2006年12月

西昆仑康西瓦西部早古生代侵入岩的岩浆混合作用

王炬川1,崔建堂12,罗乾周1,朱海平1,边小卫1,

张汉甫¹,贾忠胜¹,王 峰¹,葛双民¹

WANG Ju-chuan¹, CUI Jian-tang^{1,2}, LUO Qian-zhou¹, ZHU Hai-ping¹, BIAN Xiao-wei¹, ZHANG Han-fu¹, JIA Zhong-sheng¹, WANG Feng¹, GE Shuang-min¹

1. 陕西省地质调查院,陕西 咸阳 712000;2. 长安大学地球科学与空间学院,陕西 西安 710054

1. Shaanxi Institute of Geological Survey, Xianyang 712000, Shaanxi, China;

2. School of Earth Sciences and Space , Chang'an University , Xi'an 710054 , Shaanxi , China

关键词 :西昆仑 :康西瓦西部 ;早古生代 ;岩浆混合作用 ;壳幔作用 ;造山带

中图分类号:P588.12;P588.11⁺⁵ 文献标识码:A 文章编号:1671-2552(2006)12-1458-11

Wang J C , Cui J T , Luo Q Z , Zhu H P , Bian X W , Zhang H F , Jia Z S , Wang F , Ge S M. Magma mingling of Early Paleozoic intrusive rocks in western Kangxiwar , West Kunlun, China. *Geological Bulletin of China* , 2006 , 25(12):1458–1468

Abstract : Early Paleozoic intrusive rocks are widespread north of Sanshilifang. They may be divided into the intermediate-basic , intermediate-acid and acid types. The intermediate-basic rocks consist predominantly of pyroxene diorite. The dark-colored minerals are commonly pyroxene and plagioclase is mostly andesine. Intermediate-acid rocks are dominated by quartz diorite , which has an inhomogeneous petrofabric and in which deep-seated , dark-colored xenoliths are commonly seen. Most of these xenoliths have clear-cut boundaries with their host rocks , while a few show transitional phenomenon. Under the microscope , association of unbalanced minerals and enclosure by antiphase minerals may be observed and the features of mingling of magma are conspicuous. Acid intrusive rocks are composed mainly of medium- and coarse-grained monzogranite. They contain a small number of xenoliths , whose features are the same as intermediate-acid intrusive rocks. Intermediate-basic rocks and acid rocks represent two successive continental crustal vertical growths respectively. The first mantle differentiation and continental crustal vertical growth occurred in the study area in the Cambrian , while the second extensive intrusion of basic magma occurred during post-orogenic derooting in the West Kunlun in the Late Ordovician-Early Silurian and its heat source resulted in large-scale partial melting of lower crustal material , thus generating large amount of granitic magma and leading to the second vertical growth of continental crust.

Key words : West Kunlun ; western Kangxiwar ; Early Paleozoic ; mingling of magma ; crust-mantle action ; orogenic belt

收稿日期 2006-04-10 ;修订日期 2006-09-25

地调项目:中国地质调查局项目《1:25万康西瓦幅等4幅区域地质调查》《编号200313000003)部分成果。

作者简介:王炬川(1965-),男,高级工程师,从事区域地质调查工作。E-mail kxwxm125@sina.com

夹持于塔里木陆块和羌塘陆块之间的西昆仑造山带,一 方面由于其处于特殊的地理位置——青藏高原的北缘,强烈 的隆升所形成的巨大落差使得该区长期处于强烈的剥蚀状态,许多沉积记录和构造形迹遭到剥蚀和破坏;另一方面,由 于多期次强烈的俯冲削减,西昆仑造山带各结合带中的沉积 建造保存极不完整,给造山带的解析研究带来相当大的困 难。同时,地下深部规模巨大的岩浆岩得以大面积出露,成为 研究区域地质演化和深部地质作用不可或缺的素材。这些岩 浆作用又是该区陆壳增生的重要方式之一。以往地质考察和 近年来开展的1:25万青藏高原空白区填图,对西昆仑造山带 的构造格架、演化历程及构造-岩浆岩带的展布、衍生序列的 研究均取得了一系列重大的成果^[18],初步确立了西昆仑造山 带为一多岛洋(或多微陆块拼合)的构造格局^[7],是经历了早 古生代、晚古生代、中生代多期构造运动叠加改造的一个复合造 山带。伴随着多期构造运动,产生了多期大规模的岩浆活动,空 间上与同期(微)陆块之间的结合带有着明确的对应关系^[8]。

近年来,岩浆混合作用在地学界得到了充分的重视,由 于其能够较完善地揭示壳--幔相互作用的过程,并有助于理 解大陆地壳生长和构造演化而得到岩浆岩工作者的认可和 运用。前人对秦岭造山带、东昆仑造山带及北部兴蒙造山带 的岩浆混合作用的研究均有成功的范例^[9-11]。通过1:25万康西 瓦幅区域地质调查,在对研究区的侵入岩进行精确的侵入体

图1 西昆仑康西瓦西部三十里营房北一带地质简图

Fig.1 Geological sketch map in an area north of Sanshiliyingfang in western Kangxiwar , West Kunlun

圈闭和详细的岩石学、岩石地球化学、同位素测年等研究的 前提下,对岩体中广泛存在的深源暗色包体给予了充分的关 注。本文拟对暗色包体从岩石学、地球化学、同位素年代学等 方面进行较细致的分析,以探讨该区早古生代深部岩浆混 合、壳--幔相互作用及其与陆壳生长的关系。

1 区域地质特征和岩体的岩相学特征

研究区位于西昆仑山中段、三十里营房—康西瓦北侧, 构造上处于康西瓦断裂以北、库地-其曼于特断裂以南,属中 昆仑微陆块[•]。在1:25万康西瓦幅区调过程中,在该微陆块上 发现了一条早古生代蒙古包-普守蛇绿混杂岩带(另文发 表),将中昆仑微陆块进一步细分为中昆仑北带和中昆仑南 带2个次级微陆块(图1)。研究区内侵入岩非常发育,约占基 岩露头面积的40%~50%。依据岩石组合特征及其产出的构造 位置,将早古生代侵入岩划分为中基性、中酸性和酸性3类, 后2类侵入岩中含有较多暗色包体,特别是中酸性侵入岩中 包体含量非常丰富,是本文研究的重点对象。

1.1 中基性侵入岩

研究区内中基性岩主体以岩枝状产于蒙古包一带,面 积约125 km²,侵入于蓟县系桑株塔格岩群或长城系赛图拉 岩群的一套中深变质碎屑岩和碳酸盐岩之中,又被中酸性 岩脉动侵入。侵入界面多向外陡倾、围岩接触变质作用不 明显。

中基性侵入岩主要岩性为深灰色中细粒暗色角闪闪长岩, 其次为细粒角闪黑云石英闪长岩等,二者之间为涌动或脉动侵 入关系,露头上以小规模不规则团块状混杂在一起,变化无规 律,岩石组成不均匀。暗色角闪闪长岩呈深灰色、细粒半自 形粒状结构,块状构造。矿物粒径以0.3~1 mm为主,少数1~ 2 mm。主要矿物为斜长石(50%~53%)、角闪石(36%~38%)、黑云 母(6%~8%)、透辉石(1%)。细粒角闪黑云石英闪长岩呈绿灰色, 块状构造,细粒半自形柱状结构,矿物粒径0.6~1 mm,主要矿 物有斜长石(51%~54%)、角闪石(13%~14%)、黑云母(18%~ 20%)、石英(13%~15%)、透辉石(1%)。

中基性侵入岩的共同特征:暗色矿物(黑云母+角闪石) 含量高,一般超过30%;斜长石排号高,An=46~48,为中长石; 含有辉石(透辉石),角闪石和辉石普遍发生次闪石化。 1.2 中酸性侵入岩

中酸性侵入岩是本文研究的重点,呈带状展布于蒙古 包-普守蛇绿混杂岩带的北侧附近或康西瓦-苏巴什结合带 北侧附近。单个侵入体呈长条状、不规则枝杈状产出,岩体规 模较大,在研究区内出露面积达650 km²。岩体侵入于蓟县系 桑株塔格岩群或长城系赛图拉岩群的一套中深变质碎屑岩

图2 包体与寄主岩石的宏观关系 Fig.2 Macroscopic relation between xenoliths and their host rocks A—多数包体与围岩的界线清晰 B—少数包体与围岩呈混染关系 C—包体与围岩的界线模糊, 呈残影状产出 D—包体中见有较多的寄主岩石的长石斑晶 及碳酸盐岩之中,侵入界面多向外陡倾,与碳酸盐岩接触处 见有较明显的交代变质作用,形成透闪石化大理岩。

中酸性岩体内不均匀地含有较多的暗色包体,多呈浑圆状,大小3 cm×5 cm到15 cm×20 cm,与围岩大部分界线清晰(图2-A),少部分呈过渡关系,局部还可见包体呈残影状出现(图2-B)。露头还常见包体中含寄主岩石中的长石斑晶。 包体有集中成群出现的趋势,局部含量可达30%,包体成分为闪长质。

中酸性侵入岩的岩石组成极不均匀,岩性变化大,主体组成岩石为灰色中细粒石英闪长岩和灰色中细粒角闪 黑云母英云闪长岩,局部地段岩性为中粒角闪黑云花岗闪 长岩,各岩性单元之间无截然界线,并且岩性变化无规律。 岩石呈灰色、浅灰色、灰白色,为中细一中粒半自形粒状结构,块状构造。矿物粒径0.8~2 mm,少数2~3 mm。主要矿物有 斜长石(45%~65%)石英(10%~23%)钾长石(3%~15%)黑云 母(8%~10%)角闪石(5%~10%)。另外镜下还可见到明显的 不平衡矿物出现,如石英包裹次闪石,而次闪石中又包裹有 石英(图3-a),角闪石中包裹有细小的黑云母、石英、斜长石 颗粒(图3-b),次闪石中包裹斜长石细小晶体(图3-c)等。

中酸性侵入岩的共同特征:暗色矿物(黑云母+角闪石) 含量较低,一般小于20%;斜长石排号低,An=26~28,为更长 石;不含辉石(透辉石)。

包体岩性为细粒黑云角闪闪长岩、细粒角闪黑云英云闪长 岩,岩石呈深灰、灰绿色,细粒半自形粒状结构,块状构造,主要 矿物为斜长石(42%~54%)角闪石(8%~35%)石英(1%~22%) 黑云母(10%~15%)、纤闪石(1%~2%)、钾长石(4%~5%)、绿 帘石+黝帘石(3%~4%)。包体成分变化较大,特别是石英和 暗色矿物含量差别明显;镜下可见角闪石中包裹有粒状石 英(图3-d),岩石中大小不同的2种斜长石共生(图3-e),小 者一般0.5~0.6 mm,洁净并发育聚片双晶,大者2~3 mm,晶体 中心部分强绢云母化,双晶不清,应为不同世代的矿物。

1.3 酸性侵入岩

酸性侵入岩呈带状展布于蒙古包-普守早古生代蛇绿 构造混杂岩带的两侧附近,岩体规模巨大,在研究区内面积 达900 km²。单个侵入体呈椭圆状或水滴状产出,侵入于蓟县 系桑株塔格岩群的一套中深变质碎屑岩和碳酸盐岩之中或 长城系赛图拉岩群的一套变质碎屑岩和碳酸盐岩之中,围岩 接触变质作用不明显,侵入界面多向外陡倾。

普守西的塔什达拉岩体的中心部位存在较多的中基性 岩岩枝,呈不规则椭圆形产出,宽度超过200m。岩枝以色深、 偏基性为特征,以细粒的次闪石化黑云母闪长岩为主,其次 为中细粒次闪石化黑云石英闪长岩,露头可见前者脉动侵入 于后者之中。岩体中含有较多的石英闪长质包体,但相对于 中酸性岩,暗色包体含量明显减少,普遍不足1%。包体分布不 均,在岩体中心相对富集,向边部有减少的趋势。包体大小不 一,从5 cm×10 cm到20 cm×30 cm不等,多呈浑圆形,与围岩 界线清楚,少部分具有明显的过渡关系,露头还见到包体在

图3 早古生代中酸性侵入岩镜下岩浆混合特征素描
Fig.3 Sketch showing the microscopic features of mingling of magma of Early Paleozoic intermediate-acid rocks
a-石英包裹次闪石,次闪石又包裹有石英,b-角闪石中包裹有细小的黑云母、石英、斜长石颗粒,c-次闪石中包裹斜长石细小晶体;
d-角闪石中包裹有粒状石英,c-两种大小悬殊的斜长石共生

寄主岩石中呈残影状出现(图2--C),包体中含寄主岩石中的 长石斑晶(图2--D)。

酸性侵入岩的岩性相对均匀,主要岩性为灰白色中— 中粗粒斑状角闪黑云二长花岗岩、灰白色中粒少斑状黑云 母二长花岗岩。岩石以发育似斑状结构为特征,斑晶最大可 达40 mm。岩石呈浅灰一灰白色,中粒一中粗粒似斑状结构, 块状构造。斑晶主要为半自形钾长石,含量为5%~25%;基质 中主要成分为斜长石(25%~35%)、钾长石(10%~35%)、石英 (20%~32%)、黑云母(4%~5%)、角闪石(小于3%)。钾长石似斑 晶为半自形厚板状,洁净,格子双晶清晰,常包裹早期结晶的 细小斜长石晶体;基质中斜长石呈半自形柱状,晶体较洁净, 双晶不发育,显示钠长石律双晶和个别的卡钠复合双晶, An=24~28;钾长石呈他形粒状,部分具钠长石条纹结构,系条 纹微斜长石和微斜长石。

包体岩性为中—细粒次闪石化黑云母石英闪长岩,岩石 呈绿灰色,中细粒半自形粒状结构,块状构造。矿物粒径70% 为1~2 mm,其余为2~3 mm,主要矿物组成为斜长石(57%~58%) 黑云母(13%~14%)次闪石(10%~12%)石英(16%~17%),辉 石(1%)。岩石中次闪石呈自形短柱状,无色或很浅的绿色,个 别晶体中心残余辉石,说明次闪石由辉石变来。其他组构特 征与中酸性侵入岩中的包体组构相同。

2 岩体和包体的地球化学特征

2.1 岩石化学

各类岩石的岩石化学成分含量见表1,岩石化学特征见 表2。在SiO,对主要氧化物的哈克图(图4)上,包体、中基性岩、

中酸性岩和酸性岩随SiO₂含量增加,TFe₂O₃、MgO、CaO减少, 表现出明显的线性负相关,而Na₂O+K₂O则表现出明显的正 相关,TiO₂和Al₂O₃呈弱的负相关。图4还显示,中酸性岩与酸 性岩之间存在着一个明显的间断区,仅有少数酸性岩与中酸 性岩"混"在了一起,而中酸性岩区间内TiO₂、Al₂O₃、MgO、 Na₂O+K₂O的含量变化较大。

2.2 稀土元素

稀土元素含量及特征参数见表1。中酸性侵入岩中的包

体与中基性岩具有基本相似的稀土元素含量特征,具体表现 为ΣREE较低,普遍小于100×10⁻⁶,轻重稀土有较弱的分 馏,Eu正异常或亏损不明显,稀土元素配分曲线为向右微 倾的平滑曲线(图5中的粗线)。中酸性侵入岩表现出ΣREE 较高,普遍大于100×10⁻⁶,轻重稀土具有较明显的分馏,Eu 亏损不明显或弱亏损,稀土曲线为向右微倾的平滑曲线(图 5中的细线)。酸性侵入岩表现出ΣREE高,多数大于250× 10⁻⁶,轻重稀土有较明显的分馏,Eu亏损明显,稀土曲线为

Table 1 Major element, trace element and REE analyses of Early Paleozoic intrusive rocks

分类	包体1	包体2	包体3	中基	査光				中酸	拍光						酸	Ť		ΞŦ		
样品号	3506/3	1194/2	1229/2	3519/2	3505/2	1194/1	220/1	232/1	3504/5 1	1/6021	2683/1	1173/3	1173/2	1233/2	261/1	2222/5	238/1	1178/1	3507/1	249/1	256/1
SiO_2	43.46	58.06	52.17	48.5	51.48	56.46	51.65	50.49	61.2	57.73	59.52	53.27	58.03	64.72	57.03	73.07	72.91	73.35	72.2	71.57	71.07
TiO_2	0.68	0.75	2.34	0.55	0.31	0.66	0.86	0.97	0.49	0.86	0.82	1.24	0.8	0.7	0.86	0.19	0.36	0.12	0.3	0.28	0.29
Al_2O_3	12.98	17.2	15.84	19.38	17.73	17.13	18.32	17.74	17.21	15.89	14.86	15.62	15.35	14.26	16.08	12.58	12.45	12.88	12.92	13.3	13.92
Fe_2O_3	2.72	06.0	2.37	2.09	1.95	1.45	2.38	0.72	1.07	1.38	1.51	1.21	1.11	1.21	1.98	1.04	0.16	0.62	0.40	0.47	0.75
FeO	6.7	6.93	7.62	8.12	7.96	6.66	6.66	9.23	4.9	6.52	5.35	7.63	6.16	4.72	5.25	2.34	3.86	3.34	2.93	2.66	2.37
MnO	0.19	0.14	0.16	0.2	0.2	0.15	0.17	0.18	0.12	0.14	0.13	0.14	0.12	0.08	0.12	0.04	0.05	0.1	0.06	0.05	0.04
MgO	12.62	2.77	3.59	4.94	6.1	2.97	3.64	4.29	2.51	3.51	3.22	6.23	5.56	1.66	2.98	0.53	0.33	0.3	0.86	0.46	0.72
CaO	14.94	6.12	7.25	10.75	9.58	7.08	7.92	8.23	5.85	5.97	5.38	7.24	5.81	2.62	6.28	0.37	1.32	0.92	1.68	1.65	1.58
Na_2O	1.67	3.07	3.06	2.37	2.19	2.8	2.57	2.77	3.02	2.38	2.49	3.2	3.2	2.92	3.31	2.94	3.65	3.68	3.18	2.91	4.27
K_2O	0.76	2.14	2.23	0.48	0.72	2.11	2.85	2.35	1.91	2.9	3.48	1.03	1.6	5.12	4.09	5.65	3.83	4.4	4.58	5.1	3.8
P_2O_5	0.08	0.14	66.0	0.09	0.08	0.17	0.26	0.24	0.2	0.32	0.3	0.24	0.17	0.15	0.42	0.02	0.08	0.04	0.07	0.08	0.08
TFe ₂ O ₃	9.42	7.83	6.69	10.21	9.91	8.11	9.04	9.95	5.97	7.90	6.86	8.84	7.27	5.94	7.23	3.38	4.02	3.96	3.33	3.13	3.12
$\mathrm{H_2O^+}$	1.98	1.74	1.98	1.88	1.66	1.6	2.52	1.38	1.2	1.6	1.98	2.12	1.4	1.34	1	0.96	0.54	0.5	0.76	0.52	0.56
co_2	0.7	0.23	0.14	0.57	0.35	0.59	0.23	0.95	0.44	0.5	0.44	0.32	0.41	0.41	0.41	0.09	0.23	0.23	0.44	0.5	0.14
LOI	1.8	0.94	1.49	1.27	1.13	1.54	1.95	1.12	1.24	1.08	1.79	1.64	0.95	1.25	0.62	0.94	0.12	0.01	0.7	0.71	0.43
Total	101.28	101.13	101.23	101.19	101.44	101.37	101.98	100.66	101.36	100.78	101.27	101.13	100.67	101.15	100,43	100.76	99.89	100.49	101.08	100.26	00.02
A/CNK	0.42	0.93	0.77	0.81	0.81	0.87	0.84	0.8	0.97	0.89	0.84	0.8	0.87	1.12	0.76	1.08	0.99	1.03	96.0	-	66.0

	256/1	36.63	62,52	0.850	23.975	4.518	1,263	6.070	0.558	2.539	0.417	1.138	0.137	0,891	0.130	151.6	10.64	0.892
	249/1	54,03	0.611	12.25	24. 8	8.788	0.647	7.668	1.305	7.761	5 P.C.	4.703	0.637	3.967	0.552	262.7	8.09	0.258
\$	3507/1	45.18	95.28	10.41	37.38	8.02	0.645	7.011	1,203	7.717	1.617	1.75	0.711	4.81	/0//0	225.3		0.282
- HR	1178/1	26152	49.16	4,788	16.03	3.2195	0.470	3,860	0.550	3,251	0.696	$\frac{2}{3} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$	0.374	2,804	0.446	114.6		0.450
	238/1	66.00	136.6	14.98	56.48	9.76	2.284	C(S, C)	101	5.017	6.917	2.684	0.362	2,317	0.356	305.4	16.68	0.837
¥	2222/5	73.47	148.4	15.6	56.A	10.67	0.684	05.0	1.623	9.392	1.892	$\frac{N}{N}$	0.816	5,549	8.0	340.8	7.86	0.223
	261/1	43.66	57,43	10.79	12.33	9.014	0.978	8,248	1.320	7.623	1.172	Ę	0.594	60 6	0.80	228.4	0.60	0.374
	1233/2	62	159.0	10.78	60.12	61113	1.376	9.85	0.24	9.374	1.804	50 60 60	0.745	4.921	0.728	412.5	6123	0.031
	1173/2	1/61	38175	4.358	7.35	3,694	1.067	4.427	0.548	3.176	0.63	1.842	0.25	0.672	0.249	96.11	6.78	0.990
	6/6711	17.15	38.00	4,697	20.33	5.17	1.582	4,806	097.0	4.315	0.81	2.314	0.0	0201	0,274	102.7	20) Dij 0%	1.0.18
	2683/1	53,43	104.5	11.2.4	5	7.307	1.83.6	6.030	0.855	4,462	0.849	2.11.3	0.337	2,304	0.93	7.967		0.903
节 (1)	1209/1	5148	103.5	11.29	66.11	7.501	1.676	6.026	0.902	4.945	0.965	3.004	0.406	2,828	0.4%	236.8	10.8	0.758
- 180 - H	3504/5	58.9	0.001	10.65	37,04	5.894	1212	4.779	0.664	59 59 59	0.635	1.877	0.251	1.005	0.251	233.9	21.0	0.876
	232/1	10.64	64.1.7	$\frac{1}{2}$	30.14	6.056	1.520	3446	0.801	4.583	0.955	2.867	0.376	3.56	0.3/8	4.831	1177	0.870
	220/1	44 15	87.05	9.814	37,78	7.5905	1.745	8.506	5 F. .	6.179	1.208	3.579	0.5	93516	0.507	214.1	7,81	0.731
	1/1611	39.41	20.05	8.03	32,72	5.982	1.295	9.320	0.852	4.859	0.921	2.805	0.386	2,558	0.30	185.2	5116	0.747
茶型	3505/2	9.49	19.61	2.303	9.698	2.301	0.736	$\frac{1}{2}$	0.38.0	2,399	6.515.0	0.00.1	0.235	21	0.265	53.36	3.31	1.08
37 구	3519/2	6,36	14,67	1.903	8.601	2.205	0.681	2.240	0.373	2.305	0.476	1.469	0.207	1.408	0.206	43.10	5.68	1.02
C.(∳.) ⊡	1229/2	63.03	137.81	16.04	65.08	12:72	2.737	5 C	1.766	9.392	1.819	27.5 27.5	0.681	126.15	0.630	332.8	8.62	0.748
년 (M-2	1194/2	16.89	36.37	4,489	18.76	4.522	0.991	+.784	0.748	4.809	0.986	3.072	0.436	31102	(),4'))	40.04	3.23	0.746
[₩]	5506/3	4 65	10.51	1.377	6.233	1.726	0.544	1.975	0.377	2.475	0.517	1.603	0.232	1014	0.254	34.08	1.71	0.993
54 X	法回归	T.n	Cic	-	ΡN	Es	n E	č	-	Ð	1	Ŀ	Ĕ	A.V.	3	नन्भ द	$(Ea/Yb)_N$	8.00

续表 1

包体1 包休2	包休2		包体3	革	推売				中酸	垫						廢	2	<u>.</u>	#		
3506/3 1194/2 1229/2 3519/2 35	1194/2 1229/2 3519/2 35	1229/2 3519/2 35	3519/2 35	35	05/2	1194/1	220/1	232/1	3504/5	1209/1	2683/1	1173/3	1173/2	1233/2	261/1	2222/5	238/1	1178/1	3507/1	249/1	256/1
728 14.3 41.8 34.7 4	14.3 41.8 34.7 4	41.8 34.7 4	34.7 4	4	2.4	24	42.3	88.2	45.1	25.5	69.7	190	205	17.9	38.5	16.8	17.2	19.3	34.3	15.5	16.4
311.2 5.07 11.79 17.09 35	5.07 11.79 17.09 35	11.79 17.09 35.	17.09 35	35.	.19	8.29	6.32	7.42	32.89	14.49	39.29	107.19	106.2	13.39	17.99	13.09	8.99	8.19	19.69	8.19	9.89
47.6 11.8 21.4 24 32	11.8 21.4 24 32	21.4 24 32	24 32	32	.3	11.4	8.07	21.5	10.1	15.1	15.1	28.7	22.6	10,9	14.6	1.74	3.42	1.68	5.33	2.95	4.36
24.9 12.9 19.6 40.1 38	12.9 19.6 40.1 38	19.6 40.1 38	40.1 38	38		14.6	14.4	30.9	10.6	15.2	14.9	21.2	19.1	11.8	14	3.28	8.28	16.0	4.95	4.3	5.72
112 288 704 89.3 24	288 704 89.3 24	704 89.3 240	89.3 240	240	0	629	730	604	1014	1006	1180	329	420	549	1675	423	536	154	289	442	792
91.8 304 485 281 22	304 485 281 22	485 281 22	281 22	22	00	415	382	317	588	386	44]	405	343	134	508	56.6	105	110	97.4	85.8	186
49 138 126 20.6 59.	138 126 20.6 59.	126 20.6 59.	20.6 59.	59.	œ	103	243	113	78.2	115	112	37	60.5	218	157	259	203	327	324	234	154
15 27.44 47.89 12.83 13.0	27.44 47.89 12.83 13.0	47.89 12.83 13.6	12.83 13.6	13.6		25.26	23.7	26.5	17.29	26.54	22.76	21.23	16.44	49.12	24.67	51.17	38.31	22.09	45.25	44.38	10.74
65.3 144 375 35.4 38.3	144 375 35.4 38.3	375 35.4 38.3	35.4 38.3	38.3		182	243	171	155	200	193	156	115	360	239	240	340	121	147	160	134
4.31 16.5 32.5 3.53 2.42	16.5 32.5 3.53 2.42	32.5 3.53 2.42	3.53 2.42	2.42		12.7	20.8	13.8	14.9	13.7	17.3	13.1	8.86	23	20.8	16.2	16.3	20.2	30.9	11.2	12.6
1.58 4.96 9.42 1.03 0.98	4.96 9.42 1.03 0.98	9.42 1.03 0.98	1.03 0.98	96.0		5.12	5.37	3.45	4.33	5.56	6.16	4.52	3.43	10	6.87	7.89	10.16	4.13	5.25	4.77	4.11
0.47 1.48 1.99 0.41 0.2	1.48 1.99 0.41 0.2	1.99 0.41 0.2	0.41 0.2	0.2		0.88	1.49	0.57	0.85	0.81	1.47	1.04	0.71	1.72	1.88	1.49	1.4	3.09	4.48	1.3	0.69
1.65 8.03 8.43 0.14 1	8.03 8.43 0.14 1	8.43 0.14 1	0.14 1	1		10.2	14	1.33	3.81	12.6	14.9	3.77	6.28	47.3	20.5	35.6	20.6	24.9	1.04	33.9	17.9
0.83 0.14 0.07 0.13 0.0	0.14 0.07 0.13 0.0	0.07 0.13 0.6	0.13 0.6	0.6		0.21	0.37	0.04	1.97	0.07	0.05	0.08	0.16	0.42	0.12	0.54	0.14	0.88	0.66	0.17	0.08
0.27 0.63 0.12 1.03 0.6	0.63 0.12 1.03 0.6	0.12 1.03 0.6	1.03 0.6	0.6	33	7.41	0.12	0.08	0.26	0.68	0.44	2.34	4.98	0.49	0.73	13.7	0.68	0.31	0.67	0.6	0.54
349 610 4316 392 34	610 4316 392 34	4316 392 34	392 34	34	×	741	1010	818	872	1395	1308	1046	741	652	1831	87.2	349	174	305	349	349
			:	;				:						;				:			

注:包体1—角闪闪长质包体 ;包体2—英云闪长质包体 ,测试单位为国家地质实验测试中心 ,分析方法——氧化物用X荧光光谱法 ,稀土元素用等 粒子质谱法,微量元素除Ti、P、Ba、Sr采用等离子光谱法外,其他元素采用等粒子质谱法,注量元素含量%,稀土元素和微量元素含量10-4

续表 1

	Table 2 Comparison of the o	chemical character	istics of vario	us types of	госк
类别	SiO₂含量	基性组分含量 (FeO、MgO、CaO)	碱性组分含量 Na ₂ O+K ₂ O	Na ₂ O/K ₂ O	岩浆混合作用
包休1	显著偏低,属基性岩类	显著偏高	显著偏低	>>1	浆混作用不明显
包体2	中等,属中酸性岩类	中等	较高	>1	浆混作用明显
包木3	中等, 属中酸性岩类	中等	较高	>1	浆混作用明显
中基性岩	含量稳定,偏低,属中性岩类	偏高	较低	>>1	浆混作用不明显
中酸性岩	含量极不稳, 中等, 中酸性岩类	中等	较高	≥ 1	浆混作用明显且普遍
酸性岩	部分含量不稳,偏高,酸性岩类	偏低	显著偏高	<1	仅少部分具浆混特征

表2 各类岩石的岩石化学特征对比

向右倾的V字形曲线;少数样品(图6中的虚线部分)稀土曲 线特征接近于中酸性侵入岩的稀土特征;酸性岩中包体的 稀土总量较高,轻重稀土中等分馏,Eu具弱的负异常。 2.3 微量元素

微量元素含量见表1。包体、中基性岩、中酸性岩在以 MORB标准化的蛛网图(图7)中,表现为大离子亲石元素Sr、 K、Rb、Ba、Th强烈富集,高场强元素Ta、Nb、Ce、P、Zr、Hf、Sm 相对弱富集,曲线上出现了弱的Nb、P、Ti负异常。在酸性岩和 其中的包体的蛛网图(图8)中,寄主岩石表现为大离子亲石 元素K、Rb、Ba、Th强烈富集,高场强元素Ta、Nb、Ce、Zr、Hf、 Sm相对弱富集,曲线上出现了极强的Ba、Nb、P、Ti负异常,相 对于寄主岩石,包体中的Ba、Nb、P、Ti负异常不明显。

3 岩体形成时代

研究区较系统的侵入岩研究工作为1984年由新疆第一 区域地质调查大队完成的1:100万西昆仑山康西瓦-喀喇昆 仑山河尾滩地区的地质调查成果,其依据K-Ar法(黑云母、 白云母、钾长石)年龄,将研究区侵入岩的时代划归海西— 燕山期,这一成果为以后的众多地质工作者所引用。1989— 2000年间先后有少数学者在研究区获得早古生代侵入岩的 侵入年龄(Rb-Sr、K-Ar、U-Pb法)数据^[12,13],2003年以来 开展的1:25万康西瓦幅区域地质调查工作,在三十里营 房—康西瓦北侧一带取得了大量的早古生代侵入岩的成 岩年龄,其中在酸性侵入岩3个侵入体中获得了447 Ma±1.0 Ma、430.7 Ma±2.6 Ma、443.1 Ma±2.3 Ma的年龄;1件中基性侵 入岩样品中获得521 Ma±2.5 Ma (4个点),440.5 Ma±4.6 Ma(11 个点)和2个锆石SHRIMP U-Pb年龄(另文发表)。这些精确 的成岩年龄表明研究区侵入岩的主体形成于早古生代。

4 岩浆混合作用讨论

4.1 岩浆混合的岩相学表现

三十里营房北侧早古生代侵入岩中含有大量暗色包体, 特别是中酸性侵入岩中暗色包体极为丰富。包体具有明显的 半自形粒状结构,块状构造,为典型的岩浆岩结构和构造,这 些具有岩浆成因的微粒包体被大多数学者认为是岩浆混合

Fig.7 MORB-normalized trace element patterns of xenoliths , intermediate-basic rocks and intermediate-acid rocks

成因的证据之一[14-16]。中酸性侵入岩的岩性不均匀,野外露头 可见岩石颜色及矿物含量有明显的变化,但又无截然界线, 这种现象用同源岩浆演化难以解释;包体与寄主岩石界线多 数较截然,少数呈过渡关系,部分成条带状、残影状出现;另 外包体中常常出现寄主岩石中的长石斑晶,这些特征表明基 性岩浆与酸性岩浆在塑性或半塑性状态下发生了机械混合, 并且未达到均一化。前文述及的显微结构中的不平衡矿物组 合和反相矿物包裹关系也支持这一观点。

塔什达拉酸性侵入岩中中基性岩岩枝和可见过渡边界 的暗色包体的并存,表明中基性岩浆和酸性岩浆近于同期形 成,并且在半塑性状态下发生了机械混合,2种基性岩石的出 现表明至少有2期基性岩浆贯入。

4.2 岩浆混合的地球化学特征

研究区内的中酸性侵入岩具有相同的宏观特征和岩石 组成,但其岩石化学成分含量差别较大 SiO₂含量变化于 48.5%~61.20%之间,相应的FeO、MgO、CaO、Na,O、K₂O均有

图8 包体、酸性岩的MORB标准化微量元素蛛网图

Fig.8 MORB-normalized trace element patterns of xenoliths and acid rocks

Fig.9 TFeO-MgO diagram

较明显的变化,这表明岩浆未达到充分的化学混合。在SiO₂对 氧化物的哈克图(图4)上,包体、中基性岩、中酸性岩、酸性岩 表现出良好的线性相关,其中TFe₂O₃、MgO、CaO表现出明显 的线性负相关,Na₂O+K₃O则表现出明显的正相关,TiO₂和 Al₂O₃呈弱的负相关,这种良好的线性关系可能用岩浆混合来 解释更好一些¹⁰⁷。在TFeO-MgO图解(图9)中,所有的点均落 在混合趋势线上,反映出它们曾发生过化学混合。混合后的 岩石投影点靠近基性端元一侧,表明混合岩浆岩中基性岩浆 占的比例要大于酸性岩浆。

中酸性侵入岩中的包体与中基性侵入岩具有大致相似 的稀土配分曲线特征(图5),反映二者可能具有相近的岩浆 来源;中基性侵入岩稀土元素配分曲线总体上位于中酸性侵 入岩稀土配分曲线的下方,较为平坦,Eu无明显亏损;而中酸 性侵入岩稀土配分曲线则呈右倾平滑曲线,重稀土部分与包

体的稀土曲线呈交叉状,反映二者可能有独立的岩浆源。酸 性侵入岩稀土总量较高、曲线呈典型的V字形(图6),表明岩 浆经历了明显的富Eu矿物的分离结晶作用,酸性岩中包体的 稀土总量高于寄主岩石,表明包体不是岩浆结晶分异的堆积 体^[18]。王中刚(1986)认为 δEu>0.7的侵入岩主体由基性岩浆 分异演化而来 δEu为0.7~0.3的侵入岩主要由上地壳部分熔 融而来,δEu<0.3的侵入岩则多为酸性岩浆经完全的分异结 晶作用形成的。研究区中基性岩及包体的δEu多数明显大于 0.7 ,表明它们主要为幔源岩浆分异演化而来,酸性侵入岩的 δEu则多数小于0.7 , 主体为壳源岩浆形成的中酸性侵入岩的 δEu略大于0.7 ,具有壳幔混合的痕迹。

在微量元素蛛网图(图7、图8)中,较为相似的曲线特征 表明形成包体、中基性岩、中酸性岩的岩浆演化经历了AFC 过程,从而使闪长质包体和主岩显示出某些地球化学特征上 的相似性。相对于包体和中基性岩,中酸性岩较明显地亏损 Nb、Ta、P、Ti,说明岩浆经历了含P、Ti等矿物的分离结晶作 用,还表明岩浆为地壳来源或曾受到地壳物质的强烈混染^[18]。

在La-La/Yb图解(图10)中,包体、中基性岩、中酸性岩处 在近于斜线的演化线上,与部分熔融曲线相重合,而酸性岩 则倾向于近于水平的演化曲线上,与分离结晶曲线相一致。这 一特征也反映大多数花岗岩岩浆演化以分离结晶作用为主,而 包体、中基性岩、中酸性岩则以部分熔融或岩浆混合为主。 在Sr-Rb/Sr图解(图11)上,包体、中基性岩、中酸性岩构成 了一条近水平的演化曲线,而酸性侵入岩则构成了向右陡倾的 斜线,二者具有明显不同的岩浆演化形迹,反映出这些岩石具有 不同的岩浆来源及演化历程¹⁹;另一方面,二者又有交汇之处,并 且有少数酸性岩的样品落在中酸性岩的演化线上或附近,又表 明少数酸性侵入岩与中基性侵入岩发生了岩浆混合作用。

4.3 岩浆混合与地壳生长

奥陶纪,西昆仑地区处于碰撞后构造环境,俯冲作用使 本区岩石圈加厚、拆沉,软流圈物质上涌,注入下地壳底部, 引起下地壳热异常而发生部分熔融,形成长英质岩浆。随着 幔源岩浆的不断注入,下地壳部分熔融加剧,长英质岩浆不 断熔出,混和作用开始。初始表现为基性熔浆团分散在长英 质岩浆中的物理混合,随后发生化学成分的交换^[10]。研究区中 基性、中酸性侵入岩中镁铁质微粒包体的岩石学和岩相学特 征显示,该区的岩浆混合表现为相对少量的基性岩浆注入长 英质岩浆中而产生的机械混合。从包体所代表的基性岩浆捕 获了酸性岩浆中石英、长石等矿物来看,这种岩浆混合作用 应发生在较浅部、压力较低的中深环境中,因为只有在这种 环境下,石英和长石才是花岗岩类的液相线矿物^[10]。

中基性岩同一件样品中2个年龄段的获得,也表明该岩石 经历了2期成岩过程:其中521 Ma可能代表了该区伴随着原特 提斯初期的伸展,地幔大范围上隆,分异增生造成陆壳垂向 增生的时代;而440.5 Ma、447 Ma、430.7 Ma、443.1 Ma这些年 龄段非常集中,可能是酸性侵入岩大规模形成的时期,可能与 下述过程相对应,即晚奥陶世—早志留世西昆仑地区造山后去 根过程中,地幔上涌、二次基性岩浆广泛贯入,并与酸性岩浆混 合,从而形成了该区以中酸性岩浆为主体的浆混花岗岩,加上 大量酸性侵入岩的广泛贯入,促使陆壳第二次明显增生^[10,20]。

5 结论及意义

由以上的研究可以得出如下结论。

(1)三十里营房北侧一带存在早古生代岩浆混合作用, 表现为以包体为代表的基性端元和以酸性侵入岩为代表的酸 性端元以不同比例混合而形成的中酸性侵入岩。这表明该区早 古生代存在着较为强烈的壳幔相互作用过程¹¹²¹⁴。这一成果为 进一步研究西昆仑地区早古生代深部过程提供了新的素材。

(2)三十里营房北侧,乃至整个西昆仑地区,在早古生代 存在2期明显的陆壳生长过程:早期于原特提斯初始形成时 期地幔上隆,并分异出中基性岩浆,上侵并底辟于地壳底部, 造成陆壳第一次增生;晚期发生于晚奥陶世—早志留世,西 昆仑地区造山后去根过程中,地幔上涌、二次基性岩浆广泛 贯入,并与酸性岩浆混合,从而形成了该区以中酸性岩浆为 主体的浆混花岗岩,加上大量酸性侵入岩的广泛贯入,促使 陆壳第二次明显增生。在第二次基性岩浆贯入的过程中,较 广泛地引发了第一次贯入并底辟于地壳底部的基性岩浆岩 (部分)熔融,所以在蒙古包南偏基性侵入岩中获得了早寒武 世和晚奥陶世2期锆石SHRIMP U-Pb年龄值。 (3)西昆仑造山带为多个微陆块(多岛洋□)的拼合体,各 微陆块间存在过或大或小的洋盆。然而,从现今造山带的组成 看,各微陆块的边缘建造并不十分发育,这表明陆壳侧向增生 并不明显;另一方面,壳幔多期次相互作用,引发大规模酸性岩 浆的形成,造成陆壳多期次垂向增生非常明显,因此西昆仑山 早古生代以来的陆壳生长以多期次的垂向增生为主。

致谢:本文实际材料主要来源于《1:25万康西瓦幅区域地 质调查》项目,是项目全体人员的劳动成果;在成文过程中得 到韩芳林博士、王根宝高级工程师的悉心指导;计文化博士 在文献资料方面提供了很大帮助。在此一并致谢!

参考文献:

- [1]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质 出版社 2000.
- [2]邓万明.喀喇昆仑山—西昆仑地区基性—超基性岩初步考察[J].自 然资源学报,1989.5(3):1-11.
- [3]邓万明.西昆仑蛇绿岩研究的新进展[A].见:中国西部特提斯构造 演化及成矿作用[C].北京:电子科技出版社,1991.
- [4] 潘裕生.西昆仑山构造特征与演化[]].地质科学,1990(3) 224-232.
- [5]潘桂棠 陈智梁 李兴振 等.东特提斯组成与地质演化[M].北京 地 质出版社 2000.
- [6]丁道桂,王道轩,刘伟新,等.西昆仑造山带与盆地[M].北京:地质 出版社,1996.
- [7]肖序常,王军,苏犁,等.再论西昆仑库地蛇绿岩及其构造意义[J].地 质通报 2003 22(10):745-749.
- [8]王炬川,韩芳林,崔建堂,等.新疆于田普鲁一带早古生代花岗岩岩 石地球化学特征及构造意义[]].地质通报,2003,22(3):170-181.
- [9]王晓霞,王涛,卢欣祥,等.北秦岭老君山、秦岭梁环斑花岗岩岩浆 混合的岩相学证据及其意义[]].地质通报 2002 21(8-9) 523-529.
- [10] 谌宏伟,罗照华,莫宣学,等.东昆仑造山带岩浆混合成因花岗岩的岩浆底侵作用机制[]].中国地质,2005,32(3);386-393.
- [11]刘成东,张文秦,莫宣学,等.东昆仑约格鲁岩体暗色微粒包体特 征及成因[J].地质通报,2002,21(11),739-744.
- [12]张玉泉,谢应雯.三十里营房地区花岗岩类Rb-Sr等时年龄研究[J]. 自然资源学报,1989,4(3)222-227.
- [13]王元龙,王中刚,李向东,等.西昆仑加里东期花岗岩带的地质特征[[].矿物学报,1995,15(4):458-460.
- [14]周若.花岗岩混合作用[]].地学前缘,1994,1(1-2)87-97.
- [15]肖庆辉 邓晋福 冯大栓 等.花岗岩研究思维与方法[M].北京 地质出版社 2002.288-291.
- [16]周新民.岩浆混合作用与底侵作用[A].见:欧阳自远.世纪之交矿 物岩石地球化学的回顾与展望[C].北京 原子能出版社,1998.82-85.
- [17]赵海滨,莫宣学,任院生,等.大兴安岭北端阿乌尼地区中生代杂 岩体的岩浆混合作用[]].地质通报,2005,24(9).854-861.
- [18]赵寒冬,韩振哲,赵海滨,等.内蒙古东北部激流河花岗岩中包体的特征及成因[]].地质通报 2005,24(9) 841-847.
- [19]孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与 壳幔相互作用[]].岩石学报,2001,17(2):228-233.
- [20] 邵济安 韩庆军,张履桥,等.陆壳垂向增生的两种方式:以大兴安 岭为例[1].岩石学报,1999,15(4):600-605.