文章编号:1002-2082(2006)06-0539-04

大气泡散射的几何物理模型数值计算

李旭东¹,杨鸿儒¹,张 郁²,吴 磊¹,宋一兵¹

(1. 西安应用光学研究所, 西安 710065; 2. 陕西电子杂志社, 西安 710061)

摘 要: 米氏模型和德拜级数展开模型在气泡尺寸达到 μm 量级时不能很好地解释海水中大尺 寸空泡的后向散射现象,计算速度较慢且容易溢出。提出使用几何物理光学模型解释大尺寸空泡 的后向散射现象,给出了一种基于几何物理光学模型的球形大气泡散射特性的数值计算方法,并 与德拜级数展开式进行了比较,计算结果基本吻合。该方法在计算大尺寸空泡的后向散射时不受 微粒尺寸参数和折射率的限制,且避免了复杂的级数形式,与基于米散射理论或德拜级数展开的 算法相比,具有更快的运算速度。最后给出了一些计算实例。

Numerical calculation of light scattering caused by large spherical bubbles with geometrical-physical model

LI Xu-dong¹, YANG Hong-ru¹, ZHANG Yu², WU Lei¹, SONG Yi-bing¹

(1. Optical Metrology Laboratory, Xi'an Institute of Applied Optics,

Xi'an 710065, China; 2. Shaanxi Electronic Magazine, Xi'an 710061, China)

Abstract: Since Mie model and Debye-series expansion model can not accurately explain the back scattering phenomenon of large dimensional bubbles in seawater when the size of the bubbles reaches micron order of magnitude and their calculation speeds are slow, a geometrical-physical optical model is put forward. The numerical calculation method of the scattering property for the large spherical bubbles, based on geometrical-physical optical model, is described. In comparison with Debye model, the calculation result of the geometrical-physical optical model agrees with Debye model basically. The calculation process of the method is independent of size parameters, and it is more stable and faster than the traditional methods based on Lorenz-Mie theory or Debye-series expansion. Some calculation results for the angular distributions of the scattering intensity are also given.

Key words: geometrical-physical theory; Mie scattering; bubble

引言

洛伦兹-米散射理论(Lorenz-Mie theory)在环保、能源、天文、气象和医学等许多领域有着广泛的应用^[1-3]。Mie 散射系数(数值)计算的核心是实现 贝塞尔函数和汉克尔函数的精确计算,主要有前 推、后推和连分式等算法,适于解释尺寸参数较小 和折射率虚部较小的情况。另外,在尺寸参数*x* 非 常小时 Mie 公式是病态的,如果采用递推算法,那 么在计算小颗粒的散射时只能采用专门的近似公 式。德拜级数展开算法只是在米氏模型的基础上作

作者简介:李旭东(1975-),男,山西晋城人,在读博士,主要从事光学计量研究工作。E-mail:lixd008@163.com

收稿日期:2006-06-14; 修回日期:2006-06-20

基金项目:兵器预研基金项目

了一些改进,能较直观地解释临界角散射和彩虹等 物理现象^[4];另一方面,米氏散射及德拜级数展开 模型数值计算的局限性在于微粒尺寸或折射率虚 部值较大时,其计算速度较慢或会产生溢出等现 象^[5-9],但海洋中由于潜艇螺旋桨空化或海洋表面 隔断波影响产生的气泡直径往往达到上百甚至上 千微米,显然米氏模型和德拜级数展开不适合解释 大尺寸空泡的散射现象。我们提出采用几何物理模 型来计算微粒的散射特性^[10-14]。

本文给出了一种基于几何光学模型的球形大 气泡散射特性的数值计算方法。这种算法在仅考虑 后向散射情况时不依赖于微粒尺寸参数的大小,也 不受折射率因素的限制,与基于米散射理论或德拜 级数展开的算法相比更稳定,且具有更快的运算速 度。最后给出了计算实例。

1 几何散射模型建立

1637 年,笛卡尔首先使用光线追踪法来解释 彩虹现象。之后,牛顿扩展了几何光学理论,并解释 了彩虹的颜色。研究发现,这种几何光学理论也能 很好地应用于海水空泡的散射中,几何物理模型散 射光场应由衍射部分、反射部分和透射部分组成, 如图1 所示^[10]。

图 1 气泡散射的几何物理模型 Fig. 1 Geometrical-physical model of the light scattered by bubbles 图中衍射部分振幅为夫琅和费衍射,即^[10]

$$S_{\mathscr{I}}^{\text{diff}}(\theta) = S_{\perp}^{\text{diff}}(\theta) = x^2 \frac{J_1(x\sin\theta)}{x\sin\theta} \tag{1}$$

式中: S_{\perp}^{diff} 和 S_{\perp}^{diff} 分别为p分量(平行偏振)和s分量 (垂直偏振)衍射振幅; θ 为散射角;x为微粒尺寸 参数, $x=2\pi r/\lambda$,r为气泡半径, λ 为入射光波的 波长; J_1 为第一类贝塞尔函数。

图中反射部分(p=0)和透射部分(p=1,2,3,

····)振幅^[10,12]可表示为

$$S_{\#,\perp}(\theta) = \sum_{p,q} x E_{\#,\perp} D_{p,q}^{1/2} \exp[i(\delta + \zeta)] \quad (2)$$

式中: S_{\parallel} 和 S_{\perp} 分别为p分量和s分量散射振幅; D为波前扩展因子; δ 和 ζ 分别为气泡内部和外部 产生的光程差。

(2)式中波前扩展因子(wave front spreading factor)D^[10]为

$$D = \left| \frac{\sin 2\theta_i}{2\sin \theta} \left| \frac{\mathrm{d}\theta_{\rho}}{\mathrm{d}\theta_i} \right| \right| \tag{3}$$

式中: $\sin \theta_i = m \sin \theta_r$, θ_i 和 θ_r 分别为入射角和折 射角, m为水和空气2种介质的相对折射率; θ 为 散射角; θ_p 为偏向角, p为弦数, p-1即光线在 气泡内部的反射次数。

(3)式中偏向角(deflection angle) θ_p 可表示为 $\theta_p(\theta_i) = -(p-1)\pi - 2\theta_i + 2p\theta_r$ (4)

散射角(scattering angle) θ 与偏向角的关系为 $\theta_{\nu} = 2l\pi + q\theta$ (5)

式中: $l=0,\pm 1,\pm 2,\pm 3,\dots; q=\pm 1(q=1$ 表示 入射光从光轴的上半方入射,q=-1表示入射光 从光轴的下半方入射); $\theta \in [0,\pi]$ 。

(2)式中的光程差可表示为^[10]

$$\begin{cases} \delta = 2x(\cos \theta_i - pm \cos \theta_r) \\ \zeta = (p+1 - q/2 - s/2 - 2l)\pi/2 \end{cases}$$
(6)

式中:m > 1时s = -1;m < 1时s = 1。

 $E_{//}$ 和 E_{\perp} 为^[12]

$$\begin{cases} E_{\#,\perp} = r_{\#,\perp}^{11} E_{\#,\perp}^{i}, p = 0 \\ E_{\#,\perp} = t_{\#,\perp}^{12} (r_{\#,\perp}^{22})^{p-1} t_{\#,\perp}^{21}, E_{\#,\perp}^{i}, p > 0 \end{cases}$$
(7)

式中: Eⁱ 为入射光振幅; r^{wv}和 t^{wv}分别为介质 u 入 射到介质 v 时的透射系数和反射系数。

(7)式中各界面透射系数和反射系数¹¹⁵分别

$$\begin{cases} t_{\parallel}^{12} = \frac{2n_{1} \cos \theta_{i}}{n_{2} \cos \theta_{i} + n_{1} \cos \theta_{r}} \\ t_{\perp}^{12} = \frac{2n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i} + n_{2} \cos \theta_{r}} \end{cases}$$
(8)
$$\begin{cases} t_{\perp}^{21} = \frac{n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{i}} t_{\parallel}^{12} \\ t_{\perp}^{21} = \frac{n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{i}} t_{\perp}^{12} \\ t_{\perp}^{21} = \frac{n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{i}} t_{\perp}^{12} \end{cases}$$
(9)
$$\begin{cases} r_{\parallel}^{11} = \frac{n_{2} \cos \theta_{i} - n_{1} \cos \theta_{r}}{n_{2} \cos \theta_{i} + n_{1} \cos \theta_{r}} \end{cases}$$

$$r_{\perp}^{11} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_r}{n_1 \cos \theta_i + n_2 \cos \theta_r}$$
(10)

 $\begin{cases} r_{\#}^{22} = -r_{\#}^{11} \\ r_{\perp}^{22} = -r_{\perp}^{11} \end{cases}$ (11)

上述(1)~(11)式即为进行大尺寸空泡散射计 算建立起的新的数学模型。

2 数值计算

几何光学模型数值计算的难点是已知弦数 p和散射角 θ ,求满足(4)式和(5)式的所有入射角 θ_i , 而这里的入射角 θ_i 是多值函数。根据sin θ 函数的特性,由(5)式可得

 $\sin(\theta_{p}/2) = \sin[(2l\pi + q\theta)/2] = q\sin(\theta/2)$ (12)

即转化为求方程 $f(\theta_i)$ 零点的问题:

$$f(\theta_i) = \sin (\theta_p/2) - q \sin (\theta/2) = \cos(-p\pi/2 + p\theta_r - \theta_i) - q \sin (\theta/2) = 0$$
(13)

式中: $q = \pm 1$; Θ 为给定的散射角。

散射角 θ 与入射角 θ_i 和弦数p的关系如图2所示。图2中 $y=\Theta$ 与相应曲线($p=0,1,2,\cdots$)交点的 横坐标值,即为所有满足条件(有同样散射角 Θ)的 入射角 θ_i 。

散射角 θ 与入射角 θ_i 和弦数 ρ 的关系,图2中

有一个共同的交点,而这个交点所对应的横坐标值 即为满足反射定律的布儒斯特角 θ_b ;当p=0,m=0.75,且 $\theta_i > \theta_b$ 时, $\theta < 180^\circ - 2\theta_i \approx 82.5^\circ$,即表明仅 仅当 $\theta_i < \theta_b$ 时,在后向方向才能接收到后向散射。

图 2 散射角 θ 与入射角 θ_i 和p的关系图

Fig. 2 Relationship between scattering angle θ at a specific interface *p* and incident angle θ_i 参照德拜极数展开的方法,令截断数^[8]为

$$p_{\max} = x + 4.3x^{1/3} + 2 \tag{14}$$

则远场散射振幅可写为

$$S_{\#,\perp}(\theta) = \sum_{\substack{b=0\\ p\neq=0}}^{p_{\max}} x [\delta(q-1) + \delta(q+1)] D_{b}^{1/2} \cdot E_{\#,\perp} \exp[i(\delta+\zeta)] + S_{\#,\perp}^{\text{diff}}(\theta)$$
(15)

式中 $\delta(z)$ 为狄拉克函数。仅当z=0时, $\delta(z)=1$ 。 散射光强为

$$I_{\#,\perp}(\theta) = \frac{|S_{\#,\perp}(\theta)|^2}{x^2} = \frac{\left\{S_{\#,\perp}^{\text{diff}}(\theta) + \sum_{p=0}^{r_{\text{max}}} x \left[\delta(q-1) + \delta(q+1)\right] D_p^{1/2} E_{\#,\perp} \exp\left[i(\delta+\xi)\right]\right\}^2}{x^2}$$
(16)

当只考虑后向散射的影响时,衍射项不产生后 向散射,可忽略不计。从几何物理模型可知,散射强 度不受气泡尺寸大小的限制。因此,我们仅仅在考 虑前向散射时才考虑衍射的影响。

3 计算实例

在Matlab6.5环境下,编制了大气泡散射的几 何光学模型程序和德拜(Debye)级数展开模型程 序。德拜级数展开程序采用洛伦兹连分式(Lorenz continued fractions)算法,可以计算较大尺寸参数 的微粒,几何光学模型在研究后向散射时不受衍射 的限制,即可认为与尺寸参数无关,且模型也不是 折射率指数的函数,因此其受限制的因素大大变 少。几何物理模型和德拜级数的散射强度如图3所 示(*p*=0,1,2,3)。由图3 可知几何光学模型与德拜 级数计算的散射光强基本相符。本文所有计算均只 针对出射光强进行,与德拜级数模型和米氏模型相 比,避免使用级数展开的形式,得到的公式物理意 义更加明确,形式简单,计算快速且不容易产生溢 出,易于利用计算机进行计算。

4 结论

本文提出用几何物理模型计算大尺寸空泡的 后向散射现象,且给出了一种基于该模型的球形大 气泡散射特性的数值计算方法;与米散射或德拜级 数展开的算法进行了比较,发现其计算结果基本吻 合。但该模型在计算气泡后向散射时不受气泡尺寸 和折射率的限制,且避免了使用复杂的级数展开形 式,大大加快了计算的速度。

Fig. 3 Relative scattering intensity at specific interfaces

参考文献:

- GARY M H. Mie scattering as a technique for the sizing of air bubble[J]. Appl Opt, 1985, 24(19): 3214-3220.
- [2] GAU Tsai-sheng, CHEN Chun-kuang, LIN B J. Image characterization of bubbles in water for 193 nm immersion lithography-far-field approach [J]. J Microlith, Microfab, Microsyst, 2004,3(1): 61-67.
- [3] KURT O G, CHRISTOPHER D F, SONKE J, et al. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human agerelated nuclear cataracts [J]. Experimental Eye Research, 2004,79(4): 563-576.
- [4] LAVEN P. The optics of a water drop: Mie scattering and the Debye series [OL]. http://www. philiplaven.com/index1.htm,2002-11-13.
- [5] WISCOMBE W J. Improved Mie scattering algorithms[J]. Appl Opt, 1980, 19(9):1505-1509.
- [6] 王少清,任中京,张希明,等. Mie 散射系数计算方法的研究[J]. 应用光学,1997,18(2):4-9.
 WANG Shao-qing, REN Zhong-jing, ZHANG Ximing, et al. Study of calculating method of Mie scattering coefficient[J]. J Appl Opt, 1997,18(2): 4-9. (in Chinese)
- [7] 杨晔,张镇西,蒋大宗. Mie 散射物理量的数值计算
 [J].应用光学,1997,18(4):17-19.
 YANG Ye, ZHANG Zhen-xi, JIANG Da-zong.
 Numerical calculation of Mie scattering[J]. J Appl Opt, 1997, 18(4):17-19. (in Chinese)
- [8] 朱震,叶茂,陆勇,等. 光散射粒度测量中Mie 理论的高 精度算法[J]. 光电子・激光, 1999,10(2):135-138.
 ZHU Zhen, YE Mao, LU Yong, et al. High precise

algorithm of Mie scattering in the particle sizing by light scattering [J]. J Optoelectron • Laser, 1999, 10(2):135-138. (in Chinese)

- [9] 王君,何俊发,王莲芬,等. 简易 Mie 散射数值计算 方法的研究[J]. 应用光学, 2005,26(4): 13-16.
 WANG Jun, HE Jun-fa, WANG Lian-fen, et al. The implementation of straightward Mie scattering numerical calculation[J]. J Appl Opt, 2005,26(4): 13-16. (in Chinese)
- [10] UNGUT A, GREHAN G, GOUESBET G. Comparisons between geometrical optics and Lorenz-Mie theory [J]. Appl Opt, 1981, 20 (17): 2911-2918.
- [11] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles [M]. New York: John Wiley & Sons, 1983.
- [12] EDWARD A H, JAMES A L. Assessing the contributions of surface waves and complex rays to farfield Mie scattering by use of the Debye series[J]. J Opt Soc Am A, 1992,9(5):781-795.
- [13] ZHOU Xiao-bing, LI Shu-sun, STAMNES K. Geometrical-optics code for computing the optical properties of large dielectric spheres [J]. Appl Opt, 2003,42(21):4295-4306.
- [14] LI Xu-dong, YANG Hong-ru, WU Lei, et al. Study of the laser scattering effect on the bubbles in ocean[J]. SPIE, 2006, 6150: 615054-1-9.
- [15] 波恩 M,沃耳夫 E.光学原理[M].杨霞荪,译.北京:科学出版社,1978.
 BORN M, WOLF E. Principles of Optics [M]. YANG Xia-sun, translate. Beijing: Science Press, 1978. (in Chinese)