2006年11月

西秦岭天水市元龙地区新元古代花岗质片麻岩 锆石LA-ICP-MS U-Pb定年及其地质意义

刘会彬 裴先治 ,丁仨平 ,李佐臣 ,孙仁奇

LIU Hui-bin, PEI Xian-zhi, DING Sa-ping, LI Zuo-chen, SUN Ren-qi

长安大学地球科学与国土资源学院 陕西 西安 710054 Faculty of Earth Science and Land Resources, Chang'an University, Xi'an 710054, Shaanxi, China

摘要:西秦岭元龙花岗质片麻岩位于天水市伯阳—元龙之间的渭河断裂北侧。花岗质片麻岩中锆石Th/U比值较高,阴极发光图像显示锆石内部发育振荡环带,具岩浆成因特点。LA-ICP-MS的锆石U-Pb同位素²⁰⁶Pb/²³⁶U加权平均年龄为(924.2±2.7)Ma(MSWD=0.67),表明花岗岩岩体形成于新元古代,反映晋宁期西秦岭北缘曾存在一次俯冲碰撞事件,与Rodinia超大陆的汇聚事件一致。

关键词:新元古代;花岗质片麻岩;锆石LA-ICP-MS U-Pb定年;天水市元龙地区;西秦岭 中图分类号:P588.12⁺1;P597⁺.3 文献标识码:A 文章编号:1671-2552(2006)11-1315-06

Liu H B, Pei X Z, Ding S P, Li Z C, Sun R Q. LA-ICP-MS zircon U-Pb dating of the Neoproterozoic granitic gneisses in the Yuanlong area, Tianshui City, West Qinling, China, and their geological significance. *Geological Bulletin of China*, 2006, 25(11):1315–1320

Abstract The Yuanlong granitic gneiss is located north of the Weihe fault between Boyang and Yuanlong in Tianshui City, West Qinling. The zircons in the granitic gneiss have higher Th/U ratios and the CL images of the inner part of the zircons show oscillatory zoning, indicating a magmatic origin. The LA-ICP-MS zircon U-Pb weighted average age is 924.2 ± 2.7 Ma (MSWD=0.67), which indicates that the granite body was formed in the Neoproterozoic and that a subductional collision event took place on the northern margin of the West Qinling in the Jinningian Period, which coincides with the assembly event of the supercontinent Rodinia.

Key words :Neoproterozoic ; granitic gneisses ; LA-ICP-MS zircon U-Pb dating ; Yuanlong area, Tianshui ; West Qinling

北秦岭与祁连造山带接合部位的研究是近些年的热 点,越来越多的同位素年龄数据显示该区在晋宁期存在一次 强烈的俯冲碰撞作用。秦岭是一个在中—新元古代造山之后 又经历了古生代俯冲碰撞、中生代最终强烈碰撞而形成的复 合型大陆造山带^[1-3]。1000~800 Ma的晋宁期,在秦岭造山带中 同位素系统的反应普遍强烈,表明新元古代晋宁期该区存在 强烈的构造活动^[2]。南、北秦岭在晋宁期均发生十分强烈的地 质作用,表现在:①老的岩石遭受强烈变质作用并发生部分 重熔 ②秦岭大部分基性火山岩形成 ③南、北秦岭都有晋宁 期蛇绿岩侵位 ④大量花岗岩形成 ⑤变质基性火山岩的Nd 同位素组成发生重大变化^H。

近年在进行1:25万天水市幅区域地质调查过程中,发现 了具有强烈变形变质作用的元龙花岗岩体^①。本文采用LA-ICP-MS锆石U-Pb同位素测年方法对花岗质片麻岩体进行

收稿日期 2006-05-15;修订日期 2006-08-07

基金项目:国家自然科学基金项目(批准号:40572121、40234041),中国地质调查局地质调查项目(编号:200013000154)和教育部科学 技术研究重点项目(批准号:104175)资助成果。

作者简介:刘会彬(1979-),男,在读硕士,从事构造地质学和区域地质学研究。E-mail liuhb7944@163.com

通讯作者 -裴先治(1963-),男,博士生导师,教授,从事区域地质和构造地质教学与科研工作。E-mail:peixzh@263.net

❶ 裴先治 ,丁仨平 ,李勇 ,等.1:25万天水市幅区域地质调查成果报告.长安大学地质调查研究院 ,2004.

了定年研究,并初步探讨其地质意义。

1 区域地质概况

元龙花岗质片麻岩体位于天水市伯阳—元龙之间的渭 河北侧,宽2~5.5 km,北与新元古代葫芦河群(狭义)变质碎屑 岩(以黑云母/二云母石英片岩为主夹少量大理岩)呈逆冲断 层接触,南侧则与早古生代草滩沟群浅变质火山-碎屑岩沉 积组合呈脆性断层接触,但大部分分布区域被近东西向分布 的第三纪小河子酸性火山岩系覆盖。花岗质片麻岩体中普遍 发育片麻状构造、眼球状构造和条纹—条带状构造,甚至糜 棱岩化。岩体中均发育有加里东期的深熔花岗岩脉体。由于 该地区第四系黄土覆盖较多,花岗质片麻岩仅在沟壑中出 露,延展情况不明(图1)。

2 岩石学特征

元龙花岗质片麻岩体呈灰白色,中粗粒似斑状花岗结构,片麻状构造、眼球状构造,片麻理、线理极其发育(图2)。

主要组成矿物为石英(30%~40%)、微斜长石(20%~30%)、 斜长石(20%~30%)和黑云母(10%~15%),见少量白云母 (<2%),副矿物有锆石、磷灰石、磁铁矿等,定名为黑云母二 长花岗质片麻岩。石英颗粒具有拔丝结构、花状结构、波状消 光、亚颗粒、动态重结晶等特点。

3 分析方法

用于锆石定年的样品(YL02)采自元龙北(GPS点位: N34°33'01.0″、E106°10'07.4″)。

图1 天水市元龙地区地质简图

Fig.1 Geological sketch map of the Yuanlong area, Tianshui
1—第四系 2—新近系 3—古近系火山岩 4—早古生代草滩沟群 5—葫芦河群 5—秦岭岩群;
7—正长斑岩 8—二长花岗岩 9—元龙花岗质片麻岩体 10—断裂 ;★—采样点

1316

样品在陕西省地勘局区域地质矿产研究 院采用常规方法进行粉碎,并用浮选和电磁选 方法进行分选,再在双目镜下挑选出晶形和透 明度较好的锆石颗粒。将锆石颗粒粘在双面胶 上,然后用无色透明的环氧树脂固定,待环氧 树脂充分固化后,对其表面进行抛光至锆石露 出。锆石的阴极发光(CL)显微照相在中国科学 院地质与地球物理研究所的Cameca电子探针仪 器上完成,分析电压为15 kV,电流为19 nA。

锆石原位U-Pb同位素年龄分析在西北大学 大陆动力学国家重点实验室的LA-ICP-MS仪器 上按标准测定程序进行。分析仪器为Elan6100DRC型四极杆质谱仪和Geolas200 M型激 光剥蚀系统,激光器为193 nm ArF准分子激光 器。激光剥蚀斑束直径为30 μm。锆石年龄计算 采用国际标准锆石91500作为外标,元素含量采 用美国国家标准物质局人工合成硅酸盐玻璃 NIST SRM610作为外标,²Si作为内标元素进行 校正。样品的同位素比值和元素含量数据处理采 用GLITTER(4.0版 Macquarie University)软件, 并采用Andersen(2002)软件对测试数据进行普 通Pb校正,年龄计算和成图采用ISOPLOT(2.49

版 (Ludwig,1991)软件完成。详细的实验原理、流程及仪器 参数见参考文献[5]。

4 分析结果

4.1 锆石的CL图像特征

从样品(YL02)中选取的锆石晶形完好,为浅黄色—无色 透明长柱状、半截锥状、卵圆形晶体。粒度多在80~200 μm之 间,柱状晶体长宽比为2:1~3:1,有的可达5:1。部分测定锆石 的阴极发光(CL)图像如图3所示。图像显示出典型的岩浆 生长振荡环带和韵律结构,属于岩浆结晶的产物^[5-10]。

4.2 锆石Th、U含量及Th/U比值

大量研究表明,不同成因的锆石有不同的Th、U含量和Th/U比值:岩浆锆石的Th、U含量较高,Th/U比值较大 (一般大于0.4);变质锆石的Th、U含量低,Th/U比值小 (一般小于0.1)^{7,9-12}。火成岩典型的Th/U值为0.1~1.0¹⁸,比值 变化较大,说明锆石形成于化学成分相对不均匀的岩浆结晶 条件下¹¹³。元龙花岗质片麻岩样品(YL02)25个测点的Th含量 变化范围为33×10⁻⁶~336×10⁻⁶,U含量变化范围为112×10⁻⁶~ 557×10⁻⁶,Th/U值变化范围为0.17~0.79(表1),这些分析点多 位于明显的岩浆环带或显示微弱重结晶作用的部位,保存了 岩浆成因的特征。

4.3 锆石U-Pb年龄

对元龙花岗质片麻岩样品(YL02)共分析了25个点,

结石

U-Pb分析数据见表1。

锆石的Th/U比值介于0.13~0.79之间,

显示了岩浆成因锆石的特征。可以分为4组年龄:第一组

图3 元龙花岗质片麻岩单颗粒锆石代表性CL图像和U-Pb年龄

Fig.3 Representative CL images and U-Pb ages of single zircon grains from granitic gneisses in the Yuanlong area

年龄有3个测点,²³⁷Pb/²³⁸Pb年龄分别为1571 Ma、1391 Ma和 1083 Ma(图4-a),可能是岩浆捕获锆石的年龄,而且很可能 是捕获的基底岩石的锆石;第二组有14个测点,除有3个889 Ma、953 Ma和950 Ma外,其余11个测点的²³⁶Pb/²³⁸U和³³⁷Pb/²³⁵U 谐和性较好,谐和年龄为(923±3)Ma(MSWD=0.15)(图4c),²³⁶Pb/²³⁸U加权平均年龄为(924.2±2.7)Ma(MSWD=0.67) (图4-d),代表了元龙花岗质片麻岩原岩的结晶年龄;第三组 有5个测点,²³⁶Pb/²³⁸U年龄介于827~861 Ma之间和759~769 Ma 之间,可能代表后一期岩浆作用事件的年龄;第四组有3个 测点,²³⁶Pb/²³⁸U年龄介于462~485 Ma之间(图4-b),与本区 加里东期的深熔作用密切相关。因此,本文将元龙花岗质片 麻岩的原岩结晶时代确定为(924.2±2.7)Ma,形成时代为新 元古代。

5 地质意义讨论

天水元龙地区花岗质片麻岩体的测年共分析了25个测 点,其中11个测点具有很好的谐和性,其余14个测点偏离谐 和线或者与主年龄的偏差过大没有参与计算,这与锆石成 因的复杂性有关^[5,6,9,10,14]。锆石的CL图像和Th/U值显示了 岩浆成因的特征。所以锆石U-Pb定年结果(924.2±2.7)Ma (MSWD=0.67)代表了元龙花岗质片麻岩体原岩结晶的年龄。

已有的研究表明,秦岭北缘在新元古代存在一次构造热 事件。如东秦岭地区的德河二长花岗岩的锆石TIMS和S HRIMP法U-Pb同位素年龄测定结果分别为(964.4±5.2) Ma和(943±18)Ma,代表了北秦岭德河二长花岗岩的形成年

	Yuanlong
	$\mathbf{0f}$
析结果	gneisses
U-Pb	granitic
浩	for
-MS	data
≓LA-ICF	analytic
5 片麻	U-Pb
朽花园同	zircon
iR	SM-
表1	LA-ICP
	1
	Table

	lσ	S	2	4	4	ŝ	4	ŝ	4	2	4	2	2	2	9	2	4	9	2	2	٢	б	4	9	5	4
年龄/Ma	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	950	927	924	769	472	926	485	759	768	889	921	953	931	1447	924	925	827	925	921	1029	462	861	1309	915	925
	lσ	9	٢	9	12	6	9	٢	٢	15	2	٢	٢	٢	5	6	5	12	٢	6	15	μ	8	6	6	9
	$^{207}Pb/^{235}U$	972	910	916	967	481	916	490	786	812	890	918	954	916	1498	926	924	880	924	923	1046	490	870	1340	944	925
	lσ	Ξ	15	13	39	39	12	44	18	57	22	16	15	16	9	21	10	29	13	20	49	26	33	26	32	11
	$^{207}Pb/^{206}Pb$	1021	869	868	1449	524	892	514	863	935	894	912	956	879	1571	932	923	1016	921	929	1083	624	892	1391	1012	926
	${\rm U}^{232}{\rm Th}/{\rm z}^{238}{\rm U}$	0.22	0.22	0.41	09.0	0.43	0.49	0.64	0.46	0.79	0.13	0.34	0.49	0.46	0.18	0.56	0.25	0:30	0.19	0.59	0.35	0.63	0.45	0.63	0.36	0.19
	lσ	0.00058	0.00057	0.00038	0.00026	0.00039	0.00033	0.00010	0.00036	0.00022	0.00020	0.00050	0.00046	0.00045	0.00065	0.00048	0.00043	0.00078	0.00058	0.00046	0.00041	0.00024	0.00020	0.00032	0.00023	0.00051
	$^{208}{\rm Pb}/^{232}{\rm Th}$	0.06037	0.04598	0.04472	0.03738	0.02685	0.04452	0.02424	0.03591	0.03837	0.04493	0.04742	0.05205	0.04815	0.07192	0.04432	0.04907	0.03823	0.04736	0.04623	0.05206	0.02523	0.04345	0.06661	0.04606	0.04767
-Armi	Ισ	0.00081	0.00084	0.00080	0.00077	0.00055	0.00079	0.00043	0.00073	0.00092	0.00071	0.00085	06000.0	0.00088	0.00121	0.00097	0.00077	0.00110	0.00082	0.00095	0.00124	0.00046	0.00078	0.00118	0.00084	0.00078
卽	$^{206}\text{Pb}/^{238}\text{U}$	0.15882	0.15465	0.15406	0.12676	0.07596	0.15449	0.07811	0.12501	0.12650	0.14779	0.15363	0.1593	0.15534	0.25168	0.15412	0.15432	0.13683	0.15430	0.15360	0.17301	0.07434	0.14290	0.22516	0.15250	0.15424
田田	1σ	0.01521	0.01667	0.01511	0.02997	0.01431	0.01419	0.01174	0.01542	0.03204	0.01300	0.01764	0.01872	0.01807	0.02301	0.02287	0.01334	0.02889	0.01596	0.2177	0.04061	0.01058	0.01962	0.03277	0.02195	0.01417
	$^{207}Pb/^{235}U$	1.60389	1.45073	1.46524	1.59210	0.60603	1.46491	0.62031	1.16897	1.22497	1.40296	1.47071	1.55865	1.46393	3.37231	1.49016	1.48542	1.37861	1.48362	1.48307	1.80189	0.62092	1.35544	2.74358	1.53347	1.48692
	1σ	0.00096	0.00100	0.00095	0.00180	0.00148	0.00091	0.00113	0.00109	0.00191	0.00072	0.00105	0.00107	0.00105	0.00110	0.00126	0.00089	0.00168	0.00098	0.00121	0.00179	0.00119	0.00106	0.00115	0.00112	0.00092
	$^{207}Pb/^{206}Pb$	0.07324	0.06803	0.06898	0.09110	0.05786	0.06877	0.05760	0.06782	0.07023	0.06885	0.06943	0.07096	0.06835	0.09718	0.07012	0.06981	0.07308	0.06974	0.07003	0.07553	0.06058	0.06879	0.08837	0.07293	0.06992
²³⁸ U	/10-6	197.91	147.72	180.38	557.43	138.17	220.77	284.31	444.60	325.68	379.54	174.92	175.98	370.04	357.48	112.27	326.67	328.97	306.83	151.38	327.77	294.92	326.75	527.56	206.79	356.19
²³² Th	$/10^{-6}$	42.58	32.63	74.57	336.18	59.58	108.37	181.92	205.78	258.34	49.15	59.84	86.61	171.09	62.61	62.96	82.71	97.74	57.77	89.00	113.11	185.03	147.55	334.1	75.30	68.00
²⁰⁶ Pb	$/10^{-6}$	128.98	93.65	113.79	300.24	42.88	130.06	90.82	226.15	168.34	228.00	108.78	113.37	232.76	363.12	69.77	202.87	180.96	190.14	93.29	232.81	87.71	187.16	477.01	126.76	218.98
結石	繼忠	YL02.01	YL02.02	YL02.03	YL02.04	YL02.05	YL02.06	YL02.07	YL02.08	YL02.09	YL02.10	YL02.11	YL02.12	YL02.13	YL02.14	YL02.15	YL02.16	YL02.17	YL02.18	YL02.19	YL02.20	YL02.21	YL02.22	YL02.23	YL02.24	YL02.25

地质通报 GEOLOGICAL BULLETIN OF CHINA

图4 元龙地区样品YL02的LA-ICP-MS锆石U-Pb谐和图和加权平均年龄 Fig.4 LA-ICP-MS zircon U-Pb concordia diagram and weighted average ages of sample YL02 from the Yuanlong area

龄,表明岩浆侵位时代为新元古代早期^[13];北秦岭石槽沟花岗 岩LA-ICP-MS锆石U-Pb同位素年龄为(925±11)Ma,表明 其形成于新元古代,为同碰撞型花岗岩,揭示了一次碰撞聚 合事件^[12];北秦岭牛角山片麻状花岗岩锆石SHRIMP U-Pb年 龄为(955±13)Ma,代表了其形成年龄^[15];陆松年等^[14]在甘肃 天水北道区郭家坪秦岭岩群中的高级层状变质岩系中识别 出一套石英二长质片麻岩,其SHRIMP锆石U-Pb年龄为 (953.4±14)Ma。上述的研究结果表明,东秦岭北带和西秦岭 北缘多处出露的新元古代早期花岗质片麻岩体主要是晋宁 期一次构造热事件的产物。

西秦岭北缘元龙地区花岗质片麻岩体的LA-ICP-MS锆石U-Pb年龄(924.2±2.7)Ma(MSWD=0.67)与上述年龄一

致。李曙光等●在武山县城北花岗质糜棱岩中测得锆石 SHRIMP U-Pb年龄为(950.5±12.7)Ma;同时在元龙以西的 新阳镇地区也有花岗质片麻岩体出露,在本次测年中对2个 样品进行了LA-ICP-MS锆石U-Pb定年测试,结果分别为 (981±5)Ma(MSWD=1.7)和(937.7±3.5)Ma(MSWD=2.2) (另文讨论)[®]。这说明元龙花岗质片麻岩体形成于新元古代 早期,与前人研究的岩体为同一构造岩浆热事件的产物,反 映了新元古代早期(晋宁期)西秦岭北缘构造岩浆活动强烈, 并可能发生了强烈的俯冲碰撞事件。

秦岭北缘新元古代(晋宁期)构造热事件为俯冲碰撞事件,与Rodinia超大陆的汇聚一致^[3,4,12-18]。元龙地区新元古代花 岗岩体的出露,说明晋宁期秦岭北缘俯冲碰撞事件对本区也

[●] 李曙光 ,李王晔.西秦岭-松潘构造结形成演化与大陆动力学研究中期汇报材料.中国科学技术大学 ,2005.

² 裴先治,丁仨平,李勇,等.1:25万天水市幅区域地质调查成果报告.长安大学地质调查研究院,2004.

有影响,这为秦岭造山带中、新元古代的构造演化和Rodinia 超大陆汇聚事件在西秦岭北缘的响应提供了新的地质年代 学依据。

6 结 论

(1)LA-ICP-MS锆石U-Pb测试结果表明西秦岭北缘天水地区存在新元古代花岗质片麻岩,其原岩结晶时代为 (924.2±2.7)Ma(MSWD=0.67)。

(2) 西秦岭北缘天水地区花岗质片麻岩为新元古代俯冲 碰撞热事件的产物,反映了西秦岭北缘晋宁期处于汇聚碰 撞阶段,岩浆活动强烈,这与Rodinia超大陆汇聚事件一致。

致谢:感谢西北大学大陆动力学国家重点实验室柳小 明、第五春荣博士在锆石U-Pb同位素年龄测试中的指导 与帮助。

参考文献:

- [1]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[]].中国科学(D辑),1996,26(3):193-200.
- [2]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京: 科学出版社 2001.1-855.
- [3]张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝 合带的再认识——兼论中国大陆主体的拼合[J].地质通报,2004, 23(9~10)846-853.
- [4]张宗清,唐索寒,宋彪,等.秦岭造山带晋宁期强烈地质事件及其构造背景[]].地球学报,1997,18(增刊):43-45.
- [5]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针 U-Pb年龄测定与稀土元素成分分析[J].科学通报 2003,48(14): 1511-1520.
- [6]简平,程裕淇,刘敦一.变质锆石成因的岩相学研究—高级变质岩 U-Pb年龄解释的基本依据[]].地学前缘,2001 & (3):183-191.
- [7]Siebel W Blaha U Chen F et al.Geochronology and geochemistry of a dyke-host rock association and implications for the forma-

tion of the Bavarian Pfahl shear zone Bohemian Massif[J]. Int. J. Earth Sci.(Geol. Rundsch) 2005 94 8-23.

- [8]Belousova E A Griffin W L, Y O'Reilly S et al.Igneous zircon: trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol. 2002 ,143 602–622.
- [9]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[]].科学通报,2004,4%(16):1589-1604.
- [10]丁兴,周新民,孙涛.华南陆壳基底的幕式生长——来自广东古寨 花岗闪长岩中锆石LA-ICP-MS定年的信息[J].地质论评,2005, 51(4):382-392.
- [11]Zhang Chengli, Li Miao, Wang Tao, et al. U–Pb zircon geochronology and geochemistry of granitoids in the Douling Group in the Eastern Qinling[J]. Acta Geologica Sinica 2004,78 (1) 83–95.
- [12]Chen Danlin Liu Liang Sun Yong et al.Determination of the Neoproterozoic granite in the Eastern Qinling Mountains Shicaogou syn-collisional and its geological implications[J].Acta Geologica Sinica 2004 78(1) 73–82.
- [13]陈志宏,陆松年,李怀坤,等.北秦岭德河黑云二长花岗片麻岩体 的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学[J].地质 通报 2004 23(2):136-141.
- [14]陆松年,陈志宏,李怀坤,等.秦岭造山带中两条新元古代岩浆岩带[J].地质学报 2005 79(2):165-173.
- [15]王涛,张宗清,王晓霞,等.秦岭造山带核部新元古代碰撞变形及 其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年 龄限定[J].地质学报,2005,79(2)220-232.
- [16]张本仁,高山,张宏飞,等.秦岭造山带地球化学[M].北京,科学出版社,2002.1-187.
- [17]裴先治,王涛,王洋,等.北秦岭晋宁期主要地质事件及其构造背 景探讨[]].高校地质学报,1999 5(2):137-147.
- [18]陆松年,陈志宏,李怀坤,等.秦岭造山带中—新元古代(早期)地 质演化[]].地质通报,2004,23(2):107-112.