linear approximation 75 = rvg, where subscript
B denotes values near the bottom, was reasonably
good and by a regression of 75 on vz obtained an

“estimate of r=2 X 1072 ¢cm s™!. The equivalent
“resistance” coefficient used here, fHodz/v2 = 2.8
X 1072 cm s7, is close to that value.

A spindown time of 6.8 days was also estimated
by Allen and Smith. This compares with the first and
second mode spindown times here of 8.2 and 5.9
days. Peaks in the spectra of depth integrated v, were
found at 0.1 and 0.34 cycle per day. If these peaks

WAVENUMBER ¢

w/f
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[Ty N }

B/t
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b
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10° 10 10
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F1G. 10. Free-wave dispersion curves for modes 1-3. Parameter

values used are listed in Table 1. The dispersion curve plotted as

a function of «'/f and / and as a function of 8'/f and / are displayed
in the top and bottom rows, respectively.
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correspond to a resonant response, we note that the
corresponding wavelengths for these frequencies for
mode | are 1100 and 300 km and for mode 2 are 500
and 1300 km, respectively. The wavelength used here
is 1000 km.

APPENDIX D
Parameter Values

The parameter values used in this paper (Table 1)
are based on the conditions thought to be typical for
the Oregon continental margin (see Appendix C).

The model dependence on w, the. forcing fre-
quency, is explored by varying w from 0.02f to 0.32f.
Variations in the parameters listed in Table 1 are
found to have little qualitative effect on the results.
The magnitude of the response is sensitive to the val-
ues chosen for f, 8 and 7.
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