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ABSTRACT

The behavior of an isolated pair of vortices consisting of two eddies sitnated on top of each other in a
three-layer ocean is examined analytimlly. The amplitud&s of both eddies are high and, consequently, the
two eddies behave as one unit and migrate together in the ocean. For this reason, it is proposed to call the
system joint vortices. The eddies are of equal or opposite sign; each vortex is situated in a different layer so
that there are two active layers and one passive layer.

Attention is focused on the behavior of joint vortices on a slopmg bottom in the deep ocean and on a 8
plane in the upper ocean. That is, we consider deep joint eddies situated on an inclined floor in the lowest
two layers of a three-layer ocean and upper joint eddies in the upper two layers. Special attention is given
to the cases where one of the vortices is a lens-like eddy. Approximate solutions for slope (or 8) induced
drifts in the east-west direction are obtained.

It is found that because of the high amplitudes and the resulting nonlinear coupling, the joint eddies have

. a mutual drift which is very different from the drift that each individual vortex would have. For example,

while each individual vortex translates to the west in the absence of a conjugate vortex, the combined vortices
may drift steadily to the east. This bizarre behavior stems from the presence of a “planetary lift” which is
the oceanic equivalent of the side pressure force associated with the so~called Magnus effect. 1t is directed at
90° to the /eft of the drifting eddies.

Other results of interest are: (i) Under some conditions, the westward drift of joint eddies consisting of two
cyclonic vortices is much faster than the long-wave speed. Such fast drifts contradict previously held
contentions that the speed of cyclonic eddies cannot exceed the long wave speed. (ii) As it translates westward,
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Joint Vortices, Eastward Propagating Eddies and Migratory Taylor Columns

an anticyclonic lens-like eddy can carry a Taylor column on top of it.
Possible application of this theory to various eddies in the ocean is discussed.

1. Introduction
a. Background

The dynamics of planetary vortices received much
attention in recent years mainly because of the rec-
ognition that they play a major role in the transfer
of energy, heat and nutrients (e.g., The Ring Group,
1981; Hogg and Stommel, 1985). This transfer is, at
least partly, a result of the eddies’ self-propulsion
mechanisms, i.e., their ability to migrate without any
external assxstance An important self-propulsxon
mechanism i$ believed to be a result of the variation
of the Coriolis parameter with latitude. Consequently,
there have been a large number of both numerical
and analytical attempts to determine the influence of
g on the eddy’s behavior (e.g., Warren, 1967; Flierl,
1977; McWilliams and Flierl, 1979; Mied and Lin-
demann, 1979, 1982; Davey and Killworth, 1984;
Killworth, 1983; Nof, 1981, 1983b; Shen, 1981;
McWilliams ez al.; 1981).

The attempts focused on various kinds of eddies,
among them the so-called “Modons”. These were
introduced in the 1970s (Stern, 1975) as a means of
simplifying the actual problem to a pair of adjacent
vortices of equal strength and opposite sign. The
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direct applicability of the Modon to the ocean is
somewhat limited mainly because of the lack of
observations which clearly display the existence of
adjacent eddies with opposite sign and equal strength.
There is little doubt, however, that much has been
learned from the introduction of the Modon mainly
because of the various processes that can easily be
examined with its aid.

In this paper we shall introduce a somewhat similar
concept to the Modon. We shall look at the behavior
of a system consisting of two vortices (with high
amplitudes) situated on top of each other in a three-
layer ocean. We term these eddies joint vortices
because of the high amplitudes which “lock” the
vortices to each other forcing them to translate to-
gether as one unit. In contrast to the Modon which
includes two vortices of equal strength and opposite
signs, the two eddies forming the new system are not
necessarily of equal strength nor are they necessarily
of opposite sign.

We shall consider three different systems of joint
eddies. The first (system I) corresponds to deep ocean
eddies situated on an inclined ocean floor; the second
and third (systems II and III) correspond to upper
ocean eddies subject to the influence of 8. System II
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corresponds to a lens situated above a cyclonic or
anticyclonic vortex and system II corresponds to a
lens situated underneath a cyclonic or anticyclonic
vortex. For clarity, we shall first consider system I
which, as it turns out, has the simplest solution. The
solutions for systems II and III will be later derived
on the basis of the—by then known—solution for
system 1.

b. Method of solution

The general method of solution for system I is
similar to that described in Nof (1983a,b). That is,
solutions for steadily drifting systems will be sought.
We shall see that, although in the absence of a
conjugate vortex each individual vortex translates
steadily with the shallow water on its right side (i.e.,
“westward”’), the joint vortices may translate with
shallow water on their left (i.e., “eastward”). This
unusual behavior is a result of the nonlinear coupling
and the presence of a side pressure force which we
shall call “planetary lift.” It pushes the system to the
left of its migratory direction. Much of the discussion
is devoted to a detailed examination of the planetary
lift and its relationship to the other forces acting on
the system. An equivalent lift was found by Nof
(1983b) to be of crucial importance for the migration
of single isolated eddies. We shall see that this lift is
also of crucial importance for the joint eddies and,
for this reason, a thorough analysis of its properties
is presented.

With the aid of the solution for system I, we shall
proceed and present the solution for the somewhat
more complicated situations (systems II and III). The
general solution and balance of forces for these systems
is quite similar to those of system I but the detailed
solution is considerably more complicated. It will be
shown that, in a similar fashion to deep ocean eddies,
a lens with conjugate cyclonic vortex underneath can
travel toward the east.

¢. Applications

With the aid of the solutions for the three systems,
we shall proceed and discuss the possible applicability
of the model to various oceanic situations. For in-
stance, we shall consider the possibility that the warm
core rings north of the Kuroshio, which have been
observed to move toward the northeast (rather than
toward the west), can be represented by joint eddies.
In addition, we shall examine the possibility that a
special case of system III—a lens at middepth and a
Taylor column on top—is relevant to the movement
of intermediate eddies. In particular, we shall consider
the so-called “Meddy” which is a lens containing
water of Mediterranean origin “sandwiched” between
two deep layers (e.g., see McDowell and Rossby,
1978).
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d. Structure

Although an attempt has been made to make the
present paper self contained, frequent references to
Nof (1983a,b) are made. The reader who is interested
in the detailed analysis is advised to look at Nof
(1983a,b) before reading the present paper. On the
other hand, readers who are interested only in the
results may go directly to Table 1 (Section 8) and the
summary.

This article is organized as follows: In Section 2
the model corresponding to system I is formulated
and in Section 3 the general solution is given. Section
4 contains a detailed analysis of the solution for
system I and Sections 5 and 6 contain the solutions
for systems II and III. In Section 7 the behavior of
migratory Taylor columns is discussed. The applica-
tions and limitations of the various models are dis-
cussed in Section 8 and Section 9 summarizes this
work.

2. Formulation for system I (deep ocean eddies)

Consider the three-layer system shown in Fig. 1.
Initially, our system consists of a lens-shaped eddy
situated over a flat oceanic floor underneath a con-
jugate eddy (cyclonic or anticyclonic). The manner
in which this system is set up is not important for
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Fi1G. 1. Sketch of the initial basic state corresponding to system
I. The joint vortices consist of two eddies situated on top of each
other in a three layer ocean. Note that such a combination of
eddies can be formed by the meandering of a system of currents
shown in Fig. 2. The upper layer is infinitely deep (i.e., H — o0)
1o is the radius of eddies, and Ap, and Ap, are the density differences
between the layers. Initially, the system is circular and stationary
because the bottom is flar.
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the present analysis but one can imagine that a
system of two currents which became unstable could
probably lead to such a combination (see Fig. 2). The
strength of the conjugate eddy is not necessarily equal
to that of the lens-shape eddy. The joint eddies and
their surrounding waters are overlaid by a very deep
upper layer which is taken to be at rest. Obviously,
the joint eddies are initially stationary because there
are no driving forces.

Suppose now that at some time (say, ¢ = 0) a small
uniform ‘slope (s) is introduced to the floor. Imme-
diately afterwards the joint eddies will start drifting
because of (i) the gravitational force which tends to
pull the blob toward the deep ocean and (ii) the
slope-induced vortex force (i.e., the force similar to
B). It is expected that, after an initial period of
adjustment of O(f)~! (where f; is the Coriolis param-
eter), the eddies will migrate together as one unit
because of the lens’ high amplitude which traps the
conjugate eddy. Namely, because of the large ampli-
tudes, separation of the eddies from each other will
introduce gross changes and large distortions in their
structure. It is assumed that this cannot happen since
the imposed perturbation (the bottom slope) is small
so that the response should also be small. Note,
however, that during the adjustment the eddies could
move a distance of O(g's/fo>) ~ O(S}) [where
S = (sl;/H), I, is the eddy’s length scale and g’ is the
“reduced gravity” (gAp;/p)] relative to each other so
that, in the final adjusted state, their centers do not
necessarily coincide (Figs. 3 and 4).

Our aim is to find the joint eddies drift after the
initial adjustment has been completed. For this pur-
pose, consider the deviations of the hydrostatic pres-
sures from those corresponding to a state of rest,

Apa = 20018 2.1)

App = £5ilp g + (hy + sy — 2)ghp, (2.2)

Apc = £2Ap18 (2.3)
(P_Apt)

>

H  (p)
® (P+A'°2)
WW

FIG. 2. Schematic diagram of two currents which, upon
meandering, can produce the joint vortices under discussion.
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where the points A, B and C correspond to the
conjugate vortex, the lens, and the exterior fluid (Fig.
3). Here, £ is the upper interface vertical displacement
(measured upward from the undisturbed depth), A,
is the lens depth, g the gravitational acceleration, and
Ap; and Ap, are the density differences between the
intermediate layer and the upper and lower layers,
respectively. The subscripts “i” and “e” indicate that
the variable in question is associated with the “inte-
rior” (i.e., the conjugate eddy) and the “exterior”
(i.e., the fluid surrounding the system). Our coordinate
system is located at the center of the blob and is
moving with the vortices at (the assumed steady)
speed C; the y axis is pointing uphill, the x axis is
oriented along the isobaths and the system rotates
uniformly about the vertical axis (2).

With the aid of (2.1)~(2.3) the equations of mo-
mentum and continuity for the lens can be written
in the form,

ou, ~ du, _‘95_2_ ”a_hl

g tug — Jov; = —¢' ax o 2.4)
ul% + v %;—)‘-+ﬁ)(u1 + C)

_ _g,gfyz g — g ‘1’;‘ 2.5)

a—a)—c(hlul) + ;%(hlvl) =0 (2.6)

where g’ = gAp,/p, g = gAp2/p, and u, and v, are
the horizontal two-dimensional velocity components
[ie, 1y = w(x, ¥), v; = vy(x, )] in the x and y
direction. Note that s, is well defined everywhere
because #; = 0 inside ¢; = 0 and h; = O outside
¢ = 0.

For the conjugate vortex situated above the lens
the equations are,

SRR
2i Ax + 23] ay féUZI =—& dx (2-7)
avzi 81)2i f aEZi
Ui ax Uy ay ﬁ)(u2l + C) 4 ay (2 8)
0 a
o (haitezs) + 3y (haivzi) = 0, (2.9)

where A,; is the conjugate vortex depth (see Fig. 3).

Similar equations hold for the fluid surrounding
the vortices (i.e., the exterior) but, we shall see later
that, it is more convenient to use the potential
vorticity and Bernoulli integral,

+ ﬁ) = h2e KZ(‘PZe)

6DZe 6u2c

ax 3y (2.10)

S (3 + 027) + g + oCy = Golre)  (2.11)
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FIG. 3. Schematic diagram of the model for system I. The eddy structure under discussion
results from a slope that was introduced to the system shown in Fig. 1. The “wiggly” arrow
indicates migration; dashed lines denote the isobaths. The interface displacement £, is measured
upward from the undisturbed depth; the vortex above the lens is referred to as the “interior”
(denoted with the subscript “i”’) whereas the region surrounding the system is termed the
“exterior” (denoted with the subscript “e”). Note that the centers of the two vortices do not
necessarily coincide because, during the adjustment which followed the introduction of the
slope, the eddies could move a distance of O(S/;) relative to each other. It will become clear
later that this relative movement does not enter the first-order approximations.
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conjugate eddy
boundary ¢, =0

FIG. 4. A detailed view of the eddies’ projection on the x, y

plane. The curves ¢; = 0 and ¢, = 0 correspond to the lens and
conjugated eddy boundaries, respectively. They are not necessarily
circular but their departures from a circular geometry is not more
than ~O(Sr,). The symbols (a), (b) and (c) denote the mutual
projection of the eddies, the projection of the strip occupied by the
conjugate eddy alone and the projection of the strip occupied by
the lens alone, respectively.

where K, = dG,/d{,. and the stream function ¥, is
defined by

Wie _

al)(/2(3
- eh e =
x| e Ty

= —UeMye.

(2.12)

Note that (2.10) is the steady potential vorticity
equation and that the dependence of Ky(¥) on G,(¥)
was first recognized by Charney (1955). The functions
K>(¥2e), Ga(¥2) are found from the upstream condi-
tions,

= —C, X — o0
Ve 0, X — 0
Yo = CH(y — Yp), Xx— ©
he = H — sy, X— o
to be,
Ky(¥2e) = fo/(H? — 24e8/C — 2HYps + Y452
(2.13a)
Gal¥ae) = 3 C* + oCHs = foCUH?s?
— 2y /Cs — 2HY, /s + Y02)1/2 (2.13b)

where, for convenience, we have defined ¥, to be
zero along the streamline separating the conjugate
vortex from the environment [i.e., ¢»(x, ¥) = 0] and
Y, is the—yet unknown—Ilatitude from which Yy,
= 0 originates (Fig. 3). The reader who is not familiar
with the determination of K,(¥) and G(¢) from some
known upstream conditions is again referred to Char-
ney (1955) where a similar analysis is made.
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Since friction is absent from our problem, pressure
is the only mechanism which allows communication
between the various regions. Consequently, we have
the following matching conditions along the free
separating streamline:

£ = &2e5 $ax,») =0 (2.14)

Vai =¥ = 0; ¢ax, ) =0 (2.15)

Relation (2.14) reflects the continuity of pressure
whereas (2.15) assures that the boundary is a stream-
line of both the vortex and the surrounding fluid.
For convenience, we also define,

Y1 =0 along ¢x,y)=0 (2.16)
where

g d

aiyl = —hy; 5\% = 0,h.

3. General solution for system I
a. Balance of integrated forces

To obtain the solution, (2.5) and (2.8) are multiplied
by h, and Ay (respectively) and then integrated over
their corresponding areas. This gives

ff [—H (v, ) + E (hlvl ) — fo 9

@)+

th

+ ﬁ)Chl]dxdy =—g f f hy 3—% dxdy
(a)+(©)

14
- g ff [Shl +3 » (h,)z]dxa'y (3.1a)

(a)y+(©)

a
f f [ (A2iti0i) + (hzlvzl fo %l

(a)+(b)

+ ﬂ,Chz,]dxdy— —g' f f hy 52', (3.1b)

(a)+(b)

where the continuity equation has been used to
express the nonlinear terms and we have introduced
the stream function,

W .

= —tihy; 2 = Vg
3y Uiy O 2if12i

3.2)
The symbols (a), (b) and (¢} denote the various
regions as shown in Fig. 4.

Equations (3.1a) and (3.1b) can be simplified by,
(i) using Stokes’ theorem to express the surface inte-
grals (which include derivatives with respect to x and
y) in terms of contour integrals, (ii) noting that
h = 0 along ¢, = 0, and (iii) recalling that, since the
edge is a streamline, uydy = vydx along ¢, = 0. One
ultimately finds,
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JoC f f hydxdy

@+

—g' ff hl——dxa'y g's ff hidxdy (3.3a)

(@)+(c) (@)+c)

iC f f hydxdy = —g' f f Iy afz'd dy. (3.3b)

(a)+(b) (@)+(b)

JoC ff (hy + hy)dxdy + foC ff hydxdy

(@)+(b) ©

DORON NOF

1119

Note that at this stage of the development, it is
difficult to give a simple physical identification of all
the terms in the equations. Some terms correspond
to the Coriolis force associated with the migration,
others correspond to the lens gravitational force, the
vortex slope force and the pressure exerted on the
vortices by the surrounding fluid. There are also
some mixed terms and, for this reason, we shall give
our physical interpretation later on after the structure
of the equations is considerably simplified. We proceed
now by adding (3.3a) and (3.3b) which, since #; = 0
outside ¢, = 0, gives

=—g J.f (h +h2,) 9 dxdy g"s ff hidxdy — g ff hy Eze dxdy.

(a)+(b)

(a)+(c) ()

This equation can be further simplified by using Stokes’ theorem again which gives

#C ” (hi + hy)dxdy + foC ”h dxdy = g'H (ﬁ

(@)+b)

(a)+(b)

§xdx +§2_ 4) &rldx

(a)+(b)

+gs ff y £2'cixa’y g"s ff hydxdy — gffhl EZCdxa’ 3.4)

(a)+(b)

(a)+(c)

Using the matching conditions (2.14) and (2.15), and the Bernoulli integral (2.11) and (2.13), Eq. (3.4) can

be written as

ie [[ (H+£2,~sy)dxdy+”(oc+g «29&2,

(a)+(b)

C
= (f) [7 + fC(Yo — ») — 2 (u2e2 + chz)](H — sy)dx + 29
24

(a)+(b)

Note that, so far, no approximations have been made
so that (3.5) corresponds to an exact balance of forces
in the y direction.

b. Perturbation analysis

To simplify the structure of (3.5), the following
nondimensional scaled variables are introduced,

x* =x/ly; y* =y/l; ut = u/Roifoli;
vf =0 /Roifoli Ry = (g'H)"/fo;
* = C/Rofol; Y8 = Yo/l

ufe = the/Rofoly; V3 = v2e/RQle)ll;

ht = h/H h%= hy/H;, &= ¢£i/H,
. =6/H, S= sﬁl‘ (3.6)

)hdxdy+gs ff hdxdy + g's ff Eydxdy

(ay+(c) (a)+(b)

c? ’
P[5 +hctro—» -3 w2 + 0] ax

(a)+(b)

1

3.5)

Here, /, is the lens size, R, the internal deformation
radius, and Ry, is the lens’ Rossby number. For deep
ocean eddies we take, /;, ~ 30 km, R; ~ 10 km,
s~ 1073, f5 ~ 1074 s7!, Ryy ~ 0.3, u; ~ O(10) cm
s™!, H ~ 500 m, Ap/p ~ 107% and g's/fo ~ 0(1) cm
s~!. In view of these, we shall focus our attention on
the following scales,
(x*, y*¥) ~ O(1); (uf, v, uf, v%) ~ O(1)
S< 1, (C* uk, v8) ~ O(S); Y§ ~ O(1)
g~ 0l & ~ O(S)
(¥, hE) ~ O(1); (L/Ra) =1
Roi <15 Rou(l1/Ra)* ~ O(1). (3.6a)

In terms of the variables defined by (3.6), the
governing equation (3.5) is,
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f y*dx*dy*
(@a*+c*)

+& (Rm)(R") f f Hrdxrdy* + 5 ( le)( )52 ” htd *dy*

R01 ~ Rm

= (CH*+ CHY§ — y¥)

(a*+b*)

[(uf)* + ”2e)2]}(1 — Sy®dx*

Roi [ ! g
v B (ke + (g)ers - » -T2 (Liasr + orrf a6

(a*+b*)

where, in nondimensionalizing the second term on
the left-hand side of (3.5) [which is the fourth term
on the left-hand side of (3.7)], it has been taken into
account that the integral is to be computed over a
narrow strip near the lens’ edge. That is, since the
area of (c) is ~O(S/,%) we have introduced the scales

ht. = h/H x¥ = x/Sl,

&

where the subscript ‘“‘c” denotes association with

region (c) (see Fig. 4).
It is further assumed that the dependent variables
can be expanded in a power series, 1.e.,

C* = SC® + S2CO + . . .
W= O+ ShO 4 ..

= Sh® + S @ + -« -
B=560+8H0+
1w = S + S ® 4 e

vE = S0 + S, P + - .. (3.3)
f dx*dy*
(a*+b*)
o ([ aevs [[ avae e
(a+b)® (a+b))

It is assumed, then, that the structure of the migrating
joint vortices does not differ much from the circular
and stationary structure that the joint vortices had
on the flat floor before the slope was introduced.
Note that (a* + b*), (a + b)® and (a + b)®
correspond to the conjugate vortex nondimensional
area, the area that the conjugate eddy would have on
a flat bottom and the perturbed area (respectively).

Substitution of (3.8) into (3.7) and collecting terms
of O(S) gives

o ||

(a+b)0

(1 + £ O)dx*dy*

A

SRl
+ {2 )(Be Oddx*dy*
(ROI L & Y

(a+b)0)

W

+g—,(—)( ) f f hOdx*dy*
g \Ro

(a+b)(0)

J

.

C
—-SCc®

(a+b)®

D

It will become clear later that the terms A, B, C, and
D are the integrated Coriolis force acting on the
whole system (i.e., the lens and its conjugate vortex),
the slope-induced vortex force, the gravitational force
associated with the lens and the pressure force exerted
on the eddy by the surrounding fluid, respectively.
Simple manipulations show that Eq. (3.9) can be
reduced to

e (G Jf e

(a+b)0

( ) jf hQdx*dy* + O(S) (3.10)
(a+b)®
which in dimensional form is

—g's f f Exdxdy — g's J. f hydxdy
o | [ Eadeay

+ O(S?) = y*dx + O(S?) (3.9)

gRon

C~

3.1
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Here, the bars indicate that the variable in question
is associated with the basic state (i.e., & = HE®, A,
= Hh?), and « denotes the dimensional area asso-
ciated with the basic state.

Three general comments should be made with
regard to (3.11). First, if the intermediate layer is
removed (i.e., H — 0 and & — h; + sy) then the
migration speed reduces to

~ —(&' + &")slfo (3.12)

which is identical to the result discussed by Nof
(1983a) for deep ocean blobs, as should be the case.
Second, if the blob is removed (i.e., A, — 0 every-
where) then (3.11) reduces to

~ —g'slfo (3.13)

which states that the speed of all single deep ocean
eddies embedded in a layer of infinite extent is
independent of their depth, size and intensity. Nof
(1983a) has shown that this is the case for lens-like
vortices but it has not been shown before that this is
also the case for any deep ocean eddy. Third, when
£, — 0 the perturbation scheme breaks down because
terms which have been ignored as small are no longer
negligible.

4. Analysis of system I

a. The detailed solution and its implications

We shall now determine the joint eddies drift with
the aid of (3.11). To do so, it is necessary to specify
the depths corresponding to the initial basic state and
these depend, of course, on the velocity distribution
and the potential vorticity of each eddy. It is possible
to take solutions corresponding to known potential
vorticity distributions (e.g., Csanady 1979, Flierl 1979).
This is what most authors prefer to do but there are
three variables to the problem (v, 4, and the potential
vorticity K) and it does not really make any difference
which one of the three is specified. Specifying the
velocity is the most convenient choice and we shall,
therefore, adopt this specification for our model.
Previous work (e.g., Nof 1983b) has shown that
integrals similar to those present in (3.11) are very
insensitive to variation in the specified velocity struc-
ture. Consequently, it is sufficient to take such velocity
profiles which can be easily used in relation (3.11).
In view of this, we shall consider eddies with linear
velocity profiles for our initial calculations. For prac-
tical purposes it may, under certain conditions, be
more desirable to use parabolic profiles and the
results for such distributions are given in the
Appendix.

We begin, then, by assuming,

Ry =0
Ry =0

(4.1)
(4.2)

U = —viRofor; 71 = %1,

U = —Y2Ro2for; v2 = %1,
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where, for convenience, we have introduced polar

coordinates (r, ) and v, = +1, —1 (and v, = +1,

—1) for anticyclonic and cyclonic eddies, respectively.
The momentum equations for the basic state are

_gde_ dh
gdr dr

Vg2 fz
0_ + fovs, = d

Substituting (4.1) and (4.2) into (4.3) and solving for
& and Ay,

Vg2
—r + fobe:

(4.3)

f2 2
=5+ 2% Y2Rp2(v2Ro2 — 1) (4.4)
N
hy = h + 2% [viRo(viRo: — 1)

= ¥2Ro2(v2R02 — 1)], (4.5)

where £, and hl are the interface displacement and
depth at the center [ie., & = £(0), A = A(0)].
Relations (4.4) and (4.5) can now be used with (3.11)
to get the desired translation rate,

Cc=- ‘Zs[l+ g};]

This is shown in Fig. 5. Note that in the absence of
a conjugate vortex, each individual vortex would have
translated in the negative x direction (i.e., “westward”
with shallow water on the right hand side) as stated
by (3.12) and (3.13). Bizzare as it may seem, once
combined to form the united vortices, the system can
have a positive translation. Such an “eastward” mi-
gration occurs whenever & i is negative and its absolute
value |&| is less than g'hi/g'. The causes of this
peculiar behavior are related to an intricate balance
of forces acting on the joint eddies. Its properties are
discussed below.

(4.6)

b. General balance

Consider the following forces acting on the system:

1) Gravitational force: This force is the downhill
component of the lens weight relative to its environ-
ment. It corresponds to the third term on the left
hand side of (3.9) (i.e., term C).

2) Integrated Coriolis force: This force results from

the fact that the joint vortices are translating. It is
directed to the right of the moving system and
corresponds to the first term on the left hand side of
(3.9) (i.e., term A).

3) Sloping bottom force: This is the “vortex slope
force” and is associated solely with the vortex above
the lens. It is equivalent to the 8-force associated with
upper ocean eddies. Namely, it results from the fact
that as a particle is circulating within the vortex, it
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FIG. 5. The predicted migration speed for system I (with linear orbital speed) as a
function of amplitude. Note that the migration speeds for both an individual lens and
an individual vortex are directed toward the “west” (i.e., the eddies drift with shallow
water on their right-hand side). Once combined, the joint vortices can drift either

westward or eastward.

experiences high velocities in the shallow region and
low in the deep region. This leads to a high Coriolis
force on the shallow side and low on the deep side
which, in turn, cause a net downhill force for anti-
cyclonic eddies and an uphill force for cyclonic
eddies. These forces correspond to the second term
on the left hand side of equation (3.9) (i.e., term B).

4) “Planetary lift”: Of the four forces acting on
the united vortices, this is the most complicated one.
The important contribution of side pressure forces to
the dynamics of individual isolated eddies was already
pointed out by Nof (1983b). In that article, it has
been demonstrated that it is the mistaken neglect of
this force which led Rossby (1948) to the erroneous

conclusion that single cyclonic vortices move eastward .

on a 3 plane.

To examine the role that such a side pressure force
plays in the problem at hand, we consider the Ber-
noulli integral,

1
6o +022) + P54 iy = Bulgo)  (47)

and its application to the innermost streamline of the
surrounding fluid. Note that, as mentioned earlier,
Use, Uy ~ O(C) because /; ~ O(R,) and the length
scale of the flow outside the joint eddies is also R,.
Consequently, the ratio between the first and third
terms on the left hand side of (3.14) is O(C/fol;)
~ O(g's/fe?ly) ~ O(S). Hence, to first order, (4.7)
can be approximated by

Dae

P Ba(0) — foCy (4.8)

which states that, along y». = 0, the pressure decreases
linearly with y (for positive C). This means that for
C > 0 the pressure on the shallower side (large y) is
smaller than the one on the deep side (small y)
causing a side pressure force (i.e., a “planetary lift”)
in the positive y direction. For C < 0, the lift is
directed in the opposite direction (i.e., downhill)
showing that the planetary lifi is always directed to
the left of the motion.

Another way of looking at this “lift” is by examining
the behavior of a quasi-geostrophic flow around a
solid cylinder which is slowly translating in a barotro-
pic ocean (Fig. 6). As the cylinder is moving in the
positive x direction, fluid is displaced around and,
subsequently, flows in the opposite direction. Since
the drift is slow, the surrounding flow is close to
being geostrophic (i.e., the Rossby number of the
exterior flow C/fl is much smaller than unity) and
the interface level on the right hand side is lower
than that on the left. Consequently, a side pressure
force is established (Fig. 6) and we can again apply
the Bernoulli integral to show that this force is the
lift given by (4.8).

Finally, it is instructive to examine the relationship
between the planetary lift and the lift associated with
the so-called “Magnus effect.” For this purpose we
re-consider the solid cylinder translating in a barotro-
pic fluid. It is recalled that the Magnus side force is
associated with the case where there is no Coriolis
force, but there is some circulation around the cylinder
(e.g., see Batchelor, 1967). The source of this circu-
lation is not important for the present discussion but
it can be thought of as being an indirect result of
rotating the cylinder.
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FIG. 6. Schematic diagram of the pressure side force (“planetary
lift”’) exerted on a solid cylinder which slowly drifts in a barotropic
ocean. As the cylinder is drifting, it displaces fluid to its sides.
Since this displaced fluid is expected to be in a quasi-geostropic
balance, the fluid on the right-hand side is higher than that on the
left-hand side. Consequently, a force in the positive y direction is
generated.

Under such conditions the velocities are low on
one side of the cylinder and high on the other (e.g.,
see Batchelor, 1967, p. 425). This causes low pressure
in the region where the velocities are high and high
pressure in the region where the velocities are low
because, in the absence of the Coriolis parameter, the
quantity 1(z? + v?) + p/p must be conserved along a
streamline. It is, then, the change in (U + V) that
is causing the Magnus side force whereas the change
in foCy is the one responsible for the planetary lifi. In
other words, the Magnus side force is caused by the
first term on the left hand side of (4.7) (which is
usually negligible in the ocean) whereas the planetary
lift is associated with the third term.

¢. Implications

With the aid of the above information regarding
the four active forces we return now to our discussion
of the joint eddies’ drift. It is easy to show that
whether the system drifts westward or eastward de-
pends on the relative magnitude of the forces in
question. Since some of these forces depend on the
system’s internal structure and the others depend
only on the depth around the edge, it is impossible
to intuitively guess the direction at which a given
system will migrate. All the possible combinations
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are shown in Fig. 7 which illustrates that an “east-
ward” propagation is certainly possible.

5. Joint upper ocean eddies with a light lens overlying
a cyclonic or anticyclonic vortex (system II)

With the aid of the computations performed in the
previous sections we shall now derive the migration
speeds for joint upper ocean eddies consisting of a
biconvex lens situated above a cyclonic or anticyclonic
vortex (Fig. 8). The calculations are quite similar to
those described earlier except that they are somewhat
more involved. There are still only four forces acting
on the system and these forces have properties similar
to those described in Sections 3 and 4. However, the
gravitational force associated with the blob is replaced
by a B-induced force and the mathematical expressions
are considerably more involved than those presented
earlier.

As before, we begin by considering the deviations
of the hydrostatic pressures (at points A, B, and C)
from the pressure associated with a state of rest,

Apa = gom
App = gom — g€14p, .1
ApC = 8PM2e
We take the lower layer to be motionless so that
Ap Ap Ap
m=Sh =R e and me==Zhe (52)

In view of these, the momentum equations (in the y
direction) and the continuity equations can be written
as,

v v
m§+m§+%+mm+a
0%y 085

— ot 28l g 52 5.
g a g oy (5.3)

av i av i » a i

u2ia_; + vy —a'f + (fo+ BY)uy + C) = —¢ ai;
(5.4)

0 d
gc(hlul) + a}(hlvl) = 0;

0 0
o (haiuz) + g} (mivy) = 0. (5.5)

As in the deep ocean eddies case, it is convenient to
use the potential vorticity equation and the Bernoulli
integral for the exterior flow,

61)23 d Use

oy +Jo + By = haeKx({2e)
X dy

(5.6)
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(9'+9") s /1y 9's/fy
downhill
a) A single isolated blob b) A single anticyclonic ‘c) A single cyclonic
vortex : vortex
o — |

(g'+29")s/fs

d) Joint vortices consisting e) Joint vortices consisting
of a blob and an anti- of a blob and a
cyclonic vortex above cyclonic vortex above
(¢,2n72). (f—z=‘7'-|/2' 2q" >g").

FiG. 7. The balance of integrated forces acting on the vortices. Thick solid arrows indicate the forces and, as before, “‘wiggly” arrows indicate
direction of migration. Dashed lines denote the isobaths. In cases (a), (b) and (c) the eddies are not joint; namely, these are individual eddies which
drift to the west. Their balance involves the lens’ gravitational force Fg, the coriolis force Fc, the vortex slope force F, and the side pressure force
(planetary lift) F,. In cases (b) and (c) the vortex slope force is pointing in different directions but its magnitude relative to the other forces imposes
a westward drift. In cases (d) and (e) the eddies are joint and the forces are combined in such a way that both eastward and westward drifis are
possible.

1 2 2 . To obtain the solution we proceed, as previously
= + + H . . . ’ . ;
2 (e T 02) + 8 (h2e 2) _ by taking the following steps. First, we multiply (4.3)
- 5.7y @and (4.4) by h, angl hoi (respectlvely) and'then integrate

+ (o + BYDCy = Goldae)- - (3.7) each of the resulting equations over their correspond-

ing areas using the continuity equation and Stokes’

ideri hat the fluid is a . .
By considering the fact t t uic 1s at rest at theorem to show that the integrals over the nonlinear

infinity (see Nof, 1983b), the functions Ky(;.) and

terms vanish identically. Second, we express the terms

G2z are found to be involving the product (f + Sy)uh as —o[(fo + BYW/

% 8y g, dy + By, choose the st}'eamfunctions ¥, and ¥, to be

Kofae) = - + =25 + =2 ~ (5.8) zero along the edges (i.e., ¥, = 0 along ¢; = 0 and

H, CH, H, ¥, = 0 along ¢, = 0) and, using the Bernoulli integral,

‘ 1 Bz  BYo\V2e express the pressure in terms of the exterior flow.

Gr(Y2e) = 3 Cc?+ (ﬂ) + 2CH + —2—)(71— + CYO) . Third, we scale the equations using (3.6) with the
2

small parameter S replaced by ¢ = 8/, /fy, and then
(5.9) expand in power series in € to find,
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FiG. 8. A sketch of upper ocean joint vortices with a lens on top of the conjugate
eddy (system II). The interface displacements £,, £, are measured downward from
the undisturbed depths and the free surface displacements m, 7, are measured
upward. The lower layer is taken to be infinitely deep (i.e., H — ).
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C* = —¢ f @ + \H‘”]dx*dy*/ C=— 68”1";’2(3 + &/H,) (5.19)
@+ 3/o°(1 = v2Re2) '

and for & — £ and H, — 0 (no conjugate vortex)

£ Odx*dy* + O(e®) + - - - (5.10) we recover Nof’s (1981) solution for an isolated lens,

(a+b)® C = —Bry*Ry, /6. (5.20)

where (a + b)® is the area that the joint vortices
would have on an f plane. Note that, with the
exception of S, the scales of (3.6) and (3.6a) are also
appropnate for upper ocean eddies and Gulf Stream
rings because, for these features, /; ~ 100 km, Ry
~40km, B ~2X 10" m~ s fo ~ 1074 57!, Ro;
~ 0.3, uy, y ~ 1 ms!, H~ 600 m and Apl/p
~ 1073, For the purpose of computing the actual
migration speed we shall again consider two velocity
- profiles—linear and parabolic. The results for the
linear profile (4.1) and (4.2) are given below whereas
those of the parabolic are presented in the Appendix.

The momentum equations for the basic state are
similar, but not identical, to (4.3). They can be
written in form

Vg1 + fobu
Dgo?/r + fobo2 =

— g'dty/dr = g'dE, /dr
g'dE,/dr

(5.12)
(5.13)

which together with (4.1) give,

e

2
gE ‘YzRoz(’YzRoz - 1)( )} (5.14)

&= 52{1 + =

fo'r’
2g'¢,

2
— 2 Rox¥2Roz — 1)1(%) } (5.15)

g = s,{1+ s Rox(yiRos — 1)

and 20Es 2
o {‘YzRoz(l - 2R02)} /ﬁ) (5-16)
or
o= { 2¢'%) }'/Z/f
" IyiRo(l — ¥1Ro1) — ¥2Rox(1 — ¥2Re2) 0
(5.17)

where £, and £, correspond to the interface displace-
ments at the center of the eddies (r = 0).
One also obtains, with the aid of (5.10),

Bg"fz
1
= 2[(v1Ros — Y2Re2)(E1/£2) + Y2R02]}

X {3v2Rp(v2R2 — )}, (5.18)

For £ — O (no lens) we recover Nof’s (1983b)
solution for an isolated vortex,

C= /8]

(3[v1Roié1 /B2 + v2Rox(1 + Hy/E ~

The joint eddies migration speed (5.18) as a function
of size is ‘shown in Fig. 9, and as a function of
amplitude and size is shown in Fig. 10. As in the
bottom eddies case, eastward propagation is again
possible. In this context, it is appropriate to point
out that our eastward drift is not related to the
Modon’s eastward drift discussed by Mied and Lin-
demann (1982). The latter is associated with self
advection and the speed that each vortex induces on
its neighboring vortex. The fact that our eddies centers
do not coincide (Fig. 8) may give the false impression
that in our case self advection may also be possible.
This is not the case because the distance between the
eddies centers does not even enter our computation
since each vortex is situated in a different layer.

6. Joint upper ocean eddies with an intermediate lens
underneath a cyclonic or anticyclonic vortex (sys-
tem III)

The combination of eddies appropriate to this case
is shown in Fig. 11. At first glance this case appears
to be very similar to the system considered previously
(system II). We shall see, however, that the actual
detailed solutions of the two systems are very different
and that the case under present consideration is much
more interesting than the previous one. It can be
easily demonstrated, using the techniques described
previously, that the general solution has a structure
identical to that glven by (5.10). Namely, in dlmen-
sional form, the dnft 18,

c~ -8 [ [ @+t [ [ axay 6.0

where, as before, a is the dimensional area that the
joint vortices would have on an f plane.
Using the momentum equations

u £2 ) é_—g_l
@ ar
Vgo?/r + folpr = & ”dsz/ dr,

and the linear velocity profile, (4.1) and (4.2), one
finds the interface displacements, £; and £, to be,

g%/ + foar —

£ = é {1 3 ff [71Ro(v1Roy — 1) §

— Y2 Rox(v2Ro2 — 1)]} 6.2)
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FIG. 9. The migration speed for system II (with a cyclonic conjugate vortex and a linear
orbital velocity) as a function of the eddies’ size. Note how different the joint eddies drift is
from the drift that each individual vortex would have in the absence of its conjugate vortex.
For a weak cyclonic vortex (, < \l/.) the system moves eastward (upper panel); for a strong
cyclonic vortex (i.e., ¥, > ¢,) the joint vortices drift westward (lower panel).

2 2

= éz{l 3 {E

The east-west drift is computed with the aid of (6.1), .
(6.2), (6.3) which give, + v2Rp(1 + £,/85)]

Y2Rox(v2R02 — 1)} 63) C=~ 52252 {3[’71R01(H1/22 - él/éz)
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_§_1. (v1Ro — ’YzRoz)]}
&

X {3v2Ro2(v2Ro2 — 1)} (6.4)

Its dependence on the amplitude and size is shown
in Fig. 12. Note that for £, — —§; (no lens) we again
recover Nof’s (1983b) solution for isolated eddies.

- 2[72R02 -

7. Migratory Taylor columns

This is a special case of system III. It corresponds
to the situation where the conjugate vortex is at rest

relative to the biconvex lens. Namely, as the lens is
drifting, it carries along a column of fluid above it.
We can imagine that such a situation may arise
whenever a lens is drifting into a shallow region
where the upper layer depth (H,) obeys
& C
H, foro
which is the known necessary condition for the
generation of Taylor columns above obstacles (see -
e.g., Taylor 1922, 1923; Hide, 1961; Jacobs, 1964;

(7.1)
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&, is measured downward. The lower layer is infinitely deep (H, — o0).

1129



1130

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 15

«-—-=-~= anticyclonic lens

and a cyclonic vortex on top

Yy =+1; Yz='1; fz/HﬁOJ gl 3
2
__'Eﬁ___q
[8(e"+a M /17]
=
————— anticyclonic lens and L':‘_
an anticyclonic vortex on top
Y1=+1; Yz=*1;ez/Hi= 041 - “E,

and a cyclonic vortex on top

a cyclonic lens

Y, =-1; Yy=-1;& /H, =0.1

.. 2 ?‘/é\zzz

+ o/{lie "] o)

\'\.__ a/é\z =3.

System III, Ap, /Ap2 =1

FiG. 12. The predicted migration speed forsystem III (with a linear velocity profile) as a function of
size and amplitude. Note that (i) the system can drift eastward (C > 0), and (i) joint eddies consisting of
two cyclonic eddies can drift westward at a speed larger than the long wave speed.

. Ingersoll, 1969; Hogg, 1973; Huppert, 1975; Mc-
Cartney, 1975). The right-hand side of (7.1) is typically
a few percent [because C ~ O(1) cm s™!, fo ~ 107™*
s7!, and ry ~ O(10) km] whereas the left hand side
is ~QO(1) [because £ ~ 100-500 m; H, ~ 1000 m]
so that the condition is easily satisfied. In fact, the
condition &;/H, > C/foro ~ O(e) is satisfied over the
whole “blob” except a very narrow ~O(erp) ring near
the edge.

The drift of the lens and column is found by taking
the limit of the general drift (6.4) as Ro; — 0. Since
the differences between the drifts of eddies with linear
orbital speed and those with parabolic profile are
minute, we shall focus our attention on the simpler

group (i.e., eddies with linear speed). For these con-
ditions we find from (6.4),

_ Bt £)
3/6%(1 — Roz)

where the subscript “/T” indicates that the variable
in question is associated with a lens and a Taylor
column. This speed is slower than that of an identical
isolated lens “sandwiched” between two infinitely
deep layers,

Cir= (7.2)

Bg'(1 + Api/8py)E + &)

C=- ,
! 3/%(1 — Rez)

(7.3)
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where the subscript “/” denotes an association with
a single isolated lens. The ratio between the two
migration speeds is,

LS (A—”) .

Cr Apy
Namely, when Ap; = Ap; the column and lens drift
at half the speed of a single lens sandwiched between
two infinitely deep layers.

Two comments should be made with regard to
(7.4). First, it should be pointed out that of the three
systems considered in this study (I, II and III) only
the case described above corresponds to a Taylor
column translating steadily to the west (or east). This
does not mean that a heavy blob on a sloping floor
(system I) cannot have a Taylor column above it nor
does it imply that a light lens cannot have a column
under it (system II). It merely indicates that if a lens
produces a Taylor column in one of these latter cases,
then it will move unsteadily in a direction different
from the west (and east). Second, it is important to
realize that the case corresponding to a mid-depth
lens with a Taylor column on top may be relevant
to various mesoscale vortices such as the so-called
“Meddy” (see e.g., Nof, 1982). In this case, the ratio
between the actual lens depth and the actual upper
layer depth is ~0.5 so that a Taylor column may
well be present on top of the lens. If this is indeed
the case then the Meddy’s S-induced speed is about
half the speed predicted by Nof (1982).

(7.4

8. Discussion

Qur results for systems I, IT and III are summarized
in Table 1. It should be noted that there are upper
and lower bounds on the Rossby numbers (Rg;, Ro2)
that can be used with (4.4)-(4.6), (5.18) and (6.4)
(see Fig. 13). These bounds result from, (i) the fact
that the negative relative vorticity 1/r/d(rv,)/dr must
be smaller than f, so that the eddies are inertially
stable, and (ii) the conditions that #, = 0 and h,
< 0 everywhere.

a. Applications

Before discussing any of our applications, it should
be mentioned that the discussion in this subsection
is largely conjectural because of the limited observa-
tional information that is available. A detailed appli-
cation of our model requires a substantial amount of
information on much of the water column (top to
bottom) and the existing literature cannot provide it.
With this point in mind we now turn to some specific
examples. The first application which we shall discuss
is that of the joint eddies shown by configuration 3
(Table 1) to the warm-core rings found north of the
Kuroshio. The warm-core rings found in the region
immediately to the east of Japan behave in a rather
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peculiar fashion. Instead of migrating westward as
most warm rings do, they migrate northward and
then toward the northeast (e.g., see Kitano, 1974,
1975; Ichye, 1955; Tomasada, 1978). Several sets of
observations have confirmed this despite the fact that
the mean flow in which the eddies are embedded has
been traditionally viewed as a southwestward flowing
current (e.g., Kawai, 1972; Cheney, 1977).

Our suggestion is, then, that this eastward move-
ment could perhaps be a result of a weak cyclonic
vortex situated underneath the warm-core rings. Un-
fortunately, the lack of deep sections across the rings
does not allow any detailed quantitative comparison
between the model and the observations. Most of the
observations in the area in question are so shallow
(<800 m) that we cannot even say whether there
exists a conjugate cyclonic eddy. It should be pointed
out, however, that for £© ~ O(1) the predicted
migration speed is O(1 cm s™') which is of the same
order as the observed drifts.

The second application which we shall consider is
that of configuration 8 (Table 1) to cold-core Gulf
Stream rings. These cold-core rings are known to
trap and carry slope water as they migrate. A two-
layer model (e.g., Nof, 1983b) cannot explain the
trapping because the slope water which is carried
along is usually found below the thermocline (e.g.,
The Ring Group, 1981). The three-layer model, on
the other hand, resolves this because it allows for the
slope water to be represented by the lens. Several
observations suggest that such a structure may, in
fact, exist. For example, the 10 and 11°C isotherms
shown in Fig. 1 of Lai and Richardson (1977) can be
thought of as the lower and upper boundaries of a
converging meniscus lens.

The joint eddies concept corresponding to config-
uration 8 has an additional appealing aspect; the
presence of a converging meniscus lens under the
cold-ring allows for migration speeds higher than the
long-wave speed. Two-layer models for isolated eddies
(e.g., Nof, 1983b) consistently predict migration speeds
which are too low (~2 cm s™!) compared to the
actual drift (~5 cm s7'). Adding a lens underneath
the ring can increase the predicted speed from ~2 to
~4cm s,

A third application which comes to mind is that
of eastward propagating joint eddies consisting of a
weak cyclonic ring with an anticyclonic vortex un-
derneath (configuration 5, Table 1). This system may
be relevant to some unusual cold-core Gulf Stream
rings because on some occasions cold-rings were
observed to move toward the northeast (e.g., Rich-
ardson et al., 1977) even though there are indications
that the mean flow is directed toward the west or
southwest. A fourth application of the theory was
already discussed in the previous section. It is related
to the idea that Taylor columns can form above
isolated lenses so that a system of a biconvex lens
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TABLE 1. The drift of joint eddies.

VOLUME 15

Configuration

Description

Direction of migration

Migration speed

System |, joint topographic
eddies consisting of a
lens underneath a
cyclonic or anticyclonic
vortex. The eddies are
overlayed by an
infinitely deep layer.

System /I, joint upper
ocean eddies consisting
of a lens on top of a
cyclonic or anticyclonic
vortex. The vortices
overlie an infinitely deep
layer.

System lll, joint upper
ocean eddies consisting
of a lens underneath a
cyclonic or anticyclonic
vortex

®

=
=8

Plano-convex lens
undemeath a
cyclonic vortex

Plano-convex lens
underneath an
anticyclonic vortex

Biconvex lens on top
of a cyclonic vortex

Biconvex lens on top
of an anticyclonic
vortex

Biconvex lens
underneath a
cyclonic eddy

Biconvex lens
underneath an
anticyclonic eddy

Converging meniscus
lens underneath an
anticyclonic vortex

Converging meniscus
lens underneath a
cyclonic vortex

Biconvex lens with a
resting Taylor
column on top

“Eastward’”’ when
cyclonic vortex is
weak® and
“‘westward” when
cyclonic vortex is
strong

“Westward”’

Eastward when
cyclonic vortex is
weak and westward
when cyclonic vortex
is strong

Westward

Eastward when
cyclonic vortex is
strong and
westward when
cyclonic vortex is
weak

Westward

Westwérd

+ Westward

Westward

Eastward speed is
unbounded®
westward speed is

Olg's/to)

Unbounded

Eastward speed is
unbounded,
westward speed is
slower than the long

wave speed®

Faster than the long
wave speed

Eastward speed is
unbounded,
westward is less
than the long wave

speed

Slower or faster than
the long wave speed

Slower or faster than
the long wave speed

Unbounded

Slower than the long
wave speed and
slower than the lens
migration speed

® Hereafter, ‘‘weak’’ and ‘'strong’’ indicate intensity relative to the lens.
® The term *‘unbounded’’ is used in the sense that the speed is not limited to the order of the long wave speed. It is, actually,
bounded for two reasons. First, our perturbation scheme breaks down whenever the drift becomes comparable to the swirl speed.
Secondly, it cannot grow beyond the values for which hy; h, become zero and the values which cause a negative relative vorticity

larger than f,.

¢ The long wave speed is defined on the basis of the environmental undisturbed depth and the environmental stratification.
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System lil, linear velocity profile

FIG. 13. The permissible range for the Rossby numbers (shaded areas). The upper and lower bounds result from (i) the fact
that the negative relative vorticity must be smaller than f; so that the eddies are inertially stable and, (ii) the conditions that
h, = 0 and h; = 0 everywhere. Note that, in addition to these limitations, our scaling is valid only when the eddy length scale
is at least of the order of the deformation radius.
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and a column on top of it could represent a realistic
situation for various vortices.

'b. Limitations and weaknesses

The most important weakness of all of our systems
(i.e., I, I and III) is that we have not found the
complete first-order solution so that, in fact, we have
not really proven that our solution is correct. That is
to say, the complete first-order solution may involve
compatibility conditions which could, perhaps, be
more restrictive than our scalings. While this is no
doubt a weakness, it is very difficult—and probably
impossible—to overcome because it is not clear that
the most general first-order solution can ever be
found analytically.

An additional limitation stems from the fact that
we have neglected the motion in the third layer. To
illustrate the difficulty with this point we shall first
look at systems II and III because, it turns out that,
from this point of view, they are simpler than case I.
Recently, Flierl et al. (1983) demonstrated that if the
eddies in a stratified system are isolated in all layers
(i.e., away from the eddy all the disturbances decay
at a sufficiently fast rate) then the integrated sum of
all the stream functions should vanish. Furthermore,
Flier] (1984b) has shown that when this integral
constraint is applied to a single isolated lens embedded
in a layer whose depth is H, one finds that only a
subset of the results agrees with the Nof (1981)
assumption of steady migration rate for H — oo.

This can be interpreted in two ways. The first
possibility is that the Nof (1981) basic lens model is
singular (i.e., the actual solution for a finite lower
layer does not reduce to a lower layer with zero
velocity when H — oo). The second is that the flow
in the lower layer is not necessarily isolated (i.e., the
disturbances génerated by the moving lens do not
decay sufficiently fast for the integrated constraint to
be valid). This essentially means that the isolation
requirement (in the lower layer) overrestricts the
system. The second possibility is more natural and,
indeed, when the isolation constraint is relaxed and
wave radiation is allowed, one finds that the solution
for a lens with a finite lower layer (Flierl, 1984a)
reduces to the Nof (1981) solution when H — oo.
One, therefore, concludes that the Nof (1981) solution
is not singular and that whenever the lower layer is
finite there will be wave radiation. The main effect
of this radiation is to alter the direction of migration.
Specifically, as a result of a finite lower layer, isolated
lenses move toward the southwest instead of moving
straight toward the west (Flierl, 1984a).

It is expected that similar behavior will be present
in system II and III. Namely, if one were to develop
a model with the lower third layer being finite and
active (instead of infinite and motionless) then there
will probably be some modifications to the direction

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 15

of migration (i.e., the joint eddies would move toward
the northeast, southeast, southwest and northwest).
Before proceeding, it is worth mentioning that the
assumption of a motionless lower layer is valid even
if the transport in that layer is of the same order as
that of the other layers because the only condition
that must hold is that the velocity is negligible.

We shall now turn our attention to the neglect of
motion in the upper layer of system 1. Recently,
M. E. Stern has developed a topographic constraint
analogous to the beta constraint discussed by Flierl
et al. (1983) (e.g., see Mory, 1983; Nof, 1984). For a
two-layer system one finds that, in a similar fashion
to the @ constraint, when no wave radiation is allowed
in the layer surrounding the lens, the integrated sum
of the pressure deviations must vanish. Unfortunately,
an analysis equivalent to that performed by Flierl
(1984a,b) for upper ocean eddies has not been made
yet for deep ocean eddies so that we cannot say what
the features of a solution with wave radiation would
be like. It is expected, however, that it will not be
fundamentally different from that of the upper ocean.
Namely, we expect that when the upper layer is finite
and active, the migration of the system will generate
waves on top and these will, in turn, alter the
direction of migration (through their wave drag effect).

9. Summary

This article introduces new combinations of eddies
and nonlinear coupling between vortices; it focuses
on topographically and 8 induced drifts. Solutions
have been constructed under the assumptions that:
(i) the ocean can be approximated by three layers,
one of which can be taken to be at rest; (ii) the
motion is approximately steady, frictionless and non-
diffusive; and (iii) the joint eddies translate without
significant changes in their structure. Three different .
kinds of joint vortices are considered and their be-
havior is given in Table 1. It can be summarized as
follows:

e Joint vortices consisting of a heavy lens situated
over a sloping bottom underneath a cyclonic or anti-
cyclonic vortex which is overlayed by an infinitely
deep fluid (system I): This system translates with
shallow water on its right (i.e., “westward”) or with
shallow water on its left (i.e., “eastward”). Eastward
drifts occur even though each individual vortex trans-
lates westward in the absence of its conjugate vortex.
Both the eastward and westward speeds are un-
bounded but our perturbation scheme breaks down
whenever the drift becomes comparable to the orbital
speed.

e Joint vortices consisting of a light lens situated
above a cyclonic vortex which overlies an infinitely
deep fliid (system II): In a similar fashion to system
I, both westward and eastward drifts are possible. For
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westward drifts, the migration speed is of the order
of the long wave speed (based on the undisturbed
environmental depth); it is faster than the long wave
speed whenever the lower vortex is anticyclonic.
Eastward drifts are not bounded and are not limited
to the long wave speed.

e Joint vortices consisting of an intermediate lens
which overlies an infinitely deep fluid and is situated
underneath a cyclonic or anticyclonic vortex (system
III): In a similar fashion to systems I and II, eastward
movements are also possible. This can occur whenever
the upper vortex is cyclonic and the lower is a
biconvex lens. Both eastward and westward drifts are
not limited to the long wave speed; they are un-
bounded.

e Joint vortices consisting of an intermediate lens
carrying a Taylor column on top of it. This is a special
case of system III; the feature migrates toward the
west at a speed which is slower than the long-wave
speed. It is also slower than the speed that the
intermediate biconvex lens would have if it were
“sandwiched” by itself between two resting layers.

It is demonstrated that these peculiar migratory
patterns stem from the presence of a side pressure
force which we term planetary lift. This side pressure
force acts in the north-south direction and alters the
balance of forces in such a way that both eastward
and westward movements are possible. It also causes
the rather high westward drifts.

Several applications of the cases described are
mentioned. First, it is pointed out that the eastward
propagating vortices associated with system II (i.e., a
biconvex lens situated on top of a weak cyclonic
vortex) may be relevant to the warm-core rings
observed north of the Kuroshio because the latter
have been observed to move toward the northeast.
Second, it is mentioned that the eastward propagating
eddies associated with case III (i.e., a strong cyclonic
vortex situated on top of a weak biconvex lens) could
be of some relevance to the cold-core Gulf Stream
rings which, on several occasions, have been observed
to move eastward. Third, it is suggested that system
III with a cyclonic vortex situated on top of a
converging meniscus lens could be relevant to some
cold-core Gulf Stream rings because it may explain
the trapping of fluid under the thermocline. Finally,
it is shown that a biconvex lens propagating with a
Taylor column on top of it could be related to mid-
depth vortices such as the “Meddy.”

DORON NOF

1135

Acknowledgments. Computations and computer
generated plots were made by S. VanGorder whose
professional help as a programmer is much appre-
ciated. I thank G. Flierl and R. Mied for helpful
conversations regarding various aspects of isolated
vortices. Discussions with G. Weatherly, D. Olson
and W. White regarding the observational aspects of
the problem were very useful. R. Mied made useful
comments on an earlier version of this paper. This
study was supported by the Office of Naval Research
Contract N00014-82-C-0404 and by the Florida State
University.

APPENDIX

Induced Drifts for Joint Vortices with Parabeolic
Velocity Profile

1. Joint vortices on a sloping bottom (system I)

The parabolic velocity profiles are given by,

Dpy = v.RmﬁJr(i - 1) (A1)
o

’
Vg2 = ‘YzRozﬁJ"(;; - 1) (A2)

where, as before, v, = |, —1; v, = 1, —1 for
anticyclonic and cyclonic eddies, respectively. The
interface displacement £, and the depth A, are found
from (A1)-(A2) and (4.3) to be,

. R 2.2
H=F5+ (‘Yz 02fo’r
g'(2y2Rpy — 1)
2v2Rop fo'1?
3g'ro(1 ~ 4v2Rp) g’
By = by + (Rot’ “”Rozzz)ﬁ)zr4
8T
+ 2[v1Roi(1 — 4v{Rq;) — v2R0x(1 — 472 Rp2)]
X fo*r3/38"r0 + [v1Ro1(2Y1 Roy — 1)

— v2R02(2v2 Rz — D] fo*r?/8".

(A4)

Substitution of these relationships into (3.11) shows
that the migration speed is,

C=— gs (g_'S)[’YlRm(’YlRm — 1) — v2Ro(v2Ro2 — 1)]

Jo Jo Y2Ro2(v2Rp2 — 1)

{3[71R01(871R01 — 7) — Y2R0x(8v2Ro2 — 7)]
[v2Ro2(v2Ro2 — 1) — ¥ Roi(v1Roy — D]

+ 30} % {3(872Roz -7

-1
(1 = v2Rp2) +30} - (A3
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2. Upper vortices consisting of a light lens overlying
a cyclonic or anticyclonic vortex (system II)

With the aid of (A1), (A2), (5.12) and (5.13) we
find,

b= b1 - :

Y1Roi(v1Ror = 1) — v2Roa(v2Rp2 — 1)

2
r
X [[71R01(271Rm = 1) = v2R02(272Rp2 — 1)] P

2 .
+ 3 [v1Roi(1 — 4v1Ro)) — v2R0x(1 — 4v2Rp2)]

3 R rt
X —5 + (Roi® — Ro2®) —;]} (A6)
"o "o

3Bg”é2

C =~
ﬁ)2

<(§){71Rm/10 = 3(viRo1 — v2R02)/
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and

3
Y2Rox(v2Rp2 — 1)

&= §2{1 - [’YzRoz(z’YzRoz -1

rr 2 r’ , r
X =5+ 3 72R01 = 4v,Rp) — + Rox” 3 ¢ -
o o )

(AT)

Substitution of (Al), (A2), (A6) and (A7) into the
integral (5.10) gives, after some tedious algebra.

[v1Roi(v1Ro: — 1) — Y2Roa(v2Ro2 — 1] X [(R0y%/36 ~ ¥1Ro1/42) — (Ro2*/36 — v2R02/42)1}

1
+ 'YzRoz{"_ +

10 105  10&,

X {Ro2* ~ 2Rz } ™!

which is the desired expression for the migration
speed.

3. Upper vortices consisting of an intermediate lens
situated underneath a cyclonic or anticyclonic
vortex (system III):

For this case the interface displacements are found,

from (A1), (A2) and the momentum equations, to be

3
— Y2Rpx(Y2R02 — 1]

b= gl{l - [viRoi(viRo — 1)

2

X [[71R01(2‘YIR01 ~ 1) = ¥2Ro2Y2Ro2 — 1] %

H & 3(Re?/36 ~ 72R02/42)}>
Y2Rox(v2Ro2 — 1)

4 7
3(3 Ro® — 0 ’YzRoz)

1 - (A8)

Y2Ro2(v2Ro2 — 1)

2 r
+ 3 [v1Ro1(1 — 4v,Ro1) — v2Ro2(1 — 472Rp)] ?

o
+ (Roi® — Ro?) ;02]} (A9)

and
s—é{l— > [72Rea2v2R = 1)
2 Y2Ro(v2Ro — D L1227 12092
rr 2 r’ r
X —5 + = ¥2Rox(1 — 4v2R02) =5 + Ro?’ “z]} .
fo 3 To 7o

(A10)

These relationships and (A1)-(A2) can now be sub-
stituted into (6.1). After some tedious, but straight-
foreward, algebra one finds,

3(v1Ro1 — v2R02)

c=¥e% {E‘ [YIROI(H./Q ~ 1y/10 +
FERE:

2

[v1Roi(YiRo1 — 1) — v2Ro2(v2R02 — 1)]

X [(R012/ 36 — v1Ru/42) — (Rozz/ 36 — ’72R02/42)]]

+ ‘72R02[(1 T E:/Sz)/lo - ‘YzRoz(’YZROZ - 1)

(Ro2*/36 — ‘72R02/42):|} X (Ro2?/5 — 3v2R02/10) 7.

(All)
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It is important to note that, as in the linear profile
case, there are upper bounds on Ry, and Ry;. Con-
ceptually, these bounds do not differ much from
those of the linear case (Fig. 13) and, therefore, they
are not presented.
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