戈壁汇水区测年与沉积速率研究

雷 震¹,金玉仁¹,程建平²,王宏乐³,杨晓燕¹

(1.中国人民解放军 63653 部队,新疆 马兰 841700;2.清华大学 工程物理系,北京 100084;
 3.中国人民解放军 69046 部队,新疆 乌鲁木齐 830002)

摘要:运用¹³⁷ Cs 法和²¹⁰ Pb 法对核试验场区汇水区沉积物的沉积速率进行估算,对沉积物的蓄积峰进行 年代判定。用分衰减段方法计算²¹⁰ Pb 分布异常情况下沉积物的沉积速率,得到的沉积速率与¹³⁷ Cs 法获 得的沉积速率基本符合。结合应用¹³⁷ Cs 法和²¹⁰ Pb 法,可得到汇水区的沉积速率和沉积层的年代。 关键词:¹³⁷ Cs;²¹⁰ Pb;沉积速率

中图分类号:TL751 **文献标识码:**A **文章编号:**1000-6931(2007)05-0614-04

Study on Chronology Establishment and Sedimentation Rate in Gobi Catchments

LEI Zhen¹, JIN Yu-ren¹, CHENG Jian-ping², WANG Hong-le³, YANG Xiao-yan¹ (1. PLA 63653 Troop, Malan 841700, China;

Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
 3. PLA 69046 Troop, Urumchi 830002, China)

Abstract: ¹³⁷Cs method and ²¹⁰Pb method are applied to estimate the sedimentation rate in catchments of nuclear test region, and a confident chronology is established in each sediment peak. With the situation of abnormal distribution of ²¹⁰Pb, part decline segment method is used in calculation of sedimentation rate, the sedimentation rate using part segment method is mainly in coincidence with the sedimentation rate using ¹³⁷Cs method. It can get the sedimentation rate of the catchments and the age of sediment layer by using of both ¹³⁷Cs method and ²¹⁰Pb method.

Key words: ¹³⁷Cs; ²¹⁰Pb; sedimentation rate

在对罗布泊地区进行放射性源项调查时, 发现了人工放射性核素比活度较高、放射性污 染分布复杂的某戈壁汇水区。在对该汇水区的 研究中,结合应用¹³⁷Cs 法和²¹⁰ Pb 法,对该汇水 区的沉积物进行沉积年代判定和沉积速率 计算。 1 ¹³⁷Cs 法和²¹⁰Pb 法原理

1.1 ¹³⁷Cs法

¹³⁷Cs 法和²¹⁰ Pb 法的应用环境一般是河口、湖泊、海湾、水库、汇水区和湿地,利用²¹⁰ Pb 法以及¹³⁷Cs 法测定百年来的地质年龄已得到 广泛应用^[1-10]。

收稿日期:2006-10-24;修回日期:2007-02-01

作者简介:雷 震(1973—),男,陕西合阳人,工程师,硕士,核科学与技术专业

¹³⁷Cs 法的原理是利用¹³⁷Cs 蓄积峰对应的 时间标识来判定不同蓄积峰之间沉积层的沉积 年代和沉积速率。

 137 Cs 法计算的沉积速率 v 为:

$$v = \Delta h / \Delta t \tag{1}$$

其中: Δh 为蓄积峰的深度差; Δt 为蓄积峰的年 代差。

1.2 ²¹⁰ Pb 法

通常情况下,²¹⁰ Pb 与其母体²²⁶ Ra 处于平 衡状态,沉积物各层中²¹⁰ Pb_{ex}(大气中²²² Rn 衰 变后沉降的²¹⁰ Pb)的计算可用²¹⁰ Pb 的总量减 去²²⁶ Ra 的含量得到,由此计算沉积物的沉积速 率或沉积年代。在本研究中,汇水区表层样品 的²¹⁰ Pb 浓度不为恒值,选用²¹⁰ Pb 法的 CRS (Constant Rate of Supply)模型。

某分层中,²¹⁰ Pb 的比活度 a 为:

$$a = a_0 e^{-\lambda t} \tag{2}$$

其中: a_0 为分段表层²¹⁰ Pb 的比活度; λ 为²¹⁰ Pb 的衰变常量, λ =3.11×10⁻² s⁻¹;t为某分层样 品衰变的时间。

由式(2)得到:

$$t = (\ln a_0 - \ln a) / \lambda \tag{3}$$

则某分层的沉积速率为:

$$v = \Delta h/t \tag{4}$$

2 实验方法

在汇水区采集了两组土壤样品 s473 和 s474。两样品的采集地距离约 500 m,且均处 于汇水区的中心位置。样品采集方法选用剖面 法,每层厚度控制在1 cm 左右。样品过 8 目筛 (进行过筛修正),烘干温度为 110 ℃,烘干时间 为 5 h。

选用 ULB/BE3830 γ 谱仪对汇水区土壤 样品进行测量。γ 谱仪在 122 keV 处的 FWHM为 0.69 keV;在 1 332.5 keV 处的 FWHM为 1.70 keV。

3 结果与讨论

在样品采集、制备、测量后,得到汇水区 ¹³⁷Cs和²¹⁰ Pb 的垂直分布。分析¹³⁷ Cs 垂直分 布,应用¹³⁷Cs 法,判断汇水区沉积物的沉积年 代,计算沉积速率。汇水区²¹⁰ Pb 分布异常,不 能应用²¹⁰ Pb 法进行年代判断。分析²¹⁰ Pb 垂直 分布,应用²¹⁰ Pb 分衰减段法,得到汇水区沉积 物的沉积速率。

3.1 汇水区放射性核素垂直分布

¹³⁷Cs 垂直分布示于图 1。¹³⁷Cs 的主蓄积峰 出现在约 8 cm 和 11 cm 处,两组样品的蓄积峰 出现的位置基本一致。对于 s473 样品,¹³⁷Cs 的最大比活度为 102.39 Bq/kg;对于 s474 样 品,¹³⁷Cs 的最大比活度为 138.97 Bq/kg。

²¹⁰ Pb 垂 直 分 布 示 于 图 2。两组 样 品 的 ²¹⁰ Pb比活度峰出现的位置有一致性,各层²¹⁰ Pb 比活度不为指数分布,存在着²¹⁰ Pb 倒置的现象。

图 1 汇水区¹³⁷Cs 深度分布

图 2 汇水区²¹⁰ Pb 深度分布 Fig. 2 Depth distribution of ²¹⁰ Pb in catchments

♦-----s473;**■**----s474

3.2 年代判断

从风向、风频以及地表径流方面考虑,某核 爆区域 B 区主要影响该汇水区的放射性核素 分布。其依据为,在 B 区域,1971 和 1978 年进 行过 2 次核试验。应用¹³⁷ Cs 法,判断 s473 样 品 7.8、10.85 cm 蓄积峰年代分别是 1978 年、 1971 年,s474 样品 8.3、11 cm 蓄积峰的沉积年 代也分别是 1978 年、1971 年。

汇水区²¹⁰ Pb 分布异常,用²¹⁰ Pb 法不能进 行年代判断。

3.3 ¹³⁷Cs 法计算沉积速率

¹³⁷Cs 赋存状态稳定,在汇水区有核爆炸时间 标识可用干沉积计年,因此,¹³⁷Cs法较为可靠。

利用蓄积峰的沉积年代计算 s473 和 s474 样品的沉积速率。

对于 s473 样品,2005—1978 年间的平均 沉积速率为 0.287 cm/a:1978—1971 年间的平 均沉积速率为 0.482 cm/a。

对于 s474 样品,2005—1978 年间的平均 沉积速率为 0.306 cm/a:1978—1971 年间的平 均沉积速率为 0.426 cm/a。

3.4 ²¹⁰ Pb 分衰减段法计算沉积速率

汇水区²¹⁰ Pb 分布异常时,²¹⁰ Pb 法基本假 设中的沉积通量基本稳定的条件不满足,不能 正常使用²¹⁰ Pb 法。在整体沉积通量不稳定的 情况下,如果某一段时间内沉积通量稳定,这一 段时间形成的沉积段认为是分衰减段,可使 用²¹⁰ Pb 法。对分衰减段使用²¹⁰ Pb 法,称为 ²¹⁰ Pb分衰减段法。

应用²¹⁰ Pb 分衰减段法的过程如下:初选出 类似负指数分布的衰减段:对初选出的分衰减 段进行验证:筛选出合适的分衰减段:计算沉积 速率。

对样品的比活度进行 spline 插值,得到平 滑的比活度深度分布曲线,观察插值后的 s473、s474 样品²¹⁰ Pb 比活度深度分布。初选出 的衰减段列于表 1。

表1 初选出衰减段的沉积速率 Table 1 Select sedimentation rates of decline segment

			0
样品	初选出的 衰减段/cm	衰减段 代号	沉积速率 / (cm・a ⁻¹)
s473	4.9~6.8	А	0.235
s473	13.8~17.4	В	0.320
s474	$11 \sim 14$	С	0.135
s474	$15.3 \sim 20.8$	D	0 073

初选的衰减段要满足其沉积时间不能超过 测年范围的条件,满足此条件,通过测年范围验 证:反之,不能通过测年范围验证。

²¹⁰ Pb 法测年范围的计算公式为:

 $15.3 \sim 20.8$

s474

 $T = (\ln a_0 - \ln a_d) / \lambda$

其中:T 为测年范围; λ 为²¹⁰ Pb 的衰变常量; a_0 为衰减段初始比活度;a。为探测限。

s473 和 s474 分层样品的²¹⁰ Pb 的天然本底 分别为(47.29±1.91)和(35.29±4.10) Bq/ kg,探测限分别为 5.73 和 12.30 Bq/kg。

A 衰减段的沉积时间为 8.085 a,表层比活 度为 172.23 Bq/kg, a₄为 5.73 Bq/kg, 测年范 围为 109.42 a, 通过测年范围验证。同理, B、C 衰减段通过测年范围验证,D衰减段不能通过 测年范围验证。

对选定衰减段进行测年范围验证后,进行 指数分布相对不确定度验证。²¹⁰ Pb 正常分布 时,分层样品的²¹⁰ Pb_{ax}比活度呈指数分布。对 选定衰减段的²¹⁰ Pb_{ex}比活度进行指数分布拟 合,得到指数拟合的相对不确定度(表 2)。假 定大气沉降转入沉积物中的²¹⁰ Pb 通量变化不 超过 10%,如果衰减段的比活度的指数拟合相 对不确定度小于10%,即通过指数分布相对不 确定度验证:反之,不能通过此验证,认为衰减 段的选择不合理。

由表 2 可见, A、B 衰减段的相对不确定度 小,最大值为 1.22%, C 衰减段的相对不确定度较大,最大值为 5.63%。A、B、C 衰减段通过 相对不确定度验证。

表 2 初选出衰减段的相对不确定度

Table 2 Relative uncertainty of selected decline segment

初选出的衰减段	相对不确定度
А	0.004 1,0.008 2,0.004 1
В	0.007 0,0.012 2,0.005 0
С	0.027 0,0.056 3,0.027 0

注:相对不确定度的3个数值对应各衰减段从表层比活 度到底层比活度的指数拟合的相对不确定度

满足测年范围验证与指数分布相对不确定 度验证的衰减段被认为是合理的衰减段。初始 选定的 4 个衰减段中, A、B、C 衰减段通过测年 范围与指数分布相对不确定度验证。

应用²¹⁰ Pb 分衰减段法计算得到 A 衰减段 的沉积速率为 0.235 cm/a;B 衰减段的沉积速 率为 0.320 cm/a; C 衰减段的沉积速率为 0.135 cm/a

4 结论

应用分衰减段方法分析汇水区²¹⁰ Pb 异常 分布,得到的沉积速率与用¹³⁷ Cs 方法得到的沉 积速率较为一致。结合应用了¹³⁷ Cs 法与²¹⁰ Pb 法对某戈壁汇水区进行年代判定和沉积速率计 算,得到了较好的结果。

参考文献:

- [1] 万国江.¹³⁷Cs 及²¹⁰Pb_{ex}方法湖泊沉积计年研究新 进展[J].地球科学进展,1995,10(2):188-190.
 WAN Guojiang. Progresses on ¹³⁷Cs and ²¹⁰Pb_{ex} dating of lake sediments[J]. Advance in Earth Sediments,1995,10(2):188-190(in Chinese).
- [2] 李铁松. 放射性²¹⁰ Pb方法的地理学应用实例[J].
 四川师范学院学报, 1994,15(2):242-243.
 LI Tiesong. An example of geographic application of radio lead(²¹⁰ Pb) dating method[J]. Journal of Sichuan Teachers College, 1994, 115(3): 242-243(in Chinese).
- [3] 孙立广,谢周清,赵俊琳,等. 南极阿德雷岛湖泊 沉积²¹⁰ Pb、¹³⁷ Cs 定年及其环境意义[J]. 湖泊科 学,2001,13(1):93-96.
 SUN Liguang, XIE Zhouqing, ZHAO Junlin, et

al. ²¹⁰ Pb, ¹³⁷ Cs dating of lake sediments from Ardley(Maritime Antarctic) and their environmental implications[J]. Journal of Lake Sciences, 2001, 13(1):93-96(in Chinese).

- [4] SANMIGUEL E G. Radiochronology of sediment cores collected in an estuary strongly affected by fertilizer plants releases[C]//Environmental Radiochemical Analysis II. [S. l.]: [s. n.], 2003: 401-409.
- [5] 万国江,陈敬安,胥思勤,等.²¹⁰ Pb_{ex}沉积通量突发 增大对湖泊生产力的指示——以程海为例[J].
 中国科学 D辑地球科学,2004,2(34):154-62.
 WAN Guojiang, CHEN Jing'an, XU Siqin, et al.

An example of Chenghai Lake's production indicated by the outburst increase of 210 Pb_{ex} flux

inventory[J]. Science in China Ser D Earth Sciences, 2004, 2(34):154-162(in Chinese).

- [6] 杨洪,易朝路,邢阳平,等.²¹⁰ Pb 和¹³⁷ Cs 法对比研 究武汉东湖现代沉积速率[J].华中师范大学学 报:自然科学版,2004,38(1):109-113.
 YANG Hong, YI Chaolu, XING Yangping, et al. A comparative study on recent sedimentation rates in lake Dong Hu, Wuhan with ²¹⁰ Pb and ¹³⁷ Cs dating techniques [J]. Journal of Central China Normal University: Natural Science, 2004, 38(1):109-113(in Chinese).
- [7] 李建芬,王宏,夏威岚,等.渤海湾西岸
 ²¹⁰ Pb_{ex}、¹³⁷ Cs 测年与现代沉积速率[J].地质调查
 与研究,2003,26(2):114-128.
 LI Jianfen, WANG Hong, XIA Weilan, et al.
 ²¹⁰ Pb_{exc} and ¹³⁷ Cs method and modern sedimentation rate on the western coast of Bohai Bay[J].
 Geological Survey and Research, 2003, 26(2):
 114-128(in Chinese).
- [8] 陈镇东,罗建育,林志明,等.台湾地区湖泊水库
 沉积速率初步探讨[J].海洋与湖泊,1997,28
 (6):624-631.

CHEN Zhendong, LUO Jianyu, LIN Zhiming, et al. Sedimentation rates of lakes and reservoirs in Taiwan[J]. Oceanologia et Limnologia Sinica, 1997, 28(6):624-631(in Chinese).

- [9] 王爱军,高抒,贾建军,等. 江苏王港盐沼的现代 沉积速率[J]. 地理学报,2005,60(1):62-69.
 WANG Aijun, GAO Shu, JIA Jianjun, et al. Contemporary sedimentation rates on Salt Marshes at Wanggang, Jiangsu, China[J]. Acta Geographic Sinica, 2005, 60(1): 62-69(in Chinese).
- [10] 齐君,李凤业,宋金明,等. 北黄海沉积速率及其 沉积通量[J]. 海洋地质与第四纪地质, 2004, 24 (2):10-14.

QI Jun, LI Fengye, SONG Jinming, et al. Sedimentation rate and flux of the North Yellow Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(2):10-14(in Chinese).