文章编号:1002-2082(2005)02-0034-03

非探针近场光学显微镜的成像实现

崔国才,叶梅,叶虎年

(华中科技大学 机械学院仪器系,湖北 武汉 430074)

摘 要: 介绍一种非探针近场光学显微镜,并对它的图像实现过程及处理方法进行了讨论。该装置以阿达玛变换成像理论为基础,用纳米多孔编码板代替光纤探针获得了较高的光学信噪比。成像研究表明,该装置可对近场 衰逝波分量进行有效探测并能实现超衍射极限成像,为近场光学探测研究提供了一种新的思路。 关键词: 非探针;近场光学;图像处理;阿达玛变换;衰逝波 中图分类号:TH742 文献标识码:A

The Imaging Realization of Non-Probe Near-Field Optical Microscope

CUI Guo-cai, YE Mei, YE Hu-nian

(Huazhong University of Science & Technology, Wuhan 430074, China)

Abstract: The non-probe near-field optical microscope is introduced in this paper, and the processing method and realization of the images are discussed. Based on the theory of Hadamard Transform imaging, the non-probe near-field optical microscope, which replaces the fiber probe with the nanometer multi-aperture encoding mask, has a high optical signal-to-noise ratio. The research shows that the non-probe near-field optical microscope can detect the evanescent near-field wave effectively and the image with a super-diffraction limiting resolution can be obtained. All this will provide a new method for the research of the near-field optics.

Keywords: non-probe; near-field optics; image processing; Hadamard Transform; evanescent wave

引言

非探针近场光学显微镜是以阿达玛变换成像 理论为基础,融精密机械、电子、光学、计算机软硬 件、图像处理技术及结构化学等为一体的高精密度 显微测试仪器。其成像机理、编码板设计与制作、信 号传输与信号接收、信号反馈、载物平台驱动和信 号处理成像等方面都采用了近几年发展起来的多 种高新技术。它突破了一般光学显微镜的衍射极 限,具有很高的平面分辨率。与现在常见的扫描近 场光学显微镜相比,它用多孔编码板代替探针作为 非辐射场的探头,实现了光学多通道技术,有效地 提高了系统的信噪比。

1 非探针近场光学显微镜系统

收稿日期:2004-03-12; 修回日期:2004-05-09

项目资金:国家自然科学基金资助项目(30170276)

作者简介:崔国才(1979—),男,河南清丰人,华中科技大学硕士研究生,主要从事精密测量、计算机图形学及数字图像处理 研究工作。

1.1 成像理论依据——阿达玛变换成像理论

称重设计研究属于统计学范畴,对于给定的多 个物体,它研究的是如何精确地称量它们的重量。 假设n 个待称物品的真实重量分别为 x_1, x_2, \dots, x_n , 实测值分别是 Y_1, Y_2, \dots, Y_n ,每次称重的随机误差 为 E_1, E_2, \dots, E_n ,且 E_i 满足:(1) E_i 独立于所称的 重量;(2) E_i 的数学期望值是零;(3) E_i 有方差且 等于 σ^2 ;(4)不同次的称量中 E_i 相互独立。

组合称重方法是将*n* 个物体以组合方式称重*n* 次,每次称重相应于*n* 个物体的一个线性组合,用 方程组表示,则有:

 $Y_1 = W_{11}X_1 + W_{12}X_2 + \dots + W_{1n}X_n + E_1$ $Y_2 = W_{21}X_1 + W_{22}X_2 + \dots + W_{2n}X_n + E_2$ $Y_n = W_{n1}X_1 + W_{n2}X_2 + \dots + W_{nn}X_n + E_n$

以矩阵形式表示,则有 $Y = W \times X + E_{\circ}$ 式中,X表示真实值向量; E 表示误差值向量; Y 表示测 量值向量。系数矩阵W 确定了组合称重的方式,称 之为组合称重矩阵。若系数矩阵W 可逆,则 $\hat{X} =$ $W^{-1} \times Y$ 为X 的无偏估计,n 个物体的平均均方 误差 $\varepsilon = \sigma^2/n \times \text{Trace}(W^T \times W)$,信噪比 SNR = $X/\sqrt{E\{(\hat{X} - X)^2\}}$ 。由此可知,W 的选择决定了系统 的性能。

统计学研究表明,由+1和-1组成的正交阿 达玛矩阵构成最佳化学天平称重设计;由0和1组 成的S矩阵称为最优弹簧称重设计。阿达玛矩阵 (H矩阵)是18世纪法国数学家发现的,n阶S矩 阵可由(n+1)阶阿达玛矩阵变换而来,其方法是将 阿达玛矩阵的第一行和第一列元素去掉,并把元素 1换为0,-1换为1。

阿达玛变换成像理论是将上述组合称重设计 应用于光学成像测量,且以阿达玛矩阵或S矩阵作 为编码矩阵。当系数矩阵W为阿达玛矩阵时,编码 成像测量的平均误差 $\epsilon = \sigma^2/n$, 信噪比增益为 \sqrt{n} 。 对应于光学测量,阿达玛矩阵中的元素1和-1表 示被测量的光强信号到达两个探测器,1表示经过 透射码元进入系统的主探测器,-1表示经过反射 码元进入系统的参考探测器。所以,此测量装置须 有两套光路系统和两个探测器。如果两套系统和探 测器的性能不一样,就不可避免地引入很大的系统 误差。当系数矩阵为S矩阵时,测量的平均误差 $\varepsilon=$ $4\sigma^2 n/(n+1)^2 \approx 4\sigma^2/n$,信噪比增益为 $\sqrt{n}/2$ 。此时, S矩阵中的元素1和0分别表示透光和挡光,因此 仅有一路光强信号进入探测器,省去了一套光路系 统和一个探测器,从而减小了测量时产生的系统误 差。所以,在实际应用中一般都采用S矩阵作为编 码矩阵。

在非探针近场光学显微镜中,假设要获取一幅 二维图像信息,其目的就是获取图像光强信号的空 间分布和信号量的大小。设(ζ , η)为二维图像信息 的空间坐标, $X(\zeta$, η)为 ζ 和 η 的函数,其大小对应 于该坐标处像元的光强度。对目标图像进行离散化 处理,将它划分为 $n \times m$ 个像元,n和m分别为划分 的行数和列数。此时,共有 $n \times m$ 个未知数,需进行 $n \times m$ 次组合测量。用矩阵可表示为 $Y=W \times X+$ *E*。式中,*Y*表示进入探测器的信号向量;*X*表示目标像元信号向量;*E*表示测量误差向量。

由此可知, $\hat{X} = W^{-1} \times X$ 为X的无偏估计,其 值可以在计算机上编程解出。由这一无偏估计值可 以实现图像的再现。

1.2 系统结构

非探针近场光学显微镜是在透射式扫描近场 光学显微镜的基础上,以S矩阵编码孔板代替光纤 探针作为非辐射场的探头。实际应用中,为了简化 编码板的构形用S循环矩阵代替S矩阵,通过在一 被加工平整的光纤端面涂覆50 nm 厚的金膜,然后 按S循环矩阵加工出一系列孔径为100 nm 的小孔 来实现。非探针近场光学显微镜系统包括激光光 源、多孔光纤探头、载物平台移动控制部分、信号采 集部分、计算机图像处理与分析系统。图1是系统 结构方框图。激光光源发出的光经扩束准直后从固 定在载物平台上的入射光阑(入射光阑的大小与划 分像元数及码板孔径大小有关)处照射到载物平 台,其近场信息被多孔光纤探头探测后送入光电倍 增管:信号被放大后经过A/D转换输入计算机,同 时计算机发出控制信号,控制载物平台按预定方案 向X 和Y 方向移动:随后监视器上显示出采集到的 数据及载物平台向 X 和 Y 方向移动的距离。

图1 非探针近场光学显微镜系统结构方框图

Fig. 1 Structure of non-probe near-field optical microscope

在本系统中,为了获得更高的信噪比,可在不 破坏样品的情况下尽量提高激光光源的功率。载物 平台的微驱动由压电陶瓷管实现。由于多孔光纤探 头直径的加大,所以对观测样品有一定的限制。

2 非探针近场光学显微镜软件模块

本软件基于 Windows 98 操作系统,利用

Visual C++开发平台进行软件开发。首先利用 Appwizard 生成 SDI 单文档应用程序,再运用 Classwizard 在试图类里添加Windows 消息控制函 数。其程序流程图如图 2 所示:首先输入载物平台 移动的步数、步距,要存储的BMP 图像文件的文件 名及图像的像素点数,以此确定载物平台移动的初 始位置和移动方案;初始化载物平台的X 和Y 方向 输出;载物平台开始循环移动,触发 A/D 转换,计 算机自动扫描端口,判断是否转换完毕;读取端口 数据,进行转换、存储和显示;载物平台循环移动结 束后,对数据进行解码计算、插值处理、图像恢复和 处理;最后以 BMP 文件格式存储样品图像。

图2 程序流程图

Fig. 2 Flow chart of programme

实际编程过程中需要解决如下几个问题:(1) 根据 Windows 系统资源分配数据采集板的基地 址;(2) 根据非探针近场光学显微镜系统的工作状 态自由选择数据采集板的增益系数;(3) 读取端口 数据进行适当转换;(4) 通过改变延时时间,协调 主机、数据采集板、探测器、放大器及载物平台驱动 器(PZT)之间的相互工作状态。所编制的软件系统 具有良好的工作界面,操作简单、方便、实用且有利 于再次开发。

3 试验结果与分析

试验中,采用 63 阶*S* 循环矩阵对一块大小约 300 nm 圆孔的铬板进行近场探测。把被探测区域 划分为 7×9 个像元,入射光阑大小为 700 \times 900 nm²,经解码计算后得到的每个像元灰度值 如表1 所示。用插值法对这些数据进行处理,最后

用软件恢复被探测目标的灰度图像(如图3所示)。

表1 目标像元灰度值

Fig. 1 Gray values of obeject pixels

30	44	90	53	94	34	70	70	48
74	79	137	146	148	108	95	86	79
71	109	255	255	255	163	172	112	90
93	186	255	255	255	239	139	106	64
74	134	222	242	213	155	137	95	86
62	72	134	86	116	61	104	95	86
61	74	72	78	92	84	70	54	30

图 3 被测目标灰度图

Fig. 3 Gray image of detected object

影响本系统图像质量的因素有很多,其中最主要的是编码孔板的孔径、编码矩阵的阶数及涂覆金 属膜的厚度;孔径越小,矩阵阶数越高,图像分辨率 越高;涂覆金属膜越薄信噪比越高。另外,编码板 (多孔探头)的加工精度、载物平台的定位精度、探 测器的工作状态、放大器的工作状态、数据采集板 的增益系数、数据处理采用的插值方案及噪声处理 方法等也都会影响图像质量。在实际应用中,必须 综合考虑各方面因素,逐步改进,取得系统的最佳 工作状态。

参考文献:

- [1] 张凤生. 阿达玛变换成像光谱技术及其理论的研究[D]. 武汉:华中科技大学图书馆,1993.
- [2] T Wilson. Theory and Practice of Scaning Optical Microscopy[M]. Londen: Academic, 1984.
- [3] 潘愛民 (译). Visual C++技术内幕[M]. 北京:清华 大学出版社,1999.
- [4] 周寿宽.实用微机图像处理[M].北京:北京航空航天大学出版社,1994.