Article ID: 1000-341X(2007)03-0474-05

Document code: A

Derivations of Certain Lie Algebras of Upper Triangular Matrices over Commutative Rings

WANG Deng-yin, YU Qiu, OU Shi-kun

(Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China) (E-mail: wdengyin@126.com)

Abstract: Let R be an arbitrary commutative ring with identity. Denote by **t** the Lie algebra over R consisting of all upper triangular n by n matrices and let **b** be the Lie subalgebra of **t** consisting of all matrices of trace 0. The aim of this paper is to give an explicit description of the derivation algebras of the Lie algebras **t** and **b**, respectively.

Key words: derivations of Lie algebras, commutative rings. MSC(2000): 17B CLC number: 0152.2

1. Introduction

Let R be a commutative ring with identity and R^* the group of invertible elements of R. Let $M_n(R)$ be the R-algebra of n by n matrices over R that has a structure of a Lie algebra over R with the bracket [x, y] = xy - yx. We denote by \mathbf{t} (resp., \mathbf{n}) the subset of $M_n(R)$ consisting of all upper triangular (resp., strictly upper triangular) matrices. When n > 1, let \mathbf{b} be the subset of \mathbf{t} consisting of all matrices of trace 0. Cao^[1-3] described the automorphism groups of \mathbf{t} , \mathbf{n} and \mathbf{b} respectively, when they are viewed as Lie algebras. J φ ndrup^[4] gave a complete description of the derivations of \mathbf{t} , when \mathbf{t} is viewed as a ring.

2. Preliminaries

Following the notations in [1] mainly, we denote by E the identity matrix in $M_n(R)$ and by E_{ij} the matrix in $M_n(R)$ whose sole nonzero entry is 1 in the (i, j) position. Let L denote \mathbf{t} or \mathbf{b} and let DerL be the derivation Lie algebra of the Lie algebra L. Let

$$\mathbf{n_1}=\mathbf{n},\quad \mathbf{n_2}=[\mathbf{n},\mathbf{n_1}],\quad \mathbf{n_3}=[\mathbf{n},\mathbf{n_2}],\ldots$$

be the lower central series of **n**. Every $\mathbf{n}_{\mathbf{k}}$ is a characteristic ideal of **t**, which is stable under the action of any derivation of **t**. Let *RE* be the set $\{rE \mid r \in R\}$ of scarlar matrices in **t**. We denote by Z(L) the center of the Lie algebra *L*. The following three lemmas are trivial.

Lemma 2.1 If n > 1, and $n \in \mathbb{R}^*$, then both **b** and $\mathbb{R}E$ are ideals of **t** and $\mathbf{t} = \mathbf{b} \oplus \mathbb{R}E^{[1]}$.

Received date: 2005-06-14; Accepted date: 2006-10-11

Foundation item: the National Natural Science Foundation of China (10071078).

Lemma 2.2 Let d be the subset of t consisting of all diagonal matrices in t. Then d is a Lie subalgebra of t and $t = d \oplus n$.

We denote by $\operatorname{Hom}_R(\mathbf{d}, R)$ the set consisting of all homomorphisms $\sigma : \mathbf{d} \to R$ of R-modules. It forms a new R-module. If $1 \le i \le n$, then $\chi_i : \mathbf{d} \to R$, defined by $\chi_i(\operatorname{diag}(d_1, d_2, \ldots, d_n)) = d_i$, is a standard homomorphism in $\operatorname{Hom}_R(\mathbf{d}, R)$.

Lemma 2.3 Hom_R(\mathbf{d}, R) is a free *R*-module of rank *n* with a basis: $\chi_1, \chi_2, \ldots, \chi_n$. In other words,

$$\operatorname{Hom}_R(\mathbf{d},R) = R\chi_1 \oplus R\chi_2 \oplus \cdots \oplus R\chi_n.$$

3. The Standard Derivations of t

We now construct some standard derivations as follows.

(A) Central derivations

Any homomorphism $\sigma : \mathbf{d} \to R$ of *R*-modules may be extended to a derivation σ' of the Lie algebra \mathbf{t} by:

$$\sigma'(D+x) = \sigma(D)E,$$

for all $D \in \mathbf{d}, x \in \mathbf{n}$. σ' is called a central derivation of \mathbf{t} induced by σ . Let Φ denote the set consisting of all central derivations of \mathbf{t} . Then Φ forms an *R*-submodule of Dert.

Lemma 3.1 Φ is a Lie subalgebra of Dert.

Proof Let

$$\sigma_1 = r_1 \chi_1 + r_2 \chi_2 + \dots + r_n \chi_n \in \operatorname{Hom}_R(\mathbf{d}, R),$$

and

$$\sigma_2 = s_1 \chi_1 + s_2 \chi_2 + \dots + s_n \chi_n \in \operatorname{Hom}_R(\mathbf{d}, R).$$

Denote $\sum_{i=1}^{n} r_i$ by $r, \sum_{i=1}^{n} s_i$ by s, and $rs_i - sr_i$ by p_i . Let σ denote $\sum_{i=1}^{n} p_i \chi_i$. Then we have that $[\sigma'_1, \sigma'_2] = \sigma' \in \Phi$. We are done.

(B) Inner derivations

Let $T \in \mathbf{t}$, then $ad \ T : x \to [T, x], x \in \mathbf{t}$, is a derivation of \mathbf{t} , called the inner derivation of \mathbf{t} induced by T. Let $ad\mathbf{t}$ denote the set consisting of all adT, with $T \in \mathbf{t}$, which forms an ideal of Dert. We see that $ad\mathbf{t}$ is isomorphic to the quotient Lie algebra of \mathbf{t} to $Z(\mathbf{t})$.

Lemma 3.2 (1) adt $\subseteq \Phi$, when n = 1; (2) $\Phi \cap \text{adt} = 0$, when $n \ge 2$.

Proof If n = 1, we see that $\mathbf{t} = RE$. Then $\operatorname{ad} \mathbf{t} = \mathbf{0} \subseteq \mathbf{\Phi}$. If $n \ge 2$, let $\sigma' = \operatorname{ad} T \in \mathbf{\Phi} \cap \operatorname{ad} \mathbf{t}$, for some $T \in \mathbf{t}$, where $\sigma : \mathbf{d} \to R$ is a homomorphism of *R*-modules. Then $\sigma'(\mathbf{n}) = (\operatorname{ad} T)(\mathbf{n}) = [T, \mathbf{n}] = 0$, forcing $T \in Z(\mathbf{t})$. Thus we have that $\sigma' = \operatorname{ad} T = 0$.

4. The Derivation Algebra of t

If n > 1, for $1 \le k \le n-1$, we assume that n = kq + r with q and r two non-negative integer

numbers and $r \leq k - 1$. Let $D_k = \text{diag}(E_k, 2E_k, \dots, qE_k, (q+1)E_r) \in \mathbf{d}, k = 1, 2, \dots, n-1$ where E_k denotes the $n \times n$ identity matrix.

Theorem 4.1 Let R be an arbitrary commutative ring with identity. Then

- (1) $\text{Der}\mathbf{t} = \Phi$, when n = 1.
- (2) Dert = $\Phi \oplus \operatorname{adt}$, when $n \ge 2$.

Proof If n = 1, it is obvious that $\text{Dert} = \Phi$. From now on, we assume that n > 1. Let π denote the set $\Phi \oplus \text{adt}$. For any $\varphi \in \text{Dert}$, we will show that $\varphi \in \pi$.

Firstly, we will prove that there exists some $T \in \mathbf{t}$ such that

$$(\mathrm{ad}T + \varphi)(\mathbf{d}) \subseteq \mathbf{d}.$$

For any $H \in \mathbf{d}$, suppose that

$$\varphi(H) \equiv \left(\sum_{1 \le i < j \le n} a_{ij}(H) E_{ij}\right) \pmod{\mathbf{d}},$$

where $a_{ij}(H) \in R$ is relative to H. By $[D_1, H] = 0$, we have that

$$[H, \varphi(D_1)] = [D_1, \varphi(H)],$$

which follows that

$$\sum_{1 \le i < j \le n} (\chi_i(H) - \chi_j(H)) a_{ij}(D_1) E_{ij} = \sum_{1 \le i < j \le n} (\chi_i(D_1) - \chi_j(D_1)) a_{ij}(H) E_{ij}.$$

This yields that $(\chi_i(H) - \chi_j(H))a_{ij}(D_1) = (\chi_i(D_1) - \chi_j(D_1))a_{ij}(H)$, for any $1 \le i < j \le n-1$. In particular, we have that

$$a_{i,i+1}(H) = (\chi_{i+1}(H) - \chi_i(H))a_{i,i+1}(D_1), \ i = 1, 2, \dots, n-1.$$

Let $T_1 = \sum_{i=1}^{n-1} a_{i,i+1}(D_1)E_{i,i+1}$. Then $(\varphi - \operatorname{ad} T_1)(\mathbf{d}) \subseteq \mathbf{d} + \mathbf{n_2}$. By replacing φ with $\varphi - \operatorname{ad} T_1$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d} + \mathbf{n_2}$. If n = 2, this step is completed. If n > 2, for any $H \in \mathbf{d}$, we now suppose that

$$\varphi(H) \equiv \left(\sum_{1 \le i < j \le n-1} b_{i,j+1}(H) E_{i,j+1}\right) \pmod{\mathbf{d}},$$

where $b_{i,j+1}(H) \in R$ is relative to H. By $[D_2, H] = 0$, we have that $[H, \varphi(D_2)] = [D_2, \varphi(H)]$ which follows that

$$\sum_{1 \le i < j \le n-1} (\chi_i(H) - \chi_{j+1}(H)) b_{i,j+1}(D_2) E_{i,j+1} = \sum_{1 \le i < j \le n-1} (\chi_i(D_2) - \chi_{j+1}(D_2)) b_{i,j+1}(H) E_{i,j+1}.$$

This yields that

$$(\chi_i(H) - \chi_{j+1}(H))b_{i,j+1}(D_2) = (\chi_i(D_2) - \chi_{j+1}(D_2))b_{i,j+1}(H),$$

for any $1 \le i < j \le n-1$. In particular, we have that

$$b_{i,i+2}(H) = (\chi_{i+2}(H) - \chi_i(H))b_{i,i+2}(D_2), \quad i = 1, 2, \dots, n-2$$

Let $T_2 = \sum_{i=1}^{n-2} b_{i,i+2}(D_2)E_{i,i+2}$. Then $(\varphi - \operatorname{ad} T_2)(\mathbf{d}) \subseteq \mathbf{d} + \mathbf{n_3}$. By replacing φ with $\varphi - \operatorname{ad} T_2$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d} + \mathbf{n_3}$. If n = 3, this step is completed. If n > 3, we repeat above replacement. After n - 2 steps, we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d} + \mathbf{n}_{n-1}$. For any $H \in \mathbf{d}$, suppose that $\varphi(H) \equiv c_{1,n}(H)E_{1,n}(\operatorname{mod} \mathbf{d})$, where $c_{1,n}(H) \in R$ is relative to H. By $[D_{n-1}, H] = 0$, we have that $[H, \varphi(D_{n-1})] = [D_{n-1}, \varphi(H)]$, which follows that

$$(\chi_1(H) - \chi_n(H))c_{1,n}(D_{n-1}) = (\chi_1(D_{n-1}) - \chi_n(D_{n-1}))c_{1,n}(H)$$

So we have that

$$c_{1,n}(H) = (\chi_n(H) - \chi_1(H))c_{1,n}(D_{n-1}).$$

Let $T_n = c_{1,n}(D_{n-1})E_{1,n}$. Then $(\varphi - \operatorname{ad} T_n)(\mathbf{d}) \subseteq \mathbf{d}$. By replacing φ with $\varphi + \operatorname{ad} T_n$, then we may assume that $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

Secondly, we will prove that there exists some $D \in \mathbf{d}$ such that $(\varphi + \mathrm{ad}D)(E_{i,i+1}) = 0$, for $i = 1, 2, \ldots, n-1$, under the assumption that $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

For $1 \leq i \leq n-1$, suppose that

$$\varphi(E_{i,i+1}) = \sum_{1 \le k < l \le n} x_{kl}^{(i)} E_{kl}$$

with $x_{kl}^{(i)} \in R$. Let $D \in \mathbf{d}$. By applying φ on the two sides of

$$[D, E_{i,i+1}] = (\chi_i(D) - \chi_{i+1}(D))E_{i,i+1},$$

we have that

$$[\varphi(D), E_{i,i+1}] + [D, \varphi(E_{i,i+1})] = (\chi_i(D) - \chi_{i+1}(D))\varphi(E_{i,i+1}).$$

It follows that

$$(\chi_i - \chi_{i+1})(\varphi(D))E_{i,i+1} + \sum_{1 \le k < l \le n} x_{kl}^{(i)}(\chi_k(D) - \chi_l(D))E_{kl} = (\chi_i(D) - \chi_{i+1}(D))\sum_{1 \le k < l \le n} x_{kl}^{(i)}E_{kl}.$$

 So

$$\chi_i(\varphi(D)) = \chi_{i+1}(\varphi(D)),$$

and

$$x_{kl}^{(i)}(\chi_k(D) - \chi_l(D)) = x_{kl}^{(i)}(\chi_i(D) - \chi_{i+1}(D)),$$

for any $1 \leq k < l \leq n$. If $(k, l) \neq (i, i+1)$, we may choose $D \in \mathbf{d}$ such that $\chi_i(D) = \chi_{i+1}(D)$ and $\chi_k(D) = \chi_l(D) + 1$, then we see that $x_{kl}^{(i)} = 0$. This implies that $\varphi(E_{i,i+1}) = r_i E_{i,i+1}$ for some $r_i \in R$. Let $D = \text{diag}(0, r_1, r_1 + r_2, \dots, \sum_{i=1}^{n-1} r_i)$. Then we have that $(\varphi + \mathrm{ad}D)(E_{i,i+1}) = 0$, $i = 1, 2, \dots, n-1$. The fact that \mathbf{n} is generated by all $E_{i,i+1}$, $i = 1, 2, \dots, n-1$ forces that $(\varphi + \mathrm{ad}D)(\mathbf{n}) = \mathbf{0}$. By replacing φ with $\varphi + \mathrm{ad}D$, we may assume that $\varphi(\mathbf{n}) = \mathbf{0}$ and $\varphi(\mathbf{d}) \subseteq \mathbf{d}$.

Now we intend to prove that φ is a central derivation of **t**. Let $D \in \mathbf{d}, 1 \leq i \leq n-1$. By applying φ on the two sides of

$$[D, E_{i,i+1}] = (\chi_i(D) - \chi_{i+1}(D))E_{i,i+1}$$

we have that $(\chi_i - \chi_{i+1})(\varphi(D)) = 0$. This means that $\varphi(D) = r_D E$ for a unique $r_D \in R$. Thus we get a homomorphism $\sigma : \mathbf{d} \to R$ of *R*-modules, defined by $\sigma(D) = r_D$. It is obvious that $\varphi(D+x) = \sigma(D)E$ for $x \in \mathbf{n}, \mathbf{D} \in \mathbf{d}$. Hence φ is the central derivation σ' of \mathbf{t} induced by σ . \Box

5. The derivation algebra of b

We now use the result on the derivation algebra of \mathbf{t} to discuss the derivations of the Lie subalgebra \mathbf{b} of \mathbf{t} . In this section, we assume that n > 1 and $n \in \mathbb{R}^*$. It is obvious that the restriction of an inner derivation of \mathbf{t} to \mathbf{b} is a derivation of \mathbf{b} , which is also called an inner derivation of \mathbf{b} . For a derivation φ of \mathbf{t} , we denote by $\varphi_{\mathbf{b}}$ the map $\mathbf{b} \to \mathbf{t}$ defined by $\varphi_{\mathbf{b}}(x) = \varphi(x)$, for all $x \in \mathbf{b}$.

Theorem 5.1 Let n > 1 and let R be a commutative ring with identity in which $n \in R^*$. Then $\text{Derb} = (\text{adt})_{\mathbf{b}}$.

Proof For any $\psi \in Der \mathbf{b}$, ψ can be lifted to a derivation of \mathbf{t} , by acting trivially on RE. The lift of $\psi \in Der\mathbf{b}$ to \mathbf{t} is denoted by $\psi_{\mathbf{t}}$. By 4.1, we may assume that $\psi_{\mathbf{t}} = \operatorname{ad} T + \sigma'$, for suitable $T \in \mathbf{t}$ and $\sigma \in \operatorname{Hom}_R(\mathbf{d}, R)$. Then $\psi = (\psi_{\mathbf{t}})_{\mathbf{b}} = (\operatorname{ad} T + \sigma')_{\mathbf{b}} = (\operatorname{ad} T)_{\mathbf{b}} + (\sigma')_{\mathbf{b}}$. This means that $(\sigma')_{\mathbf{b}}$ is a derivation of \mathbf{b} , forcing $(\sigma')_{\mathbf{b}} = 0$. Hence $\psi = (\operatorname{ad} T)_{\mathbf{b}}$.

References:

- CAO You-an. Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring [J]. J. Algebra, 1997, 189(2): 506–513.
- [2] CAO You-an. Automorphisms of the Lie algebra of strictly upper triangular matrices over certain commutative rings [J]. Linear Algebra Appl., 2001, 329(1-3): 175–187.
- [3] CAO You-an, TAN Zuo-wen. Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2003, 360: 105–122.
- [4] J\u03c6NDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.

可换环上一些上三角矩阵李代数的导子

王登银, 於 遒, 偶世坤 (中国矿业大学数学系, 江苏 徐州 221008)

摘要: 设 *R* 是任意含单位元的可换环, **t** 是 *R* 上 *n*×*n* 上三角矩阵组成的李代数, **b** 是 *R* 上 迹为零的 *n*×*n* 上三角矩阵组成的李代数.本文明确给出了 **t** 和 **b** 的导子代数.

关键词: 李代数的导子; 可换环.