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ABSTRACT

A linear, two-dimensional, continuously stratified, viscous model has been developed to study the inertial
oscillations generated by a propagating wind field. The model, an extension of that of Kundu and Thomson,
includes the presence of a coast and superposition due to distributed forcing. These two effects generate a large
subsurface oscillation, provided the wind spectrum has energy near the inertial frequency. The presence of the
coast causes an additional blue shift of the frequency, and a downward flux from the surface—coast corner. The
superposition of responses with random phases does not cancel out but initially increases the rms amplitude as
(time)'”2, The model spectra have a blue shift that increases with depth and can also contain secondary peaks
at higher frequencies if the speed of propagation is not too large. For a given propagation speed the blue shift,
and hence the downward flux from the surface, is larger in the deep ocean where the gravity wave speeds c, are
larger. A calculation in the open ocean with a thermocline shows a decrease of the inertial oscillations with
depth, and a clear upward phase and downward energy propagation. Although the model subsurface oscillations
are large enough to explain the observations, they are too highly correlated in the vertical and horizontal
directions. It is suggested that the variations perpendicular to the direction of propagation, and the S-effect,
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should be included in the modet in order to explain the incoherence of the observed oscillations.

1. Introduction

Inertial oscillations, with a frequency close to the
Coriolis frequency, are observed almost everywhere in
the ocean. While their surface magnitudes can be ex-
plained by the wind forcing, the source of subsurface
oscillations has not been adequately explained. Pollard
(1970) studied an open ocean model due to a
“switched-on” (that is, step input in time) spatially
varying wind and concluded that the subsurface am-
plitudes were too low to explain the observations.
Kundu et al. (1983) studied a coastal model and forced
it with a switched-on spatially uniform alongshore
wind. The vanishing normal velocity condition resulted
in a decay of the oscillations near the coast (coastal
inhibition), forcing a downward flux of inertial energy
from the surface-coast corner. However, the maximum
subsurface amplitude was less than 1 cm s™! due to a
1 dyn cm™2 wind.

In alater calculation, Kundu (1984) argued that one
possible way to increase the subsurface oscillations,
without proportionally increasing the surface oscilla-
tions, is to abandon the switched-on forcing and apply
a continually varying wind having energy around the
inertial frequency. It was shown that the mean square
response at time ¢ due to a completely random forcing
is

_ t
u*(t) = 2xS, fo usdt, ¢}

where S, is the spectrum of the wind stress, and u; is
the response due to an impulsive forcing and therefore
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equals the time derivative of the step response. Equa-
tion (1) shows that the responses due to a superposition
of uncorrelated steps do not cancel out, but makes the
rms response initially increase as ¢/, as in the random
walk problem. It also shows that the rms response
reaches stationarity in the decay scale of ;. Continuous
random forcing therefore preferentially increases the
subsurface amplitudes, since the energy flux from the
surface causes a surface decay and a subsurface growth
of u;. Using an observed wind stress series off Oregon
and assuming that the wind was spatially uniform, the
model predicted subsurface amplitudes of 5-9 cm 577,
which are smaller than the observed amplitudes (~10-
20 cm s7') by a factor of about 2.

Presumably the assumption of spatial uniformity
should be abandoned if the model were to generate
larger inertial oscillations. In the present work, the wind
is assumed to be a “frozen” distribution moving toward
the coast at a constant speed U. There is evidence to
indicate that the inertial oscillations in the deep as well
as coastal ocean are predominantly forced by propa-
gating atmospheric disturbances (D’Asaro, 1985;
Thomson and Huggett, 1981). The inviscid solution
due to a single concentrated propagating front in an
unbounded ocean was given by Kundu and Thomson
(1985). The frequency was seen to be blue shifted, re-
sulting in vertical dispersion. The subsurface energy,
however, was rather small.

Obviously, much larger inertial oscillations can be
generated by taking realistic wind profiles (having a
series of propagating disturbances) and incorporating
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a coast. The object of the present work is to extend the
work of Kundu and Thomson so as to (i) include a
coast, (ii) include superposition due to a series of prop-
agating disturbances, and (iii) incorporate viscous
damping. A model of coastal circulation due to fronts
propagating away from the coast was given by Klinck
et al. (1981), but the flow properties emphasized here
were not studied. It will be seen that the effects of vis-
cosity are small, but those due to superposition and
presence of a coast are considerable; in fact, they in-
crease the subsurface inertial oscillations to observed
levels. However, the model oscillations are too highly
correlated in the horizontal and vertical directions,
much of which results from the assumed two-dimen-
sionality.

2. Solution for a concentrated forcing

Consider a front propagating onshore in the x-di-
rection at speed U over a coastal ocean on a flat shelf.
The front and the coast are both aligned in the y-di-
rection. The coordinates (x, y, z) and velocity com-
ponents (u, v, w) are taken in the east, north (along-
shore) and upward directions, respectively. The origin
is placed at the surface-coast corner, with the ocean
extending in the negative x-direction. The water depth
is D, and the surface mixed layer depth is 4. The sub-
surface water has a buoyancy frequency M(z), and a
vertical momentum and heat diffusivity ». The ocean
bottom is assumed slippery. Pressure and density per-
turbations from a state of rest are p and p, respectively.

The front is assumed infinitely long in the y-direc-
tion, so that the response is independent of y. The lin-
earized equations of motion are taken to be

Uy _ﬁJ = —Dyt+ (Vuz)z )
v+ fu = (),
O0=-p,—gp \, 2

u+w, =0

P — Nzw/g = (¥p),, J
where »(z) is assumed to be inversely proportional to
N?(z) in order that solutions can be found in terms of
vertical normal modes (McCreary, 1981). The surface
and bottom boundary conditions are

v, =75, v, =7, w=p=0; at z=0
' )
at z=-D

Solutions to-(2)-(3) can be found by expanding the
variables in terms of the vertical normal modes ,(z)
of the system:

v, = v, =w=p=0;

(u, v, p) = 2 (Un, On, Pal¥ns
n=0 .
w= 2 wnf | Yndz, p= Z Prnz.  (4)
n=0 -D n=0
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For n = 1, the vertical modes are given by
cnz(%) + ¢, =0, subject to

V=0 at z=0,-D, (%)

where ¢, represents the long internal wave speed of the
mode.

In the present model the wind forcing enters the
ocean as a surface stress condition (3). However, it
could also be introduced as a body force in a surface
layer; in fact, that is the only way the forcing can be
introduced in an inviscid model, as in Kundu and
Thomson (1985). The two methods are equivalent if
there is a surface mixed layer in which the body force
can be assumed uniform. The mode shapes are depth-
independent in the mixed layer, whose thickness also
affects the values of ¢,. They are normalized here such
that ¢,(0) = 1. .

The modal coefficients satisfy

O + vty — for + P = 7, *
(0 + va)on + futn = 1,7
O, + v)Dn + Cithne = 0 L. (6)
Cw*Wn = () + Vp)Dn
Pn="Dnl8 |

Here v, = ¥N?%/c,? is the viscous damping coefficient,
and the coupling coefficients of each mode to the wind
stress 7 = (7%, 7¥) are

0
(ra" 7)) = (7%, 77) / f Yn'dz. (N
. -D \
The equation for u, obtained from (6) is
(att +f2 + 2v,0, + Vn2)un - cnzunxx =T +fr¥n (8)

where a term v,7,”* has been omitted on the right side
to simplify the subsequent algebra. The maximum
value of the neglected term with respect to the retained
term is v,7,*/7% ~ 0.36, assuming # = 50, » = 1 cm?
s, N=10"%s"!, D =250 m, and a time scale of 2 h.
The ratio is much smaller for the lower modes which
dominate the solution, so that the omission of v,7,” is
justified.

Equation (8) will be first solved for a “concentrated”
line front moving over a coastal ocean, the forcing being

taken to be .
7+ fi¥ = Ured(x — Ut), 9)

where d(x) is the delta function. The solution u; to
forcing (9) is therefore the impulse response, or the
Green’s function. In the absence of 77, (9) becomes 7,
= —106(£), where ¢ = x — Ut is the moving coordinate.
The forcing (9) then signifies that, across the front, 7*
undergoes a drop of 7o in space (in the moving coor-
dinates), or an increase of 7, in time (in the fixed co-
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ordinates). For an isolated front whose thickness is
much less than the characteristic scale 2z U/f (~200
km) of the wave field, (9) is an adequate representation
of the forcing (Kundu and Thomson, 1985). The so-
lution for the general case of distributed forcing can
be obtained by convolving the forcing with the impulse
response.
For the nth mode, (9) becomes

%5 + fr2 = Urgu6(x — Ut),

0
Ton = To/JlD \l/,,zdz.

The solution to (8) due to forcing (10) will be denoted
by u,s, the subscript & signifying that it is the field due
to the impulsive forcing (10). It is written as the sum
of the forced solution u), and a free solution u},, that

18
(12)

(10)
where

(11

Ups = Uy + Uy,
Expressions for u}, and u}, are derived below.

Forced Solution
The forced solution is the contribution in the absence
of boundaries and is best obtained in terms of the co-

ordinate system
E=x—-Ut (13)

fixed with the front. The field is steady in the moving
frame of reference, and the equations of motion can
be obtained by replacing g, with —U3d; in (8). For the
forcing (10), this gives

, WU\, L (SPAR), _ TenU(E)
I o B ) S e

(14)

With common oceanographic parameter values the
barotropic mode satisfies U < ¢p; its contribution,
however, is small and will be neglected. The baroclinic
modes on the other hand satisfy U > ¢, so that no
disturbance is felt ahead of the front (Geisler, 1970).
The baroclinic solution of (14), subject to the radiation
condition of ), = 0 for £ = 0, is

nU at . 13
1= E—I;e— {smk,,é f e % coskt 8(£)dt
£
— cosk,E f e % sink,¢ 5(5)615} , (15)
which simplifies to )
u’n = —H(—E)b‘ro,,eaE Sinkngs (16)
where
_ f] U _ Vn2 an/ U? 12
" (1 - YUY [1 fA- c,,z/uz] an
_ vo/U
T (1)
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1
T kU1 — ¢2/U?

and H(x) is the Heaviside unit function. As expected
of Green’s function, (16) has a discontinuity in the
derivative of u}, at £ = 0. Equation (16) shows that the
effect of viscosity (a # 0) is to cause a gradual decay
of the solution behind the front. For U = 400 cm s~
and the parameter values given later in Eq. (38), the
e-folding decay scale a™! is 2.4 X 10°, 6.2 X 10* and
100 km for n = 1, 2 and 50, respectively. The viscous
decay is therefore small for the low-order modes which
dominate the solution.

The spectral characteristics of the inviscid version
of (16)-have been discussed in detail by Kundu and
Thomson. In the presence of viscosity, (17) shows that
the frequency of the nth mode in the fixed frame is

f [1 Vn2 cnz/ U?

b (19)

172
St cf/Uz] '
(20)

For U = 400 cm s™! and the parameter values (38),
the viscous factor marked [ ]'/? in (20) is 1.000 for
all the 50 modes used here. Therefore, viscosity hardly
affects the frequency, which is blue shifted (w, > f) as
in the inviscid case. The blue shift decreases with the
increase of n and U.

Wy = an = (1—- C,,2/U2)I/2

Free Solution

Equation (16) is the solution without boundaries,
and the contribution u}, due to the presence of the coast
is now added so that the total solution (12) satisfies the
boundary condition

U =0 at x=0. (21)

It is easier to work with fixed coordinates (x, t) in de-
riving the coastal contribution. Suppose the front passes
over the coast at 7 = 0. After a time ¢, the contribution
at the coast due to the front is

u'(0, ) = brose Y sin(k,Ul), (22)

which is obtained by substituting £ = —Ut in (16). To
satisfy the boundary condition (21), the free solution
must satisfy u(0, 1) = —u;(0, ), so that

uy(0, t) = —bro,e”V sin(k,Ut). (23)

The free solution 1, satisfies the homogeneous part of
(8), whose Laplace transform gives

1
s = 3 [+ vy’ + £l = 0, 24

where #’(x, s) is the Laplace transform of u’(x, ). The
solution of (24) that is bounded at x = —o0 is
fiy(x, 5) = A(s)eenlistmP+f 2172 (25)

Equation (25) shows that A(s) = #7(0, s), which can be
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obtained by taking the Laplace transform of (23). The
inverse transform of (25) then gives u}(x, ©).

Total Solution
The total solution u,; = u), + u’ is finally found to
be

Uns(x, 1) = —H(Ut — x)10,be°> sink,(x — Ut)

x )
- H(t + —)ro,,be_“U(”"/”")e”""/ ensink, U(t + x/cp)

Cn

2
X X
i+ D
Cn Cn

e LA — X e
(f212 —_ x2/'cn2)l/2
where J; is the Bessel function, and the asterisk rep-
resents the convolution product of two functions de-

lineated by braces, with the integral going from —x/c,
to ¢. For example,

v {e'“u’ sink,,Ut}*{ } , (26)

(0sie0) = [ ft- wglarda )

In (26) the first term is the forced solution u),, while

the second and third terms constitute the free solution -

uy. The forced part propagates onshore at a fixed speed
U, whereas the free parts propagate offshore at speed
¢n. The fact that the forced part is nonzero even after
the front moves over the land (¢ > 0) should not cause
concern. For ¢ > 0, the forced part makes the left side
of (8) identically zero in the region of the flow, as can
be verified by substitution.

Asymptotic form for small x/c,t

The nature of the inviscid oscillations for values of
Jft — oo, holding xc,/f fixed, can be derived from the
inviscid form of the solution (26). By expanding the
Laplace transform about the singularities in the com-
plex s-place (Sutton, 1934), the asymptotic form is
found to be '

Ton

o~ =T [ n2)
S (ke 2

X cos(ft - ’%") + ’Cif (Wiﬁ)u2 cos(ft - %)] . (28)

The second term in (28) denotes a decaying inertial
oscillation near the coast, but the presence of the first
term shows that inertial oscillations near the coast never
die out completely for large times. This is unlike the
case of a spatially uniform switched-on wind (Kundu
et al., 1983), where all oscillations near the coast die
out with time (coastal inhibition). The reason for this
difference is that in the present case [see Eq. (26)] the
forced solution keeps on impinging onto the coast; for
the case of a switched-on uniform wind the forced part
is nonpropagating. The fact that the inertial oscillations
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near the coast do not die out will be illustrated in the
numerical evaluation of the solutions.

3. Considerations of distributed forcing
Note that the forcing (9) can also be written as
75+ f¥ = 10t — x/U) (29)

for which the solution is u;, given by (26) and summed
over the vertical normal modes. The field u; represents
the flow due to a step change in 7*. If, however, the
gradients of 7™ are not like é-functions (over a spatial
scale of the “inertial wavelength” \; = 2z U/f ~ 200
km, or time scale of the inertial period ¢; ~ 15 h) and/
or the influence of 77 is not negligible, then u; should
only be regarded as the Green’s function for the prob-
lem. In such a case the flow at a point x = (x, z) due
to a propagating wind field can be written as the su-
perposition

t—x/U
ux, 1) = fo [r(@) + (@), t — ade, (30)

where the entire wind field is assumed “frozen” and
propagating at a uniform speed U. The discrete version
of (30) is

M
u(x, 1) = > [AT(mAD) + fAY(mADus(x, t — mAf),

m=0
(31

where At is the sampling interval, A7* = 75, — 7,0,
and MA: = t — x/U. In (30) and (31), the time origin
for the stress series 7(¢) is chosen to be the leading edge
of the stress. '

To understand (31), consider only the r* component
and assume that it can be idealized by a series of steps.
This is shown in Fig. 1a, where the spatial distribution
of stress is shown at 1 = 0. By superposition of steps
the flow field for 1 < x/U is zero, and for ¢t > x/U is

u(x, ) = AT 0)us(x, 1) + AT (ANus(x, t — Af)
+ - -+ AT MADuNX, x/U), (32)

which is the same as (31). Note that the last term in
(32) is not Ar*()us(x, 0) as is usually the case in con-
volution sums, because nonzero values of u; start at
the time x/U < 0 (Fig. 1b). Consequently, the upper
limit in the integral (30) is not ¢, but ¢ — x/U.

The superposition is expected to result in a growth
of inertial oscillations. In fact, Kundu (1984) has shown
that the rms amplitude grows at ¢'/? due to a forcing
that has a white spectrum (that is, completely uncor-
related noise). It is now shown that the forcing spectrum
need not be white for such a growth.

Let all spatial variations be suppressed, and denote
the forcing as ¢(7) = v,X(¢) + f7%(¢). Squaring and taking
the expected value of (30) gives the variance at time ¢
to be
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FI1G. 1. (a) Illustration of the principle of superposition. A frozen profile of 7* propagates at
speed U. Values of stress changes at times 0, Af and 2At are ArX(0), AT (Af) and AT™(2Af),
respectively. (b) Typical impulse response at point x. Note that it starts at a negative time x/U.

wX(e) = fo fo Ha)(Bust — a)uy(t — B)dadB. (33)

Assume that the forcing has a stationary spectrum
" Sy(w). Since S, is the Fourier transform of the auto-
correlation, we have
-]
d(a)d(B) = f So(w)e™ P, (34)
Substitution of (34) into (33), and carrying out the in-
tegrations involving « and £, gives

?([) = f |125|2S¢d‘-"a

where di(w; #) = [y us(a)e™da is the finite Fourier
transform of u; for a record length ¢. Since 1; is peaked
at w = f(e.g., see Fig. 6 of Kundu, 1984), Eq. (35)
shows that under stationary forcing only the near-in-
ertial part of the wind spectrum generates inertial os-
cillations in the ocean. Moreover, when both 7* and
77 are present, the clockwise rotating near-inertial
components of the wind dominate (Price, 1983). This
can be seen most easily by taking an anticlockwise ro-
tating stress vector of the form 7* + i7¥ = exp(ift), for
which the forcing 7/* + f+¥ is identically zero.

Equation (35) was also derived in Kundu (1984),
although in a less precise way. Furthermore, it was as-
sumed there that the forcing spectrum is white, so that
S, can be taken outside the integral in (35). This is
really not necessary. Since #; is sharply peaked near
w = f, the forcing spectrum S, need only be “smooth”
near w = f. Then (35) becomes approximately

20 =50 [ likdo

where S,(f) is the average value of the wind spectrum
near the inertial frequency. Using Parseval’s theorem
(36) finally gives

(35)

(36)

1403
us(;g,t)
NN/
¥\ V
(b)
u(t) = 21S,(f) fo ' usdt. (37)

The rms amplitude therefore initially grows as ¢'/2, and
remains stationary for times larger than the decay time
of Us.

The ¢'/2 growth is valid if the forcing spectrum can
be considered uniform within the bandwidth of #;. In
the opposite extreme, if S, is so sharp at w = fthat it
can be considered to be a é-function, then it can be
shown that (35) predicts the rms amplitude to increase
linearly with time, which is the well-known resonant
response of linear oscillators to a switched-on forcing.

Note that only smoothness of the wind spectrum
near the inertial frequency is necessary for the ¢!/2
growth; complete whiteness is not required. If, however,
the wind spectrum were in fact white, then S, = ¢*Az/
2« and (37) shows that 1 is also proportional to the
step size At (as in random walk), provided of course
that At is small enough to resolve the inertial period.
Real winds, on the other hand, have a finite spectral
width, and the sampling interval has to be chosen such
that the Nyquist frequency w/At is larger than the spec-
tral width; in such a case S; (and hence the model
inertial oscillations) is independent of At.

4. Results for coastal ocean

The following parameters are used for the coastal
ocean:

D=250m

h=25m .
f=10"%s"" (38)
N=10"2%s"

v=1cm?s™!

The mode shapes are obtained by solving the eigenvalue
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problem (5). The eigenvalues for the first three modes
are foundtobe ¢; = 78, ¢; = 39,and c3 = 26 cm s,
First a rather slow propagation speed of U = 150
cm s! is chosen. According to (20) the slow speed
generates a large blue shift, so that a large flux of the
inertial oscillations would be clearly visible in the so-
lution. The Green’s function u; is evaluated from (26)
. and (4), with 7o = 1 dyn cm™2 and the constants defined
in (11), (17), (18) and (19). It is found that 50 modes
are sufficient for convergence of the sum (4). Taking
t = 0 to be the instant the front crosses the coast,
the flow field at each point (x, z) is evaluated from
t = —(shelf width)/U to ¢ = 25 days, at intervals of 2
h. A time resolution of 10 min is used for evaluating
the convolution integral in (26). The amplitude and
phase of the inertial oscillations are found by complex
demodulating the « field at the inertial frequency, using
a bandpass filter to extract the inertial oscillations.
Figure 2 shows the amplitude at several depths when
no coast is present. In this case the flow field at any
depth is a function of the moving coordinate ¢ alone,
and the horizontal axis in Fig. 2 can be taken as either
&/)\;in the moving frame or #/¢;in the fixed frame. The
viscid flow field in Fig. 2 is seen to be very similar to
the inviscid field described in details by Kundu and
Thomson, confirming the smallness of viscous effects
on inertial oscillations. The field is seen to be inter-
mittent, the dominant period of the intermittancy being
27/(w, —f) = 5.8¢; (Gill, 1984; Kundu and Thomson,
1985). At a typical subsurface depth of 90 m, the max-
imum amplitude is 1.2 cm s™'. Larger amplitudes are
reached at the bottom, a feature also seen in the so-
lutions of Gill (1984). In fact, both maximum and

3 /"\:\surfuce

Amplitude (cm/s)

FIG. 2. Amplitude of inertial oscillation at three depths due to a
concentrated forcing of Ar* = 1 dyn cm™2 Shallow water parameters
(38) are used, along with U = 150 cm s™! and no coast. The time
axis starts at £ = 1.72¢; due to the loss of record length caused by the
demodulation filter. Note that the minimum amplitude at the surface
occurs first, followed by the maximum at 90 m, and then the max-
imum at the bottom. This is due to the finite downward speed of
energy propagation.
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F1G. 3. Amplitude of inertial oscillations at x = —17.3 km for three

values of depth due to a concentrated forcing of A7* = 1 dyn cm™2,
Shallow water parameters (38) are used, along with U = 150 cm s™*
and the presence of a coast. Comparing with Fig. 2, note that the
presence of a coast has increased the subsurface oscillations.

minimum amplitudes occur on a slippery flat bottom,
where ¢,, = 0. With some exceptions (e.g., Saunders,
1983; Sanford, 1975), bottom intensification of inertial
oscillations is not a commonly observed feature, pre-
sumably due to the existence of a viscous-bottom

. boundary layer.

Figure 3 shows the behavior of the amplitude at
x = —17.3 km for several values of depth, when a coast
is introduced at x = 0. The maximum amplitude at
90 m is now 3 cm s™!, and bigger values are again
achieved at the bottom. Comparison with Fig. 2 shows
that the presence of the coast has obviously intensified
the inertial oscillations at this offshore position. The
oscillations much closer to the coast are, however,

- smaller. The initial gain of subsurface inertial energy

can be traced to the flux of energy from the surface-
coast corner. This is shown in Fig. 4, which shows the
contours of amplitude at several times. A region of
amplitude greater than 2 cm s™! is seen to descend
from the surface-coast corner, signifying a downward
flux, as in the case of the switched-on uniform wind
(Kundu et al. 1983). Unlike the switched-on case,
however, the amplitude near the coast does not mono-
tonically decay, in agreement with the asymptotic form
(28). Another region of gain appears near the bottom
at x ~ —25 km, presumably due to the bottom reflec-
tion of some of the relatively higher frequency com-
ponents. At the large time of ¢/t; = 27.4, Fig. 4 shows
a pattern of highs separated by about 50 km. This is
in rough agreement with the asymptotic form (28), in
which the first term shows that the large amplitudes
should be separated by a length 2« /k,,, which is 75 km
for n = 1 and 90 km for very high-order modes.

The above results indicate that the propagation of a
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F1G. 4. Contour plots of inertial amplitudes for four values of #/t; for the calculation shown in Fig. 3.
Contour interval is 0.5 cm s™!. Regions of subsurface amplitude greater than 2 cm s™! are shaded, and those
greater than 3 cm s™! are hatched. Note the descent of a region greater than 2 cm s~! from the surface—coast
corner, the absence of a complete decay near the coast, and a regular series of highs in x for large times.

front, having a discontinuity of A7* = 1 dyn cm™2,
over a coastal ocean produces inertial oscillations that
are larger in magnitude than those obtained in either
the switched on case (Kundu et al., 1983) or in the
boundary-free case (Kundu and Thomson, 1985). Itis
now shown that much larger oscillations are generated
by superposing solutions due to a series of propagating
disturbances.

In order to determine the oscillations due to a re-
alistic forcing, the wind stress observed off the coast of
British Columbia in the summer of 1977 is used next.
Measurements at several coastal and oceanic stations

showed that the wind propagated toward the coast in
frontlike disturbances aligned alongshore (Thomson
and Huggett, 1981). The passage of warm fronts caused
a sudden veering of the wind from southeasterly to
southwesterly; these are marked by arrows in Fig. 5.
The speed of propagation was U = 400 cm s~ . Starting
on 21 June, large inertial oscillations (30-50 cm s™})
were observed in the upper 20 m, whereas those below
the surface were much smaller (~5 cm s™}).

Since a detailed simulation is not the purpose of the
paper, the observed density field is not used here. In-
stead the parameters (38) are used, along with U = 400
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FIG. 5. Wind stresses measured by Thomson and Huggett (1981)
off the coast of British Columbia. Arrows mark the positions of fronts
across which the wind suddenly veered from southeasterly to south-
westerlly. These fronts were observed to move onshore at U = 400
cms™.

cm s~!. Figure 6 shows the amplitude variation at x

= —46 km. The surface values reach 60 cm s™!, whereas
the mid-depth values are less than 15 cm s™!. The fact
that the subsurface amplitudes are now much smaller
than the surface values is due to the larger propagation
speed of the forcing. With U = 400 cm s}, the first
three modal frequencies are w; = 1.020f, w, = 1.005f,
. and w3 = 1.002f. The small blue shift results in only a
small downward energy flux.

The correlation and phase difference of velocity vec-
tors are most easily determined by evaluating the com-
plex correlation coefficient

T .
R = w'(Xo, HW(X, 1) . (39)
[w'(xo, HW(x0, D] [W'(x, HW(x, 1]/

where w = u + iv, X¢ and x are the two locations, and
()Y denotes complex conjugation. The magnitude of

surface
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FIG. 6. Amplitude of inertial oscillations at x = —46 km for three
values of depth, forced by the late June event of Fig. 5. Shallow water

parameters (38) are used, along with U = 400 cm s~ and the presence

of a coast.
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R gives a weighted average correlation, and the phase

angle of the complex number R gives the average

counterclockwise angle of vector at x with respect to

the vector at xo. Figure 7 shows the horizontal distri-

bution of correlation of the surface currents of Fig. 6.°
The correlation magnitude is high, and the phase dis-

tribution corresponds to an onshore propagation with

horizontal wavelength of 248 km, close to the inertial
wavelength of 27 U/f = 251 km. Therefore the effect
of the coastline on the horizontal phase variation of
currents is small, as observed by Thomson and Huggett
(1981) and Kundu and Thomson (1985). This, how-
ever, is not true very close to the coastline, where Fig.
7 shows a flattening out of the phase. The correlation
of the subsurface currents is qualitatively similar to
that of the surface currents and is not shown.

The vertical distribution of correlation of the same
currents is shown in Fig. 8. The distribution at x = —46
km is shown, but those at other offshore locations are
qualitatively similar. The current vectors are seen to
be highly correlated in the vertical, and rotate clockwise
with depth with an implied upward phase speed of ¢,
= 0.6 cm s}, which is of the order of the observed
values.

It is not difficult to see why the model oscillations
should be so highly correlated both horizontally and
vertically even for a stochastic forcing. The high cor-
relation in fact results from the high correlation of the
w(x, 1) field itself (where w; = u; + iv;), and the fact
that the same wind field passes over all the horizontal
locations. The latter fact would have produced a perfect
horizontal correlation were it not for the presence of
the waves reflected off the coast. The high vertical cor-

180°
g /
-E o° //
-180°
10 —_
]
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2 |
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(o} . )
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FIG. 7. Horizontal distribution of magnitude and phase angle of
correlation of the surface currents forced by the late June event of
Fig. 5. Shallow water parameters (38) are used, along with U = 400
cm s™! and the presence of a coast. The correlation is computed with
respect to the offshore location x = —576 km. Note the high corre-
lation magnitude and the counterclockwise rotation of velocity vectors
with onshore distance corresponding to a horizontal wavelength of
248 km.
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F1G. 8. Vertical distribution of magnitude and phase angle of cor-
relation of the currents (at x = —46 km) forced by the late June event
of Fig. 5. Shallow water parameters (38) are used, along with U = 400
cm s~! and the presence of a coast. The correlation is computed with
respect to the depth 120 m. Note the high correlation magnitude,
and the clockwise rotation of velocity vectors with depth.

relation is due to the domination of a few low-order
modes in the solution.

High resolution spectra of the surface and bottom
currents at x = —46 km are shown in Fig. 9. The in-
crease of the blue shift with depth is due to the rapid
downward leakage of the low-order modes. The spectra
have a single peak because the w, are too close together
for the rather high assumed value of U/c, = 5.1. These
facts have been pointed out in the coast-free calcula-
tions of Kundu and Thomson. The interesting new
feature in Fig. 9 is that the bottom spectrum has at
least a 5% blue shift, whereas the largest modal fre-
quency is only w, = 1.02f. The higher blue shift is due
to the presence of the coast, and enters the model
through the Bessel function terms in (26).

Figure 10 shows a calculation using the smaller value
of U = 150 cm s~!. This figure should be compared
with Fig. 6 where U = 400 cm s~ '; all other parameters
are identical for the two figures. The mid-depth max-
imum amplitudes in Fig. 10 are about four times those
in Fig. 6. Substantial near-inertial oscillations can
therefore be generated by realistic wind fields translat-
ing at slower speeds.

A check was made on the validity of (37), which says
that the inertial energy in the ocean should be propor-
tional to S,(f). The calculation of Fig. 10 was repeated
after subtracting out the inertial components of the
wind by bandpass filtering. The resulting wind stress
series decreased in rms value by about 15%, and visually
it looked surprisingly similar to the original series
shown in Fig. 5. However, the model inertial ampli-
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FI1G. 9. High resolution spectra of u forced by the late June event
of Fig. 5. Surface and bottom spectra at x = —46 km are shown,
with a bandwidth of 0.015/. Shallow water parameters (38) are used,
along with U = 400 cm s™* and the presence of a coast. Note the
increase of blue shift with depth and the fact that the presence of the
coast causes the blue shift at the bottom (~5%) to be larger than
that of the first mode (~2%).

tudes driven by this wind decreased by a factor of 6!
A second check was to compare the model amplitudes
with those predicted from (37). The spectrum .S, of the
forcing series ¢(¢) = 7,/°(¢) + f*(¢) was computed, and
its value near w = fwas found to be Sy(f) ~ 5 X 1073
cm* s7. From Fig. 3, the average amplitude of u; at
90 m is 2 s cm™!. (The unit of u; is that of velocity per

60 1

surface / \

Amplitude {cm/s)

1
28
June 1977

FiG. 10. As in Fig. 6 except U = 150 cm s~'. Note that the
subsurface amplitudes are now about four times larger.
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unit stress; this gives s cm™'.) Equation (37) then pre-
dicts the average amplitude after eight days to be 30
cm s~!, which is close to the model value in Fig. 10.

5. Results for deep ocean

A calculation in the deep ocean, without the presence
of the coast, is now performed. The parameters used
are

D =2500 m )
h=50m
f=10"s"1
1, z>—-h
po =1 1+ Ap[1 — =/t r (40)

+ Apy[l — e®Pi) 7 < —p

Yin = 0.1 cm? 57!

U=600cms™}, J

where Ap; = 0.00125 gm cm™3, b, = 200 m, Ap,
= 0.00225 gm cm™3, and b, = 1000 m. Both the ocean
and the mixed layer depths in (40) are larger than the
ones in (38) used for coastal calculations. The back-
ground density profile po (Fig. 11) has a thermocline
just below the mixed layer with N2,, = 0.8 X 107%s72,
The vertical viscosity at the mixed layer base is taken
as 0.1 cm? s, and because of the assumed N2 be-
havior its value at a depth of 1000 m is about 1 cm?
s~!. The wind translation speed is chosen to be of the
order of hurricane motions (Price, 1983).

N(s)
0 1072

0 1 e 1 Fl -

-1000 -
z(m)
N Po

-20004

T L} T 1

1.0 1.004
£, (gm/cm3)

FIG. 11. Vertical distributions of background density and the as-
sociated buoyancy frequency used in the open ocean calculations.
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Calculation of the vertical modes gives the first three

eigenvalues to be ¢; = 253, ¢; = 132, and ¢; = 88 cm
s7!. The corresponding modal frequencies are w,
= 1.103f, w, = 1.025f, and w3 = 1.011f. For a fixed
value of U, the blue shifts are larger in the deep ocean
because of the larger values of ¢,. A substantial down-
ward flux can therefore be expected even at large values
of U. :
As an example, the wind field of Fig. 5 during 15
June-10 July (25 days) is used as forcing. Because of
the long times required for dispersion in the deep open
ocean (Gill, 1984), the subsurface oscillations here can
be made up of responses to wind events that took place
months ago. That is why the model results in this sec-
tion are forced by a 25-day long segment of Fig. 5, as
opposed to an 8-day long segment for coastal calcu-
lations.

The resulting contours of u(z, ¢) in the upper 1000
m of the ocean are shown in Fig. 12. The phases are
seen to propagate upward with an average speed of ¢,
~ 2 cm s~!. The oscillations decrease in magnitude
with depth, which is more clearly seen in the amplitude
plot of Fig. 13. The maximum subsurface amplitudes
at 80, 160, 280 and 1000 m are 23, 14, 7and 3cm s™!
respectively. When the calculation is stopped on 10
July, the subsurface magnitudes are still increasing due
to the downward flux from the surface. The surface
magnitudes seem to have reached an equilibrium be-
tween the leakage and wind forcing. The subsurface
amplitudes clearly show that the peaks and valleys oc-
cur at progressively increasing times with-increasing
depths. The implied speed of downward propagation
of energy is 0.2 cm s™! in the upper thermocline, and
rapidly decreases below.

The spectra at two depths (Fig. 14) show that the
blue shift of the primary peak increases with depth,
and that there is a secondary peak at the first mode
frequency w;/f = 1.1. The presence of a secondary peak
in Fig. 14, but not in Fig. 9, is due to the fact that
UJc, is much smaller for the assumed deep water pa-
rameters, resulting in a large w; — f (see Kundu and
Thomson for further explanation).

Calculations of the correlation showed that the cur-
rents were highly correlated in the horizontal as well
as in the vertical.

6. Summary and conclusion

A linear, two-dimensional, continuously stratified
model has been developed to study the inertial oscil-
lations generated by a propagating wind field. The
model is an extension of the one in Kundu and Thom-
son (1985) to include viscous damping, presence of a
coast, and superposition due to a distributed forcing.
It has been shown that the effects of viscous damping
on inertial oscillations are small, but the effects of
coastline and superposition are considerable in that
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FIG. 12. Contour plots of u(z, ¢) in the open ocean calculation. Parameters used are (40),
and the forcing is the wind series of Fig. 5. Note the upward phase propagation.

much larger subsurface inertial oscillations are gener-
ated. Essentially, the coast generates an additional blue
shift, and superposition of responses with random
phase does not cancel out but increases the rms value
as the square root of the number of additions. The
forcing spectrum need not necessarily be white for this
behavior, only that it should be “smooth” near the
inertial frequency, since only this part of the forcing
spectrum contributes. In a linear model, very little in-
ertial oscillations are generated if the near-inertial
components of the wind are removed by bandpass fil-
tering, although this may have reduced the rms value
of the wind variation by only a small amount.
Calculation of a concentrated front in shallow water
(D = 250 m) at a slow propagation speed (U = 150 cm
s71) is performed to illustrate the increase of the sub-
surface oscillations due to the presence of a coast (Figs.
2 and 3). The increase is caused by a downward flux
from the surface~coast corner (Fig. 4). When the coastal
model is forced by an 8-day long segment of an ob-

served wind (Fig. 5) propagating at U = 400 cm 5™,

40 1

Amplitude (em/s)

June

July

FIG. 13. Amplitude variation at several depths in the open ocean
calculation. Parameters used are (40), and the forcing is the wind
series of Fig. 5. Note that the peaks propagate downward at 0.2

~1
cms™'.

the maximum mid-depth model amplitudes reached
are about 15 cm s™!, and the surface values are nearly
60 cm s~ (Fig. 6). These values are of the order of
those observed by Thomson and Huggett (1981), except
that the model subsurface currents are larger than the
observed currents, many of which were clearly within
the bottom boundary layer.

The model shows that the blue shift, and hence the
subsurface amplitudes, increase with ¢;/U. Since ¢, is
larger in the deep ocean than in shallow water, it follows

108 -

Spectral Density (cm?s-2/cps)

1.6 x108
J “ W
1 Z=-360m
o T L4 1
.8 8 1.0 1.2 1.4
w/f

FIG. 14. High resolution spectra of « in the open ocean calculation.
Parameters used are (40), and the forcing is the wind series of Fig.
5. Note the secondary peak at w, and the increase of the blue shift
of primary peak with depth.
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that large downward fluxes of inertial energy can be
generated there. In one calculation a deep ocean (D
= 2500 m) with a thermocline is forced by a 25-day
long segment of coastally observed wind series (Fig. 5),
assumed to propagate at U = 600 cm s~!. The model
subsurface maximum amplitudes decrease with depth
from 23 cm s™! at 80 m to 3 cm s”! at 1000 m. A
decrease with depth is universally observed in deep wa-
ter data. The observed amplitudes can sometimes be
as large as 6-7 cm s™! even below 2000 m (Leaman
and Sanford, 1975; Sanford, 1975; D’Asaro and Per-
kins, 1984). Clearly the model is able to generate these
large deep water observations, since in the open ocean
the propagating wind events are frequently composed
of stresses of order 10-20 dyn cm~2 (D’Asaro, 1985;
Price, 1983), several times larger than the maximum
stresses (<5 dyn cm™2) used in the model. Moreover,
it is important to note that much larger oscillations
could be generated in the model simply by forcing it
for a longer time, because the decay time of the impulse
response ; is several months long (see also Gill, 1984).

The spectra (Fig. 9, Fig. 14) show a primary peak
whose blue shift increase with depth. This is in agree-
ment with several observations (e.g., Fig. 5 of Fu, 1981;
Millot and Crépon, 1981; Price, 1983) and is due to
a smaller contribution of the high-order modes with
depth. The spectra can also have a secondary peak at
wy if U/c, is not too large (Fig. 14), and such “split”
inertial peaks are frequently observed (Fu, 1981;
Kundu, 1976).

In spite of the above successes the model has major
faults. The model oscillations are too highly correlated,
~ both vertically and horizontally. A stochastic forcing,

if assumed frozen and simply horizontally advected,
does not generate high intermittency or low coherence.
The model intermittency is dominated by the phase
mixing of the various modes [resulting in a dominant
-periodicity of 2n/(w, — f) for the amplitude], rather
than the phase mixing of the responses to the various
segments of the wind series.

Many of the above deficiences no doubt result from
the assumed two-dimensionality and the neglect of
the B-effect. Realistic storms and the associated fronts
are localized in space, and the propagation and dis-
persions perpendicular to the direction of translation
are important. The various storms and the associated
fronts have different tracks and different speeds of
propagation. The wave groups therefore also propagate
meridionally as they descend from the surface, and the
ones propagating poleward turn equatorward at their
critical latitudes (Munk and Phillips, 1968; Fu, 1981;
Gill, 1984). Some calculations suggest that the con-
version of inertial oscillations to high frequency internal
waves by nonlinear interactions is small (McComas
and Miiller, 1981). Recent work also suggests that the
benthic boundary layer is a good reflector of inertial
waves (Fu, 1981; D’Asaro, 1982). It would therefore
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seem that the inertial waves can travel thousands of
kilometers before being dissipated, and the oscillations
at a subsurface point could really be made up of the
responses to entirely different storms. Along the way
the waves could be distorted by numerous factors. For
example, the mean motion could trap, focus or amplify
these waves (Kunze, 1985; Weller, 1982). The super-
position of such oscillations would definitely be far
more incoherent than the ones generated in the present
two-dimensional model.

The present work does nevertheless show that the
wind forcing could explain the observed levels of sub-
surface inertial energy. Wave-wave interactions or
other mechanisms need not necessarily be responsible.
The fact that the internal wave spectrum is vertically
asymmetric for near-inertial frequencies with predom-
inantly downward energy propagation, although it is
vertically symmetric for « » f, must indicate that the
inertial oscillations are predominantly surface forced
by the wind. Work on the wind forcing should therefore
continue, and it is hoped that a three-dimensional
model be soon developed to study propagating distur-
bances.
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