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Abstract. This paper presents a Hilbert-style system for Alpha graphs,
the first part of Existential Graphs. A set of generalized Sheffer-strokes are
the only connectives in the “symbol-based” formal system for Alpha graphs,
and the most important advantage of the system is that both the decision
procedure and the completeness’s proof via countermodel are immediate.

1 Introduction

The present paper is an attempt to amalgamate two systems of logic that Peirce
developed over his long career. In the paper titled “A Boolean Algebra with One
Constant” of 1880, Peirce showed how all the elective functions of Boole could be
expressed by use of a single primitive sign with the meaning of “neither . . . nor . . . ”.
This is the first discovery of the truth-functional completeness of the 2-ary connec-
tive Sheffer’s stroke function (henceforth, sheffer-stroke), “|” in notation. This fact
is rediscovered by H.M. Sheffer in 1913 in his “A Set of Five Independent Postu-
lates for Boolean Algebras, with application to logical constants”. Then, the most
important development is the presentation of the calculus in a strictly axiomatized
form. Based on Peirce and Sheffer’s taking A|B as undefined, Nicod showed in his
1917 article “A Reduction in the Number of the Primitive Propositions of Logic”
that the whole calculus could be based on the single axiom

[A|(B |C )]| ([D |(D |D)]| {(E |B)|[(A|E )|(A|E )]})
with

α α|(β|γ) / ∴ γ

as a rule of inference in place of the traditional modus ponens. But it can scarcely
be said that the reduction achieved by Nicod is a simplification which makes the
theory easier to grasp. Peirce himself also says: “Of course, it is not maintained that
this notation is convenient.” ([Pe33] 4.20)

The sheffer-stroke has two dual interpretations “neither . . . nor . . . ” and “ei-
ther not . . . or not . . . ”. It is worth noticing that introducing the sheffer-stroke
into Existential Graphs should avoid this kind of troublesomeness resulted from
Peirce’s “notation in which the number of signs should be reduced to a minimum”
([Pe33] 4.12) and simultaneously save the elegance because of the least primitive
connective. Throughout his scientific life Peirce explored, with seemingly endless
creativity and stamina, one notational device after another. Peirce’s chapters on
Existential Graphs in volume 4 of his Collected Papers contain a wealth of ideas.
We know that sheffer-stroke “either not . . . or not . . . ” could be defined by two
classical connectives negation and conjunction as “it is not the case that A and B”.
Interpreted as negation and conjunction, the only two primitive operations “Cut”
and “Juxtaposition” underlie Existential Graphs. From this point of view, then,
introducing the sheffer-stroke “either not . . . or not . . . ” into Existential Graphs



is very much apropos although the most outstanding characteristic of Existential
Graphs is the “Iconicity”. Of course according to Peirce a graph is in the main an
“Icon” of the forms of relations in the constitution of its “Object,” but nevertheless,
it will ordinarily have symbolic features:

Now since a diagram, though it will ordinarily have Symbolic Features, as
well as features approaching the nature of Indices, is nevertheless in the
main an Icon of the forms of relations in the constitution of its Object, the
appropriateness of it for the representation of necessary inference is easily
seen. ([Pe33] 4.531).

In accordance with this idea, certainly Existential Graphs can be regarded as an
iconic system as well as a symbolic system. Based on the sheffer-stroke interpreted
as “either not . . . or not . . . ” and two rules of inference in place of the original
ones, this paper develops an axiomatic system for the first part of the Existential
Graphs, Alpha. The most outstanding advantage of this system is that the proof
of every provable graph is effective. In the original occasion it is allowable to draw
n graphs on the same area simultaneously, so in the system to be developed we
adopt a generalized version instead of 2-ary sheffer-stroke, which occurs implicitly
like many situations of Peirce himself.

We proceed as follows: Section 2 is a short introduction to the Peirce’s Alpha
Graphs, the readers who familiar with Existential Graphs should jump over this
section. An axiomatics for the Alpha graphs defined by this paper and an informal
definition of a deduction-tree of this axiomatics are given in section 3, moreover,
this section describes a backward chaining procedure along with the inference rules
for every graphs. Based on the semantics presented in section 4, section 5 establishes
the soundness and completeness theorems for our formal system. In the conclud-
ing section we present some expectations for further research and defaults of this
approach.

2 Alpha Graphs

Peirce sets up Existential Graphs with the intention of providing a logical analysis
of mathematical reasoning. We start with by considering the grammar of the Alpha
system. In fact, the language of the Alpha system can be described as a propo-
sitional language augmented with a propositional constant and based on a small
complete set of connectives, namely negation and conjunction.

In the Alpha part there are just three primitive types of symbol:

1. A piece of paper or a blackboard upon which it is practicable to scribe the
graphs, termed the Sheet of Assertion. Every part of the surface is called the
blank.

2. Propositional signs (e.g., A, B, . . . ), probably any symbols, words or natural
language sentences.

3. A self-returning finely drawn line known as a Cut or Sep.

Peirce occasionally employs a linear (or, bracket) notation for his graphs, a notation
that is convenient for typesetting and space considerations though not as visually
perspicuous as his two-dimensional notation 1. In the situation without confusion, it
is convenient to adopt this linear notation (more precisely, square bracket notation).
Semantically, the sheet of assertion represents the universe of discourse. Writing the
1 See, e.g., [Pe33], 4.378–389.

2



propositional signs on the sheet of assertion amounts to asserting their truth. For
example, as Peirce states ([Pe33] 4.433), by writing

The pulp of some orange is red.

we assert that in our domain of discourse it is true that the pulp of some orange
is red. Negation and conjunction are the principal logical connectives of the Alpha
system. The sign for negation is the cut. By encircling the above assertion we get

[The pulp of some orange is red ].

which asserts that it is false that the pulp of some orange is red. The conjunction
of two or more assertions is obtained by juxtaposing the assertions together on the
sheet. For example,

The pulp of some orange is red.
To express oneself naturally is the last perfection of a writer’s art.

asserts that the pulp of some orange is red and to express oneself naturally is the last
perfection of a writer’s art. The other propositional connectives can now be defined
in terms of cut and conjunction. Truth is represented by the empty sheet of assertion
and falsity by an empty cut. In the Alpha system Implication is presented as [A[B ]].

One of the advantages of graphic notation is the ease of reading the graphs in
many different ways, for example, the disjunction “A or B” may be read in at least
five more ways 2. In the same time, on the other hand, the syntactic history of
Peirce’s graphs is fundamentally different from the way a formula is composed out
of the basic vocabulary of its system, that is to say, Peirce’s graphs are pressed for
the property of unique readability.

The rules are the following:

1. Deletion and Insertion: “Within an even finite number (including none) of seps,
any graph may be erased; within an odd number [of seps] any graph may be
inserted.” ([Pe33] 4.492)

2. Copying Rule: “Any graph may be iterated within the same or additional seps,
or if iterated, a replica may be erased, if the erasure leaves another outside the
same or additional seps.” ([Pe33] 4.492)

3. Double Negation Rule: “Anything can have double enclosures added or taken
away, provided there be nothing within one enclosure but outside the other.”
([Pe33] 4.379)

3 Axiomatics

In the system to be developed for Alpha the primitive symbols include sentence let-
ters p0, p1, . . . , (p, q, r, s for metavariables) and the cut [ ] (or ( ), { } if necessary)
in brackets-notation. And the number of the primitive connectives is infinite and
each is a generalized n-ary sheffer-stroke (henceforth nand) which occurs implicitly,
for n ≥ 0.

Now define a set, Ag, of Alpha graphs in the following way:

Definition 1. 1. Every sentence letter is a graph.

2 According to a manuscript of Shin’s.
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2. For n≥0, if α0, . . . , αn−1 are all graphs, then the single cut of the juxtaposition
[α0 . . . αn−1] of the n graphs α0, . . . , αn−1 is a graph 3.

3. Nothing else is a graph.

In the definition of “graph” there is no restriction on the order of the n graphs
α0, . . . , αn−1. This applies also to linear transcriptions of graphs. In other words,
the order of the n graphs α0, . . . , αn−1 in graph [α0 . . . αn−1] has no logical signifi-
cance.

By the above definition, if n= 0, then the empty cut (called Enclosure), [ ]
in bracket notation, is a graph; and if n= 1 and αi is a sentence letter say p,
then a single cut of αi is a graph, i.e., [p]; similarly, [[αi]] is a graph. Additionally,
p, the scrolls [p[q]], [[p][q]], the double cut (namely the empty scroll) [[ ]], etc.,
are all graphs. Evidently, the empty space and the juxtaposition of the n graphs
α0, . . . , αn−1 such as pqs, p[q], are all “well-formed” graphs by Peirce’s definition
but no more by ours. So, it is not the case that all of the original Alpha graphs
are captured by our definition. But the graphs at present do have the property of
unique readability because the two operations Cut and Juxtaposition in fact have
been handled unitarily as one connective though.

Definition 2. The set of subgraphs of a graph α is the set Sub(α) such that:

1. Sub(p)={p};
2. Sub([α0 . . . αn−1])={[α0 . . . αn−1]}∪

⋃n−1
i=0 Sub(αi)

Sentence letters have no immediate subgraphs, and the collection of immediate sub-
graphs of [α0. . . αn−1], I-Sub([α0 . . . αn−1]) in notation, is the collection of graphs
α0, . . . , αn−1; similarly, for αi∈Γ , I-Sub(Γ )=

⋃n−1
i=0 I-Sub(αi).

By the definition of graphs every well-formed graph is a sentence letter or a
single cut of a graph αj , then every immediate subgraph of the graph [α0 . . . αn−1],
i.e., α0, . . . , αn−1, is a sentence letter or a single cut of a graph. For example, let α
be

[p q (r[ [ ] ][s]) [ ] ]

Then I-Sub(α) is exactly the set

{p, q, (r[ [ ] ][s]), [ ]}
which includes four members.

Let α, β be grphs and β∈I-Sub(α). Then we have the following notions:

Definition 3. 1. α is a simple grapha if and only if α=[ ] or α=p or α=[p] for a
propositional variable p; 4

2. β is an atomic nand if each immediate subgraph α in I-Sub(α) is a simple graph.

That is to say, a graph is an atomic nand if and only if its immediate subgraphs
are all simple graphs.

Now we state the axioms and diagrammatic transformation rules for our graphs.
There are two axiom schemas and two rules of inference. The two axiomatic schemas
are:
3 Shin develops a definition for Peircean Alpha graphs. In her definition the implicit

sheffer-stroke seems ready to come out at one’s call. Our definition could be regarded
as a refined version of hers. See [Sh02], p.65.

4 This definition can be viewed as a contraction of the definition 4.3 of Shin’s. See [Sh02],
p.65.
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Definition 4 (Axiom).

1. Every atomic nand whose set of immediate subgraphs contains at least one empty
cut is an axiom.

2. Every atomic nand whose set of immediate subgraphs contains some sentence
letter and its negation is an axiom.

Rules are schemas too. Let α0, . . . , αm−1, β0, . . . , βn−1 be graphs for m, n ≥ 0, α and
β denote these two sequences of graphs respectively. The two diagrammatic trans-
formation rules, called rule of double cut insertion (rule 1) and rule of unification
of n graphs (rule 2) respectively, are as follows:

Definition 5 (Rule).

1. From [αβ] infer [α[[β]]];

2. From n graphs [α [β0]], . . . , [α[βn−1]] infer [α[β]].

The definition of a graph being provable from a set of graphs is then defined as
follows: Let Γ∪{α} be a set of graphs, then α is a provable from Γ (written Γ�α) if
and only if there is a finite nonempty sequence of graphs 〈α0, . . . , αn−1, α〉 such that
each member of this sequence is either a member of Γ , an axiom, or follows from
previous graphs by one of the two diagrammatic transformation rules. The sequence
〈α0, . . . , αn−1, α〉 is called a deduction of graph α and the number of 〈α0, . . . , αn−1,
α〉 is called the length of a deduction. If Γ is empty (i.e., �α), then α is a theorem.

Generally speaking, Hilbert-style systems can be useful as formal representa-
tions of what is provable, but the actual finding of proofs in Hilbert-style systems is
next to impossible. This is not the case in the system just stated. In this system, de-
ductions will be presented as trees, called deduction-trees ; the nodes will be labeled
with graphs; the labels at the immediate successors of a node v are the premises of
a rule application, the label at v the conclusion. At the root of the tree we find the
conclusion of the whole deduction.

In accordance with the from-bottom-to-top direction in the two diagrammatic
transformation rules, every deduction-tree grows upwards from its root, i.e., the
graph needed to be proved. The procedure is as follows:

1. If a label at the node v is a graph which set of the immediate subgraphs has a
graph with one double cut of a graph (or many graphs) as its member, then, in
accordance with the rule of double cut insertion, we erase the double cut and
take the result as the immediate predecessor of v.

2. If a label at the node v is a graph that the set of its immediate subgraphs has
a graph with one cut of many graphs as its member, then, in accordance with
the rule of unification of n graphs, we take the cut of many graphs apart and
take the result as the immediate successors of v.

In general, the step (1) is considered prior to the step (2). Repeatedly use these
two steps the deduction-tree grows from bottom to top gradually. Whenever all
the labels at the tops of every branch are atomic nands, the growth of the tree
ends. Finally, write down on the paper all of the graphs from top to bottom line by
line (and delete the repetitions, if any) which complete the proof. By constructing
a deduction-tree with these two steps, the provability of a graph is reduced to the
provability of a finite collection of atomic nands, and when all of these atomic nands
are axioms then the original graph is provable.
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4 Semantics

Having stated the axioms and rules, we can now turn to the task of showing that
they are complete. To formulate the completeness issue precisely it is necessary to
provide a semantics for the graphs. The semantics for the system is similar to that
for propositional logic. Let Γ be a set of graphs, then we have

Definition 6 (truth assignment). a truth assignment is a function ∗ from Γ
onto {1, 0} such that ([α0. . .αn−1])∗ =1 if and only if (αi)∗ = 0 for some i<n.

By this definition, the graph [α] is called the negation of the graph α, 5 and now
the 2-ary sheffer stroke | is expressed by [pq] in bracket-notation. Moreover, the
definitions of all the seven signs in a Boolian Algebra are restated in bracket-notation
as follows:

1. ¬p =df [p]

2. p∧q =df [[pq]]

3. p∨q =df [[p][q]]

4. p→q =df [p[q]]

5. 1 =df [[ ]]

6. 0 =df [ ]

7. p↔q =df [[pq] [[p][q]]]

Let ∗ be a truth assignment function, Γ a set of graphs and α a graph. We say that
α is satisfiable provided that (α)∗=1; in this case ∗ satisfies α, otherwise (α)∗=0.
Similarly, we say that Γ is satisfiable provided that for each α ∈ Γ , (α)∗=1; in this
case ∗ satisfies Γ (written (Γ )∗=1; otherwise (Γ )∗=0). We say that α is a tautology
(written |= α) provided that for each function ∗, (α)∗=1. Finally, if Γ ∪ {α} is a
set of graphs we say that α is a logical consequence of Γ (written Γ |= α) if every
function ∗ that satisfies Γ satisfies α.6

5 Soundness and Completeness

The soundness and completeness theorems together assert the equivalence of prov-
ability (�) with tautologicality (|=).

We state three propositions here before our proof of the soundness and com-
pleteness theorems:

Lemma 1. All axioms are tautologies.

Proof. Without loss of generality, let α be a sequence of simple graphs, then ac-
cording to our semantics defined above it is easy to prove that [[ ]α] is a tautology.
Similarity for the second axiom. ��
5 This definition of negation differs from the others. Generally, negation is defined as
¬A=dfA|A including Peirce’s rubbing out the |. See the note of [Pe33] 4.20.

6 This semantics is similar to which provided in [Ha95] in the case of Peirce diagrams.
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Lemma 2. The two rules preserve tautologicality.

Proof. Leave it to the readers. ��

Lemma 3. Let ∗ be a truth assignment. If ∗ doesn’t satisfy the premise(s) of one
rule then ∗ doesn’t satisfy the conclusion of it.

Proof. Let ∗ be a truth assignment, α and β denote the sequence of graphs α0 . . . αm−1

and β0 . . . βn−1 respectively, and Γ is a set of graphs:

{[α[β0]], . . . , [α[βn−1]]}

By hypothesis we have ([αβ])∗=0 (the first case) and (Γ )∗=0 (the second case).

First case:

([αβ])∗=0

⇒For all j<m, i<n, (αj)∗ = (βi)∗ = 1

⇒ ([α[[β]]])∗ = 0.
that is to say, ∗ doesn’t satisfy [α[[β]]].

Second case:

(Γ )∗=0

⇒ For some i<n, ([α[βi]])
∗ = 0

⇒ For all j<m, some i < n, (αj) = 1 and (βi) = 0

⇒ ([α[β]])∗ = 0.
that is to say, ∗ doesn’t satisfy [α[β]]. ��

Let α be a graph, now from the first two propositions by induction on the length
of deductions we have:

Theorem 1 (Soundness). If � α then |= α.

Now we turn to the task of showing that the rules are complete.

Theorem 2 (Completeness). If |= α then � α.

Proof. We show the contrapositive. Assume that � α does not hold. We construct
a tree for α, thus each branch must be ended with a set of atomic nands, in which
there must be at least one member that is not an axiom. Without loss of generality,
let 〈α0, . . . , αn−1, α〉 be a branch of α, Γ a set of graphs at the top node α0, {p0,
. . . , pn−1} a complete set of letters occurring in Γ . Then Γ is not satisfiable. Now
we have a function ∗ such that for i < n,

1. If pi∈I-Sub(Γ ), then (p)∗=1;
2. If [pi]∈I-Sub(Γ ), then (p)∗=0.

By the third proposition proved above, α is not a tautology. ��
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6 Conclusion

This paper provides a new way to reason with Alpha graphs in a way to check easily
whether an Alpha graph is tautologous or not, and the procedure presented in this
paper can also be extended to the other two parts of Peirce’s excellent logic system,
Existential Graphs. On the other hand, Peirce always emphasized the experimental
character of his rules and this character is missing in our approach. So, it should be
understood as an additional approach for this area.
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