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Abstract: This paper gives a decompose of projected guasi-Newton algorithm in asseciation with
nonmonatone trust region for solving nonlinear equality constrained optimization problems. The propesed
method is globally convergent even if conditions are mild. In order to assure local superlinear rate and
obtain other convergence properties. a second order correction step which brings the iterates closer to the
feasible set is described. The rcorrection step allows to prove that the proposed algorithm is also locally
superlinear convergent.
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1 Introduction

In this paper we analyze successive gquadratic programming methodsfor sclving the equality
constrained optimization problem.

min  f(x) subject to ¢ix) = 0. (1.1)

where /© R* — Rand - R" — R" are smooth nonlinear function, There are guite a few articles

proposing sequential quadratic programming methods (SQP). These methods generate a search

direction at r, by solving the guadratic programming:
min  gld + -%dTB,d subject to ¢, + ATd = 0. (1. 2)

where g, is the gradient of f at 1, Ay = A(z) = [V fae) . . Vn(xy)]is the n X m Jacobi matrix
of c(x) at 7, and L is the Lagrangian function defined for by

Lz A = fez) — DX ez (1.3
=1
Let B, is a matrix that approximates the Hessian of the Lagrangian function.
Wi =Wl &) = V¥ (x, k) = V/in) — 2,4V % (x,). (1.4)
e=1
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COLEMAN and CONN™1, NOCEDAL and OVERTONY! proposed separately similar quasi-Newton
methods using approximate reduced Hessian. By constructing an orthonormal basis ( Z, € R™"™™ )
for the tangent space of the constrains at the current point r, . they use the fact that the mainx
ZTH.Z, € R*—==t=m s positive definite, However. recent reporis indicate that it might be difficult
to find 2 basis Z, which changes continuously with £ (see. for example [2]). Two basic approaches.
namely the line search and the trust region, have been developed to ensure global convergence towards
local minima (see [1] and [4]). However. all versions of these approaches enforce a monotone
decrease of acertain merit function at each step. Recently, the nonmonotonic line search technique for
solving unconstrained optimization is proposed by GRIPPQ et al in [4]. The nonmonotonic idea
motivares to further study the projected quasi-Newton methods with trust region.

In this paper. we describe and analyze the projected guasi-Newton methods associated with
nonmonoione trust region for problem (1. 1}. we suggest to solve two subproblems rather than
solving the continuous Z, with &£ . Section 2 presents the decompose of projected quasi-Newton method
in association with nonmonotone trust region technique in detail. In section 3. we prove the global
convergence properiies of the proposed algorithm, while in section 4, we devote the local convergence
rate of the algorithm.

2 Algorithm

We lirst introduce some standard notations for this paper.

Let || « || be the Euclidean norm on R". Let f: R"— R be twice continuously differentiable. with
gradient g: R* — R and Hessian mairix V°f. let oo R" — R™ be the vector of twice
continuouslydifferentiable consiraint functions ¢,(x), for i = 1. ... m. with the Hessian matrix of
e,€x) denoted by V%¢,(x} . and let A(x) be the n by m matrix consisting of the column vectors a,fz) .
for i = l....m, Denote the firsi-order l.agrange multiplier estimates by Afzy =
[A{x)TA (x) ] tAcx)Tg(x).

The projection matrix P(x) = I — A¢ri[Ax)TAcoy ] A ™.

In each iteration. we first solve the subproblem

(S,) min gid + %d"‘B,d subject to ATd = 0. [|d] < A,

where A;is a trust region radius. Let &, be the solution of the subproblem (S5,). let s, be the solution
of the second subproblem ( P, ).
{P;) min|c, + Als|| subject to 5] <5 A
In order to decide whether we should take x,,, = 1, + pi . where g = &, 4+ 5., we adapt the {,
-norm nondifferentiable exact penalty funedon ¢(x. g) = fix) + plletxi |y, set
{Ps-l- i gy 22 max{||All.. gl + ) > lAATAL 7} + ¢
&=

lell + = (2-1)
&

maxig_ . | Alle. A ATAG Y + . otherwise.

where 7 is a positive constant and constant « satisfies [c (||, == 2llc ¢z .
The actual reduction in the penalty function in going from =, to z,4, i1s thus given by
Ared,(p) = fi — fiz + por + Bllledl — etz + gt} (2. 2)

Using these same approximations we can compute a prediction of the reduction

Pred,(py) = — gids — %dle.eda — &+ Pﬁ“"—'t“] - IIAI's. + el ). (2.3)
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Relaxing the acceptability condition on g, . we set

Pl Lo o) = max {(@la_, o ,) } (2, 4)
Oy 18)
Areak(_Pj) = P( T Pron) — PLT T Lo ) (2,3)

where mi0) = 0and Q <<mk) <Cmin{mk— 1) +1.M}, 222 1. and M is a nonnegative integer,
It is clearly to see b — m (k) < (k) < &,
Algorithm

Given g € (0.1}, ¥ € (. 1). 7, 7, and?, which must satisly 0 <{ ¥, < ¥, <1 < ¥,.

Step 0: the starting point z,, f,and g, are given, as well as an initial trust region radius &, > 0
and B;, an initial approximation to the Hessian at the starting point, Set 2 = 0,

Step 1: Solving the two subproblems ¢5,) and (P;) respectively, obtain steps d, and s, .

Step 2: It d, = 0and s, = 0. then stop: else go to next step.

Step 3: Compute p, = d, + s, and o given by (2. 1), Compute Ared,(p.), Ared,(p,) and
Pred,¢p,) given by (2,2). (2.5 and (2. 3). respectively,

Further, set

_ Ared,(py)
- Pred,,(P;,J '

Step 4: In the case. & 2= u, The iteration is said to be successful: set ., = 4y + £ and choose
Ay €[4 7AL U= ordg, € AL 4, il g <<y, Otherwise, ie &, < g The iteration
is said to be unsuccessful, let ry<—r, and 4, € [¥.4:. 7,45, Go to step 1.

_Ared,(py)

"= Pred,cpy 24 &

(2.6}

Step 5: Using the quasi-Newton updating formulae to update B, for By, . set m(k + 1} < min
{mik) + 1. M} and 2<% 4+ 1. return to step 1.

This is a theoretical algorithm and many details should be added to specify a practical numerical
procedure, In particulat, as to the stopping ctiterion of the algorithm. in practical use we can check

the condition ||d,|| + ||s:]| < efor a small convergent tolerance € > (.

3 Global convergence

We make the {ollowing assumptions in the section,

Assumption 1 Sequence {r,} generated by the algorithm is contained in a compact set X on K",

Assumption 2 Matrix A(x)! = Yc(x) has full column-rank on X, There are constanis & = 8
> 0 such that A< [[Arm) A || < f. ¥ £ € X.

Lemma 3, 1 d,is a solution of subproblemn ( 5,) if and only if there exist g 22 0. 4 € R™such
that (B, + pud)dy, = — g + A A

ATd, = 0. (A — i) = 0. (3. 1)

holds and B; + #.J is positive semidefinite in N (A7),

Lemma 3,2 Assumptions 1~2 hold. T{d; = 0and s, = 0. then x,is a Kuhn-Tucker point of
the Problem (1.1},

Lemma 3.3 I 1; is a Kuhn-Tucker point of the Problem (1. 1). and B, is pasitive definite in
N¢AT), thend, = Qis the solution of ¢(5,) and 5, = 0 is the solution of ( P,).

Lemma 3. 4 Leth = max{||PBP,| | i=1.... 4} + 1. we have that

- " , P.g
— el di — 1t Bidi > Lipgimina, 1022 (3.2
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Lemma 3.5 [If £ is updating by (2.1). we have that
fllledl — llALs: + cll} — gl 5 2= rmin{ellgll, 4}, (3.3)

where 53 solves { P, ) and constant a satisfies [jctx) ||, == afle (x) |f.

Proof Sets; = — Ay(AfA,) " 'cp. we consider two cases:
(1> M sy f << A then s, = 57 1s the solution of ( P,) for Als, + ¢, = 0. We have
elliall, — HAlss + ol — gise =z o ol + Ao = taflclf. (3.4)

Pa)
2) U fsi > Ay then {”S—fn) flsi I is the feasible solution of the subproblem (P, }. So T
&

; a . ay,
afly — llex + Al = lledl; — e AT = e )
et lles il 2 lladl, e, + TR s lh = 1A (AT A, T (3.5
Therefore. we have that, using (2. 1)
Lillledl — HAiss + el ) — gis = #A‘fl” — g la = A (3. 6)
According to (3.4) and (3.6), (3.3 is true. a

Combining the above two lemmas. we now state our main result on the model decrease at
iteration £. for Pred, (p.).
Lemma 3. 6 Under assumptions A1~ A2, we have that

Pred; () = 5 IPsulmin(a, L2} 4 cmin a1, ). (3.7)
Proof Combining ¢3.2) and (3.3). (2.3 implies that (3. 7} is true. a
Lemma 3.7 Suppose that the assumptions Al~A2 hold. There exisis 4, = 0 such that
b= max{| V2 f & ol Ve Jlli=12.com j=1.2 .k} + 1
where £, , £ =0, 1, ..... m belongs 10 the line segment from x, to x, + p, contained in X. Then we have
that |Ared,(p,) — Pred, (p) | << [& + (1 + mpob AR, (3.8)

Proof By the definitions of Ared, and Pred, . we have that

[Ared, ¢ py) — Pred, (p.) | g%(ld}{'&dd + 1 I T (Sl ai) +

an

2 E fe.(zp) + Vegxd pf + %‘E 128 Vi (G pl — 1A 4+ ol | <
=1 i=1
(6 + (1 + mpob]Ac O (3.9
Because assumptions Al~A2 hold, there exists ¢ > 0 such that
o = p for large enough 2. 3. 10
Assumption 3 There exists & > 0 such that max {6, &,} < 6, ¥ % And Vifand Vi, . i= 1.
2, ..., in are Lipschitz continuous matrix functions on the set X.

From (3. 10) and Assumption A3. we have that there exists . > 0 such that (3. 8} can be
rewritten as follows |Ared, (2, — Pred,(py) | << LA,
Theorem 3.8 Assume that assumptions Al~A3 hold. Let sequence { x, } be generated by the
algorithm. then
lim inf{{|Prgll + lleull} = 0. (3. 11}

Proof According to (3.7, we have

. P .
Pt po, O — (201 Pm,)é—.aPred,,{P}kg——glfﬂmlfrmn{&. ﬂzi‘"}‘*.ﬂmlﬂ(ﬂh allcfi}. (3.12)

From {3.10}. there is > 0 such that o, == p. for large enough .
Taking into account that sk 4+ 1) < mik) + 1. we have
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P{Tiaany Orer,) = MAX  AF(Ta1—, Pre— ) 1S max  (P(Tuyi—p Gp1-,) V=@(x1. Pun) {3.13)
A pSmrk+ 12 o rmiky +1
for large enough & Moreover. we can obtain that for all £ >> M and large enough &,
‘P(Ihh- P.f{l)) "'-<-.. ‘P(‘rirhl.\kll' Pmm—u-’ -

) Py _ .
%"Puuﬂgnnﬂ“ min{ &y . LLZ‘EJJM—l“} - ,m'rmn{ﬂgm_l, a”ﬁm—;" b (3. 14)

If the conclusion ¢3.11) is not true. there exists an € = 0 such that ||cel| + | Pegl| == 26 2= 1. 2. .....
leh+ NPegillz=2e. k=1 2. ... and hence either |e,| e k= 1.2, ... or |[Pigll ==, B= 1.2 wue.
Therefore. we have that (3. 143 can be written as {ollows. either

. £
(T Pray) = Pl Lyea—n1e Pritenn -} — %51'111“{3141;#1- ?} {3.15)
ar Pl Tims Crems) = ClTiw—1 Prow—n ) — F‘min{a& Airh—[ I (3. 16

Sinee | ¥(Z1m,. P’ } is nonincreasing for large enough &, soli*mﬁy,;.,gl =0. Faréd>M, K ask —M=<C
k— m(k) < I(k) << kby updating formula of 4, , we have that for any j. 0" 4, <7} A, then 0
< A S ¥ AL . which means }imﬂ, = 0. On the other hand. if || c; | = e from lemma 3. 6

when A, < ae, then Pred, (p,) 22 zAi: i || Pigy || =2 € also from lemma 3. 6. when % == A, we have

Pred,(py) = %A*. As above. we have that if A, < min {at, %}. then Pred, (P} = v A,, wheret =

min (%. 7). When A, — 0,

_ _ |Pl'edk(PkJ — Afedg f'p,) | LA‘Z -
% — 11 = | Pred, (p, | < A,

This implies % — 1, i e for large enough & % 2= 7. It also implies that trust region radius will be

0. (3.17}
bounded away from zero. which contradicts E_mﬁ'u = 0. O

4 Local Convergence

In the following paragraph. we further discuss the local convergence of the proposed algorithm.
Further, we assume that
Assumption 4 x, is a2 Kuhn— Tucker Point of problem (1.1). ie there exists a vector A, €
B guch that g. — A.A, = 0andc, = 0.
Assumption 5 There exists 7, such that
dTW.d =7 | d]||% when Ad =0, (4.1
where W. = Wi{r,. 4,) = Vifix.) — Eﬁ’. Vi (r.} is the Hessian matrix of the Lagrangian )

1=1
function of problem (1.1} atr..

Assumption 6 im P (B =~ Woid, |
dree IEAL

From (4. 2). it is casy to see that, since Pudy = dy we have diBydy = i Wud, + o | du || ®).
We introduce a correction vectar v, to improve local convergence rate of the algorithmm.
v, =— A (ATA) e(m + p) — o — Alsi]. (4.3}

Therefore, in the algorithm, we take 244 = x, + pu + vy instead of x4y, = x3 + p». and revise

= (. (4. 2)

the step of the algorithm,
Lemma 4. 1 loll =0z 2.
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Corollary 4. 2 I | =040,

By lemma 4. 1 or corollary 4. 2. the algorithm which is revised by a correction step will also keep
global convergence properties of the original algorithm in section 2. We needn’t reprove here these
because the proofs are similar to these of the criginal algorithm.

As explained in the last section. we also assume @ = e for all large enough &.

Lemma 4.3 Assume that assumptions Al~AS hold. then

|Ared, (py + w) — Predi(pid | = o il 2+ Bl ). (4. 4)

Lemma 4. 4 Assume that assumptions Al~ A6 hold. Then there exists £ = 0 such that for

large enough £,

Pred,(po) = 6¢ | dii® 4+ s s 4.5}
Theorem 4.5 Under assumptions Al~A6. For any large enough £ we have
=7 (4.6}
Proof Similar to the proof of (3. 14) in theorem 3. & using {4.5). for large £, we have
P Cren) S P Trtnr10 Praeny—1) — SO0 dop 12+ 1 sen— . (4.7}

By induction. similar to the proof of the theorem in [41, we havelim{ | d,||*+ || s || } = 0. From
o

lemma 4. 4 and lemma 4. 3. we get that
IPIEd*(ka - ArEdg.fpj) I

%=1 = |Pred; (7] Rt .8
So (4. 6) is true. O
Theorem 4. 6 Under assumptions Al~ AB, we have
lim{ || Pigall + el } = 0. (4.9)

Proof Assume a subsequence {m,} of this subsequence satisfies
| Prgw I + llcm | == 26, (4.10)
for an &, € (0.1;. Theorem 3. 8 guarantees the existence of another subsequence {{,} such that
Il Pirgin |l + Nl <etll Pognl + llcallsand | Pagal + Nl = el Poga I +
lca | 3. m, <<h<CLforanye. Soat least one of | {| = &cand || Pugy | = e holds form, <CA <

{. Applying (3. 6) and (4. 6). we obtain that either Ared,(p,} == % 7€, €min {1—5, A} or Ared, (p,}
= 7r min {aee, A}, No matter whether cases hold. we have im A, = 0 which implies Ared, ¢ p,) =
p—>ca

min {%m,s, 7r}A, = rA,. where let T = min {—é—?] g€ 7r}. We use the triangle inequality to show that

I Pagm | + 1l ca | KON Posgo—Prsngian | + 1l co—cemn | )+e( | Puga Il +1cm 1. (411}
It follows from {4.11) that
(1—e) (| Pogn i + lleall < ||P.gm — Piirgia I+ Cm, — i1 I <

L.
2L 2, — x| < g;—[ PlT O d — P{Tgri Prand ] {4. 12}

where £. is the Lipschitz constant of || P(z)g(z) || and || c¢{x) | . By g(x, @) being bound below we
know that the last right-hand side of (4. 12) approaches zero as ¢ tends to infinity. This contradicts
(4. 10) and hence proves the theorem. O

Theorem 4.7 Assume that assumptions A1~ A6 hold. Then the proposed algorithm is two-
step Q—superliqeat convergent, | e

lim || Tpg) = T II —
oo || ey = . ||

0. {4.13)
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Furthermore. sequence {1; + #,} is one-step @-superlinear convergent. ie

I RN
oo “ Ty T P — T "
Proof  Since (4. 6) holds. it means that for large & the trust region radius will be
nondecreasing, i e 4,.; == A,. Hence there exists & = 0 such that &, == &, for large £, Asd, = 0. it

= 0. (4.14)

means that {or large £ the trust region constraint of the subproblem (5, is inactive. ie [ d, || < A.
So s, — 0, and hence | 5, || < A.. for the subproblem ¢ 7; ) which meanss, = — A, (AT A, " 'c,and o4
=— AATA) ‘el + py). In addition £, =7 = 4 by the rule §, 2= #in the stepd of the algorithm.
we have 1,4, = x, + £ + w. To summarize above, similar to the proof of thecrem 4.5 in [6]. we
have obtain that (4. 13) and (4. 14} hold. O

We have studied the convergence properties of the projected quasi-Newton algorithm in
association with nonmanotone trust region technique for equality constrained optimization problems.
We also feel that the proposed algorithm needs a Iot of numerical testing so that it can be applied in
practice. These researches will be studied in coming papers.
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