Derivations of Certain Lie Algebras of Upper Triangular Matrices over Commutative Rings

WANG Deng－yin，YU Qiu，OU Shi－kun
（Department of Mathematics，China University of Mining and Technology，Jiangsu 221008，China ）
（E－mail：wdengyin＠126．com）

Abstract

Let R be an arbitrary commutative ring with identity．Denote by \mathbf{t} the Lie algebra over R consisting of all upper triangular n by n matrices and let \mathbf{b} be the Lie subalgebra of \mathbf{t} consisting of all matrices of trace 0 ．The aim of this paper is to give an explicit description of the derivation algebras of the Lie algebras \mathbf{t} and \mathbf{b} ，respectively．

Key words：derivations of Lie algebras，commutative rings．
MSC（2000）：17B
CLC number：O152．2

1．Introduction

Let R be a commutative ring with identity and R^{*} the group of invertible elements of R ． Let $M_{n}(R)$ be the R－algebra of n by n matrices over R that has a structure of a Lie algebra over R with the bracket $[x, y]=x y-y x$ ．We denote by \mathbf{t}（resp．， \mathbf{n} ）the subset of $M_{n}(R)$ consisting of all upper triangular（resp．，strictly upper triangular）matrices．When $n>1$ ，let \mathbf{b} be the subset of \mathbf{t} consisting of all matrices of trace 0 ．Cao ${ }^{[1-3]}$ described the automorphism groups of \mathbf{t}, \mathbf{n} and b respectively，when they are viewed as Lie algebras．J φ ndrup ${ }^{[4]}$ gave a complete description of the derivations of \mathbf{t} ，when \mathbf{t} is viewed as a ring．

2．Preliminaries

Following the notations in［1］mainly，we denote by E the identity matrix in $M_{n}(R)$ and by $E_{i j}$ the matrix in $M_{n}(R)$ whose sole nonzero entry is 1 in the (i, j) position．Let L denote \mathbf{t} or \mathbf{b} and let $\operatorname{Der} L$ be the derivation Lie algebra of the Lie algebra L ．Let

$$
\mathbf{n}_{\mathbf{1}}=\mathbf{n}, \quad \mathbf{n}_{\mathbf{2}}=\left[\mathbf{n}, \mathbf{n}_{\mathbf{1}}\right], \quad \mathbf{n}_{\mathbf{3}}=\left[\mathbf{n}, \mathbf{n}_{\mathbf{2}}\right], \ldots
$$

be the lower central series of \mathbf{n} ．Every $\mathbf{n}_{\mathbf{k}}$ is a characteristic ideal of \mathbf{t} ，which is stable under the action of any derivation of \mathbf{t} ．Let $R E$ be the set $\{r E \mid r \in R\}$ of scarlar matrices in \mathbf{t} ．We denote by $Z(L)$ the center of the Lie algebra L ．The following three lemmas are trivial．

Lemma 2．1 If $n>1$ ，and $n \in R^{*}$ ，then both \mathbf{b} and $R E$ are ideals of \mathbf{t} and $\mathbf{t}=\mathbf{b} \oplus R E^{[1]}$ ．
Received date：2005－06－14；Accepted date：2006－10－11
Foundation item：the National Natural Science Foundation of China（10071078）．

Lemma 2.2 Let \mathbf{d} be the subset of \mathbf{t} consisting of all diagonal matrices in \mathbf{t}. Then \mathbf{d} is a Lie subalgebra of \mathbf{t} and $\mathbf{t}=\mathbf{d} \oplus \mathbf{n}$.

We denote by $\operatorname{Hom}_{R}(\mathbf{d}, R)$ the set consisting of all homomorphisms $\sigma: \mathbf{d} \rightarrow R$ of R-modules. It forms a new R-module. If $1 \leq i \leq n$, then $\chi_{i}: \mathbf{d} \rightarrow R$, defined by $\chi_{i}\left(\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right)=d_{i}$, is a standard homomorphism in $\operatorname{Hom}_{R}(\mathbf{d}, R)$.

Lemma $2.3 \operatorname{Hom}_{R}(\mathbf{d}, R)$ is a free R-module of rank n with a basis: $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$. In other words,

$$
\operatorname{Hom}_{R}(\mathbf{d}, R)=R \chi_{1} \oplus R \chi_{2} \oplus \cdots \oplus R \chi_{n}
$$

3. The Standard Derivations of t

We now construct some standard derivations as follows
(A) Central derivations

Any homomorphism $\sigma: \mathbf{d} \rightarrow R$ of R-modules may be extended to a derivation σ^{\prime} of the Lie algebra \mathbf{t} by:

$$
\sigma^{\prime}(D+x)=\sigma(D) E
$$

for all $D \in \mathbf{d}, x \in \mathbf{n} . \sigma^{\prime}$ is called a central derivation of \mathbf{t} induced by σ. Let Φ denote the set consisting of all central derivations of \mathbf{t}. Then Φ forms an R-submodule of Dert.

Lemma 3.1 Φ is a Lie subalgebra of Dert.
Proof Let

$$
\sigma_{1}=r_{1} \chi_{1}+r_{2} \chi_{2}+\cdots+r_{n} \chi_{n} \in \operatorname{Hom}_{R}(\mathbf{d}, R)
$$

and

$$
\sigma_{2}=s_{1} \chi_{1}+s_{2} \chi_{2}+\cdots+s_{n} \chi_{n} \in \operatorname{Hom}_{R}(\mathbf{d}, R)
$$

Denote $\sum_{i=1}^{n} r_{i}$ by $r, \sum_{i=1}^{n} s_{i}$ by s, and $r s_{i}-s r_{i}$ by p_{i}. Let σ denote $\sum_{i=1}^{n} p_{i} \chi_{i}$. Then we have that $\left[\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right]=\sigma^{\prime} \in \Phi$. We are done.
(B) Inner derivations

Let $T \in \mathbf{t}$, then $\operatorname{ad} T: x \rightarrow[T, x], x \in \mathbf{t}$, is a derivation of \mathbf{t}, called the inner derivation of \mathbf{t} induced by T. Let adt denote the set consisting of all $\operatorname{ad} T$, with $T \in \mathbf{t}$, which forms an ideal of Dert. We see that adt is isomorphic to the quotient Lie algebra of \mathbf{t} to $Z(\mathbf{t})$.

Lemma 3.2 (1) adt $\subseteq \mathbf{\Phi}$, when $n=1$; (2) $\Phi \cap$ adt $=\mathbf{0}$, when $n \geq 2$.
Proof If $n=1$, we see that $\mathbf{t}=R E$. Then adt $=\mathbf{0} \subseteq \Phi$. If $n \geq 2$, let $\sigma^{\prime}=\operatorname{ad} T \in \Phi \cap \operatorname{adt}$, for some $T \in \mathbf{t}$, where $\sigma: \mathbf{d} \rightarrow R$ is a homomorphism of R-modules. Then $\sigma^{\prime}(\mathbf{n})=(\operatorname{ad} T)(\mathbf{n})=$ $[T, \mathbf{n}]=0$, forcing $T \in Z(\mathbf{t})$. Thus we have that $\sigma^{\prime}=\operatorname{ad} T=0$.

4. The Derivation Algebra of t

If $n>1$, for $1 \leq k \leq n-1$, we assume that $n=k q+r$ with q and r two non-negative integer
numbers and $r \leq k-1$. Let $D_{k}=\operatorname{diag}\left(E_{k}, 2 E_{k}, \ldots, q E_{k},(q+1) E_{r}\right) \in \mathbf{d}, k=1,2, \ldots, n-1$ where E_{k} denotes the $n \times n$ identity matrix.

Theorem 4.1 Let R be an arbitrary commutative ring with identity. Then
(1) Dert $=\Phi$, when $n=1$.
(2) Dert $=\Phi \oplus$ adt, when $n \geq 2$.

Proof If $n=1$, it is obvious that Dert $=\Phi$. From now on, we assume that $n>1$. Let π denote the set $\Phi \oplus \operatorname{adt}$. For any $\varphi \in \operatorname{Dert}$, we will show that $\varphi \in \pi$.

Firstly, we will prove that there exists some $T \in \mathbf{t}$ such that

$$
(\operatorname{ad} T+\varphi)(\mathbf{d}) \subseteq \mathbf{d}
$$

For any $H \in \mathbf{d}$, suppose that

$$
\varphi(H) \equiv\left(\sum_{1 \leq i<j \leq n} a_{i j}(H) E_{i j}\right)(\bmod \mathbf{d}),
$$

where $a_{i j}(H) \in R$ is relative to H. By $\left[D_{1}, H\right]=0$, we have that

$$
\left[H, \varphi\left(D_{1}\right)\right]=\left[D_{1}, \varphi(H)\right]
$$

which follows that

$$
\sum_{1 \leq i<j \leq n}\left(\chi_{i}(H)-\chi_{j}(H)\right) a_{i j}\left(D_{1}\right) E_{i j}=\sum_{1 \leq i<j \leq n}\left(\chi_{i}\left(D_{1}\right)-\chi_{j}\left(D_{1}\right)\right) a_{i j}(H) E_{i j} .
$$

This yields that $\left(\chi_{i}(H)-\chi_{j}(H)\right) a_{i j}\left(D_{1}\right)=\left(\chi_{i}\left(D_{1}\right)-\chi_{j}\left(D_{1}\right)\right) a_{i j}(H)$, for any $1 \leq i<j \leq n-1$. In particular, we have that

$$
a_{i, i+1}(H)=\left(\chi_{i+1}(H)-\chi_{i}(H)\right) a_{i, i+1}\left(D_{1}\right), i=1,2, \ldots, n-1
$$

Let $T_{1}=\sum_{i=1}^{n-1} a_{i, i+1}\left(D_{1}\right) E_{i, i+1}$. Then $\left(\varphi-\operatorname{ad} T_{1}\right)(\mathbf{d}) \subseteq \mathbf{d}+\mathbf{n}_{\mathbf{2}}$. By replacing φ with $\varphi-\operatorname{ad} T_{1}$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d}+\mathbf{n}_{\mathbf{2}}$. If $n=2$, this step is completed. If $n>2$, for any $H \in \mathbf{d}$, we now suppose that

$$
\varphi(H) \equiv\left(\sum_{1 \leq i<j \leq n-1} b_{i, j+1}(H) E_{i, j+1}\right)(\bmod \mathbf{d}),
$$

where $b_{i, j+1}(H) \in R$ is relative to H. By $\left[D_{2}, H\right]=0$, we have that $\left[H, \varphi\left(D_{2}\right)\right]=\left[D_{2}, \varphi(H)\right]$ which follows that
$\sum_{1 \leq i<j \leq n-1}\left(\chi_{i}(H)-\chi_{j+1}(H)\right) b_{i, j+1}\left(D_{2}\right) E_{i, j+1}=\sum_{1 \leq i<j \leq n-1}\left(\chi_{i}\left(D_{2}\right)-\chi_{j+1}\left(D_{2}\right)\right) b_{i, j+1}(H) E_{i, j+1}$.
This yields that

$$
\left(\chi_{i}(H)-\chi_{j+1}(H)\right) b_{i, j+1}\left(D_{2}\right)=\left(\chi_{i}\left(D_{2}\right)-\chi_{j+1}\left(D_{2}\right)\right) b_{i, j+1}(H)
$$

for any $1 \leq i<j \leq n-1$. In particular, we have that

$$
b_{i, i+2}(H)=\left(\chi_{i+2}(H)-\chi_{i}(H)\right) b_{i, i+2}\left(D_{2}\right), \quad i=1,2, \ldots, n-2
$$

Let $T_{2}=\sum_{i=1}^{n-2} b_{i, i+2}\left(D_{2}\right) E_{i, i+2}$. Then $\left(\varphi-\operatorname{ad} T_{2}\right)(\mathbf{d}) \subseteq \mathbf{d}+\mathbf{n}_{\mathbf{3}}$. By replacing φ with $\varphi-\operatorname{ad} T_{2}$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d}+\mathbf{n}_{\mathbf{3}}$. If $n=3$, this step is completed. If $n>3$, we repeat above replacement. After $n-2$ steps, we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d}+\mathbf{n}_{n-1}$. For any $H \in \mathbf{d}$, suppose that $\varphi(H) \equiv c_{1, n}(H) E_{1, n}(\bmod \mathbf{d})$, where $c_{1, n}(H) \in R$ is relative to H. By $\left[D_{n-1}, H\right]=0$, we have that $\left[H, \varphi\left(D_{n-1}\right)\right]=\left[D_{n-1}, \varphi(H)\right]$, which follows that

$$
\left(\chi_{1}(H)-\chi_{n}(H)\right) c_{1, n}\left(D_{n-1}\right)=\left(\chi_{1}\left(D_{n-1}\right)-\chi_{n}\left(D_{n-1}\right)\right) c_{1, n}(H)
$$

So we have that

$$
c_{1, n}(H)=\left(\chi_{n}(H)-\chi_{1}(H)\right) c_{1, n}\left(D_{n-1}\right)
$$

Let $T_{n}=c_{1, n}\left(D_{n-1}\right) E_{1, n}$. Then $\left(\varphi-\operatorname{ad} T_{n}\right)(\mathbf{d}) \subseteq \mathbf{d}$. By replacing φ with $\varphi+\operatorname{ad} T_{n}$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

Secondly, we will prove that there exists some $D \in \mathbf{d}$ such that $(\varphi+\operatorname{ad} D)\left(E_{i, i+1}\right)=0$, for $i=1,2, \ldots, n-1$, under the assumption that $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

For $1 \leq i \leq n-1$, suppose that

$$
\varphi\left(E_{i, i+1}\right)=\sum_{1 \leq k<l \leq n} x_{k l}^{(i)} E_{k l}
$$

with $x_{k l}^{(i)} \in R$. Let $D \in \mathbf{d}$. By applying φ on the the two sides of

$$
\left[D, E_{i, i+1}\right]=\left(\chi_{i}(D)-\chi_{i+1}(D)\right) E_{i, i+1}
$$

we have that

$$
\left[\varphi(D), E_{i, i+1}\right]+\left[D, \varphi\left(E_{i, i+1}\right)\right]=\left(\chi_{i}(D)-\chi_{i+1}(D)\right) \varphi\left(E_{i, i+1}\right)
$$

It follows that

$$
\left(\chi_{i}-\chi_{i+1}\right)(\varphi(D)) E_{i, i+1}+\sum_{1 \leq k<l \leq n} x_{k l}^{(i)}\left(\chi_{k}(D)-\chi_{l}(D)\right) E_{k l}=\left(\chi_{i}(D)-\chi_{i+1}(D)\right) \sum_{1 \leq k<l \leq n} x_{k l}^{(i)} E_{k l}
$$

So

$$
\chi_{i}(\varphi(D))=\chi_{i+1}(\varphi(D))
$$

and

$$
x_{k l}^{(i)}\left(\chi_{k}(D)-\chi_{l}(D)\right)=x_{k l}^{(i)}\left(\chi_{i}(D)-\chi_{i+1}(D)\right)
$$

for any $1 \leq k<l \leq n$. If $(k, l) \neq(i, i+1)$, we may choose $D \in \mathbf{d}$ such that $\chi_{i}(D)=\chi_{i+1}(D)$ and $\chi_{k}(D)=\chi_{l}(D)+1$, then we see that $x_{k l}^{(i)}=0$. This implies that $\varphi\left(E_{i, i+1}\right)=r_{i} E_{i, i+1}$ for some $r_{i} \in R$. Let $D=\operatorname{diag}\left(0, r_{1}, r_{1}+r_{2}, \ldots, \sum_{i=1}^{n-1} r_{i}\right)$. Then we have that $(\varphi+\operatorname{ad} D)\left(E_{i, i+1}\right)=0$, $i=1,2, \ldots, n-1$. The fact that \mathbf{n} is generated by all $E_{i, i+1}, i=1,2, \ldots, n-1$ forces that $(\varphi+\operatorname{ad} D)(\mathbf{n})=\mathbf{0}$. By replacing φ with $\varphi+\operatorname{ad} D$, we may assume that $\varphi(\mathbf{n})=\mathbf{0}$ and $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

Now we intend to prove that φ is a central derivation of \mathbf{t} ．Let $D \in \mathbf{d}, 1 \leq i \leq n-1$ ．By applying φ on the two sides of

$$
\left[D, E_{i, i+1}\right]=\left(\chi_{i}(D)-\chi_{i+1}(D)\right) E_{i, i+1}
$$

we have that $\left(\chi_{i}-\chi_{i+1}\right)(\varphi(D))=0$ ．This means that $\varphi(D)=r_{D} E$ for a unique $r_{D} \in R$ ．Thus we get a homomorphism $\sigma: \mathbf{d} \rightarrow R$ of R－modules，defined by $\sigma(D)=r_{D}$ ．It is obvious that $\varphi(D+x)=\sigma(D) E$ for $x \in \mathbf{n}, \mathbf{D} \in \mathbf{d}$ ．Hence φ is the central derivation σ^{\prime} of \mathbf{t} induced by σ ．

5．The derivation algebra of b

We now use the result on the derivation algebra of \mathbf{t} to discuss the derivations of the Lie subalgebra \mathbf{b} of \mathbf{t} ．In this section，we assume that $n>1$ and $n \in R^{*}$ ．It is obvious that the restriction of an inner derivation of \mathbf{t} to \mathbf{b} is a derivation of \mathbf{b} ，which is also called an inner derivation of \mathbf{b} ．For a derivation φ of \mathbf{t} ，we denote by $\varphi_{\mathbf{b}}$ the map $\mathbf{b} \rightarrow \mathbf{t}$ defined by $\varphi_{\mathbf{b}}(x)=\varphi(x)$ ， for all $x \in \mathbf{b}$ ．

Theorem 5．1 Let $n>1$ and let R be a commutative ring with identity in which $n \in R^{*}$ ．Then Derb $=(\mathrm{ad} \mathbf{t})_{\mathbf{b}}$ ．

Proof For any $\psi \in \operatorname{Der} \mathbf{b}, \psi$ can be lifted to a derivation of \mathbf{t} ，by acting trivially on $R E$ ．The lift of $\psi \in \operatorname{Derb}$ to \mathbf{t} is denoted by $\psi_{\mathbf{t}}$ ．By 4．1，we may assume that $\psi_{\mathbf{t}}=\operatorname{ad} T+\sigma^{\prime}$ ，for suitable $T \in \mathbf{t}$ and $\sigma \in \operatorname{Hom}_{R}(\mathbf{d}, R)$ ．Then $\psi=\left(\psi_{\mathbf{t}}\right)_{\mathbf{b}}=\left(\operatorname{ad} T+\sigma^{\prime}\right)_{\mathbf{b}}=(\operatorname{ad} T)_{\mathbf{b}}+\left(\sigma^{\prime}\right)_{\mathbf{b}}$ ．This means that $\left(\sigma^{\prime}\right)_{\mathbf{b}}$ is a derivation of \mathbf{b} ，forcing $\left(\sigma^{\prime}\right)_{\mathbf{b}}=0$ ．Hence $\psi=(\operatorname{ad} T)_{\mathbf{b}}$ ．

References：

［1］CAO You－an．Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring ［J］．J．Algebra，1997，189（2）：506－513．
［2］CAO You－an．Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings［J］．Linear Algebra Appl．，2001，329（1－3）：175－187．
［3］CAO You－an，TAN Zuo－wen．Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring［J］．Linear Algebra Appl．，2003，360：105－122．
［4］J φ NDRUP S．Automorphisms and derivations of upper triangular matrix rings［J］．Linear Algebra Appl．， 1995，221：205－218．

可换环上一些上三角矩阵李代数的导子

王登镜，於道，㑑世地
（中国矿业大学数学系，江苏 徐州 221008）
摘要：设 R 是任意含单位元的可换环， \mathbf{t} 是 R 上 $n \times n$ 上三角矩阵组成的李代数， \mathbf{b} 是 R 上迹为零的 $n \times n$ 上三角矩阵组成的李代数。本文明确给出了 \mathbf{t} 和 \mathbf{b} 的导子代数。

关键词：李代数的导子；可换环。

