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Electromagnetic perturbations of small
Schwarzschild anti-De sitter black holes:
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Abstract; In this paper, the evolution of a Maxwell field propagating on the background of small Schwarzschild an-
ti-de Sitter black holes is studied by numerical simulation. The pictures show that the quasinormal frequencies of a
Maxwell field around a small anti-de Sitter black hole are different from that of a scalar field for a small black hole or
an electromagnetic field for a large black hole.
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1 Introduction

In the past few years, quasinormal modes (QNMs) of anti-de Sitter black holes in the scalar field have
been investigated. Chan and Mann first studied the quasinormal ringing for a conformally coupled scalar field
in anti-de Sitter ( AdS) space [ 1]. And the evolution of d- dimensional small Schwarzschild anti-de Sitter
black holes has also been studied [2], etc. Today, quasinormal modes of AdS black holes in an electromag-
netic field are being noticed. It is well known that the qusinormal ringing in an electromagnetic field is very
important to further study black holes, owing to the AdS/CFR conjecture. So Cardoso and Lemos [ 3] began
to discuss an exact solution for the QNMs of scalar, electromagnetic and Weyl perturbations of a Banados-
Teitelboim-Zanelli ( BTZ) black hole. Then, quasinormal modes of electromagnetic and gravitational perturba-
tions of a Schwarzschild black hole in ansymptotically AdS space-time [4] were studied . Recently, E. Beti
and K. D. Kokkotas [5] begin to study scalar , electromagnetic and gravitational perturbations of a Reissner-
Nordstrom-anti de Sitter (RN-AdS) space-time, and compute their quasinormal modes. They say that electro-
magnetic perturbations of large black holes are characterized by the existence of purely damped modes. Nowa-
days, the relation between the cosmological constant and different kinds of fields’ propagations in the

Schwarzschild AdS and the RN-AdS black holes is researched [6]. However, for the evolution of the Maxwell
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field around the small AdS black hole background, there is no survey yet.

In this paper, we analyze in detail here the wave propagation of the Maxwell field around small four-di-
mensional Schwarzschild AdS black holes. By numerical simulation, we get two pictures. One shows the rela-
tionship between the evolution of the Maxwell field and the event horizon. The other tells us the information of

quasinormal ringing which changes with [ .

2 Maxwell perturbations

We consider the evolution of a Maxwell field in a Schwarzschild-anti-de Sitter spacetime with metric given

by
ds* = f(r)di® —f((i':) - *(d#" + sin’6 do ?). (1)
In the equation (1), f(r) is defined as
LM
M) = gtl-= (2)

where R is the AdS radius and M is the black hole mass. The black hole horizon is atr = r_ , the largest root
of f(r) = 0. In this paper, we discuss the small black hole with 7, < R.
Let us consider a Maxwell field in the Schwarzschild AdS space-time, obeying the wave equation
% =0, withF,, =4, , -4, ,, (3)
where four-dimensional vector A of electromagnetic potential as following

dP,( cosf )
dé

Putting Equation (4) into Maxwell’s Equation (3), we get a second order differential equation for perturba-

A, =0,A4 =0,4,=0, A, = ¢ (r,t)sing

13

(4)

tion;
2 2
-3 B vy, ()
at ar
where the effective potential
W +1
V(o = fn (6)
and the tortoise coordinate r” is defined as
* dr
dr* = 7
a0 7

Obviously, the effective potential of a Maxwell field V() is not the same as that of a scalar field or that of
large holes in an electromagnetic field. For perturbations with I > 0, we can show explicitly that the effective
potential is positive definite. It vanishes at the horizon, which corresponds to 7* — - o , and is a finite
value at r — w corresponding to a finite value of r™ which requires that ¢ vanished at infinity. The boundary

conditions are satisfied with the wave equation.

3 Numerical Simulation

We introduced light-cone variablesu = ¢t — r" andv =t + r* , in terms of which the equation (5) can

be written as
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Considering that the decay of the test field is independent of the initial conditions ( This fact is confirmed
in Ref. [2]). We begin at a point ( u, , v,) with a Gaussian pulse of width o , centered onv, ( v, is quite
far away fromv,) and onu = u, , and set the field to zero onv = v, . In addition, we can freely set the value

of v, , because it has an insignificant effect on the evolution of the test field.

b= ) = ep [ - (9
¢ (u,w = v,) = 0. (10)

We can discretize the equation (8) and then implement a finite differencing scheme to solve it numerical-

ly. Using Taylor’ s theorem, it is discretized as

¢’N:¢,E+¢lw_¢ls_5uaﬂv<”1v+”w;”1v'"£)¢w8+¢’£

where we define the points as: N: (u+A ,v+A ) ,W: (u+A ,v) ,E: (u,v+A ) and S: (u,v) . Inifical-

ly, we calculate the values of 4 (u,,v) for various values of v in term of equation {9). Secondly, in light of e-

+ 0(4Y), (11)

quation (10), the point in the field can be calculated by using the former three points in the u — v plane. After
the intergration is completed, the values of ¢y (u . v) and ¢ (u, v, )} are obtained, where the point of the

U, and v,,, is the summit on the numerical grid. Taking sufficiently large u_,, and v,,, , we have a good ap-

proximation for the wave function at the quasinormal modes for AdS space. We fix R = 1 in the following.
Now we start to report the results of our numerical simulations of evolving electromagnetic field on small
Schwarzschild AdS black hole background.
For the four-dimensional small black hole (r, < R) , quasinormal ringings are displayed in Fig. 1 for se-

lected values of r, and multipule index{ = 1.

v
Figure 1 The wave functions for small AdS black holes for [ = 1, withr, = 0.2,0.4,,06,0. 8

As is shown in Fig. 1, the oscillation time scale increases slightly with the event horizon r, increasing,

which means that the smaller the black holes is, the bigger the real part of frequency ( w ) is. This phenom-

enon is distinct from that in Ref. {2] where it is illustrated that the oscillation time scale in scalar field almost

keeps as a constant for various of 7, . And this behavior also differs from that of large black holes in electro-

magnetic field [4] where it is said that some quasinormal modes of large black holes in electromagnetic field


http://www.cqvip.com

0000 http://iwww.cqvip.com|

H1H B, %A 8 : Schwarzschild anti-de sitter /B B3 RETE SN 39

do not oscillate, which only decay since they have pure imaginary frequencies. Here in Fig. 1, we present the
evolution pictures forr, = 0.2, 0.4, 0.6, 0.8 respectively. We have also calculated the evolution for several
other event horizons. However, we haven’t found anything like that described in Ref. [4].

From the picture, we can also see that the rates of the damping for different event horizons are almost i-
dentical. And this result is not similar to that in Ref. [2] or that in Ref. [4]. It is shown in Ref. [2] that
the rates of damping vary with r, . While in Fig. 1 we see only little difference of damping rate for different r,
. Tt tells us that the dependency of decay on r, in electromagnetic field is not as sensitive as that in scalar
field. According to Ref. [4], the imaginary part of the frequency scales linearly withr, . So the evolution of

an electromagnetic field around small Schwarzschild AdS black holes with r, has its own features.
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Figure 2 The wave functions for small AdS black holes for defferent [ withr,_ = 0.4

The small black holes of the lowest multipole index I = 1 has been discussed. Then we show how wave
dynamics behaves for a Maxwell field on the background of the AdS small black holes with different multipole
index in Fig. 2. We can see in the picture that the oscillation time scale and the damping time scale for the
quasinormal modes are varying with L

On the one hand, we learn that the period of oscillation increases with [ , which means that the real part
of the qusinormal frequency ( w ;) decreases. This result is opposite to the conclusion in Ref. [2]. On the
other hand, the damping time scale also increases( @ ,decreases ). It is similar to that in Ref. [2]. And al-
so, the connection of @ ;and ! in Fig. 2 is not alike to that of large black holes in the electromagnetic field
which shows that the imaginary part of the frequency is nearly independent of the multipole index [ . If the
multipole index is large enough, the rates of the damping are almost the same. It is natural and reasonable that
the results we obtain are quite different from that in Refs. [2] and [4], since they have different effective po-

tentials.

4 Conclusion

In a word, we have studied the evolution around small Schwarzschild AdS black holes and got different
results from that of large AdS black holes in a Maxwell field and that of small black holes in a scalar field. We
show the result of the increase of the oscillation time scales and the nearly same of the damping time scales
with r, . At the same time, we find that increasing [ , the real part of frequency decreases with r, = 0.4,

Certainly, they have many properties that are identical to small black holes in the scalar field and large black
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holes in the electromagnetic field. All these features are constructive to the study of black holes.
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