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Abstract A class of finitely continuous topological spaces (in short, F'C-spaces) is introduced.
Some new KKM type theorems and coincidence theorems involving admissible set-valued map-
pings and the set-valued mapping with compactly local intersection property are proved in F'C-
spaces. As applications, some new fixed point theorems are obtained in FC-spaces. These
theorems improve and generalize many known results in recent literature.
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1. Introduction

In 1987, Horvath!!, replacing convex hulls by contractible sets, gave a purely topological
version of the KKM theorem. Since then, Park and Kim!? introduced the concepts of admissible
set-valued mappings and generalized convex (or G-convex) spaces. Vermal® introduced the
concepts of G-H-convex spaces. Ben-El-Mechaiekh et.all*! introduced the concepts of L-convex
spaces. They established some KKM type theorems in these spaces respectively. L-convex space
includes all the above abstract convex spaces as special cases. Dingl? proved some new KKM type
theorems and coincidence theorems involving admissible set-valued mappings and the set-valued
mappings with compactly local intersection property in L-convex spaces. Ding [ established
some new generalized KKM type theorems for generalized G-KKM and S-KKM type mappings

[l generalized the corresponding

from a nonempty set into a G-convex space. Deng and Xia
results in [6] to general topological spaces without any convexity assumptions.

Inspired by the above research works, in this paper, we first introduce a class of finite con-
tinuous topological spaces (in short, F'C-spaces ) without any convexity structure. Then some
new KKM type theorems involving admissible set-valued mappings and the set-valued mapping

with compactly local intersection property are proved in F'C-spaces. As applications, some new
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coincidence theorems and fixed point theorems are obtained in F'C-spaces. Our results unify and

generalize many known results in recent literature.

2. Preliminaries

Let X and Y be two nonempty sets. We will denote by 2¥ and (X) the family of all subsets
of Y and the family of all nonempty finite subsets of X, respectively. For any A € (X), we
denote by | A| the cardinality of A. Let A, be the standard n-dimensional simplex with vertices
€0,€1,-.-,epn. If J is a nonempty subset of {0,1,...,n}, we denote by A; the convex hull of the
vertices {e; : j € J}.

The following notions were introduced by Ding!®!.

Let A be a subset of a topological space X. A is called to be compactly open (resp., compactly
closed) in X if for any nonempty compact subset K of X, A K is open (resp., closed) in K.
For any given subset A of X, define the compact closure and the compact interior of A, denoted
by ccl(A) and cint(A4), as

ccl(A) = ﬂ{B C X : AC B and B is compactly closed in X},
cint(A4) = U{B C X : B C A and B is compactly open in X}.

It is easy to see that cint(A) (resp., ccl(A)) is compactly open (resp., compactly closed) in
X and for each nonempty compact subset K of X, since ccl(A)(VK = K(({BCX:AC
B and B is compactly closed in X}) =(\{B(K C K : A(NK C B[\ K and B[ K is closed in K},
we have ccl(A) K = clg(ANK) . Since cint(A)VK = KOA(U{BC X : B C Aand B C
X is compactly open}) = J{K(V\B C K : K(1B C KA and K(\B C K is open},we have
cint(A) N K = intg (A K), where clg(A[ K) and intx(A[)K) denote the closure and the
interior of A K in K, respectively. It is clear that a subset A of X is compactly open (resp.,
compactly closed) in X if and only if cint(A) = A (resp., ccl(A) = A).

Definition 2.1 Let X be a set and Y be a topological space. A mapping G : X — 2V is said to
be transfer compactly open-valued (resp., transfer compactly closed-valued) on X if for x € X
and for each nonempty compact subset K of Y, y € G(x)( K (resp., y € G(z)( K ) implies
that there exists a point ' € X such that y € intx(G(z') (N K) (resp., y & clx(G(z') N K)).
Clearly, each open-valued (resp., closed-valued) mapping is transfer open-valued (resp., trans-
fer closed-valued)®) and is also compactly open-valued (resp., compactly closed-valued). Each
transfer open-valued (resp., transfer closed-valued) mapping is transfer compactly open-valued

(resp., transfer compactly closed-valued) and the inverse is not true in general.

Definition 2.2 Let X and Y be two topological spaces. G : X — 2Y is a set-valued mapping.
(1) G is said to be compact if G(X) is included in a compact subset of Y';
(2) G is said to have the local intersection property on X if for each x € X with G(zx) # 0,
there exists an open neighborhood N'(x) of = in X such that (), cp () G(2) # plol;

(3) G is said to have the compactly local intersection property on X if for each nonempty
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compact subset K of X and for each x € K with G(z) # (), there exists an open neighborhood
N(z) of z in X such that (), x G(2) # po,

Clearly, if G has the compactly local intersection property, then for any compact subset
K of X, the restriction G |k: K — 2¥ of G on K has the local intersection property. It is
also clear that each set-valued mapping with local intersection property has the compactly local
intersection property and the inverse is not true in general.

The following notion was introduced by Ding 2.

Definition 2.3 (X, {ypn}) is said to be a finitely continuous space (in short, F'C-space) if X
is a topological space and for each N = {xq,...,z,} € (X), there exists a continuous mapping
onN A, — X. A subset M of an FC-space X is said to be an F(C-subspace of X if for
each N = {xq,...,zn} € (X) and for any {x;,,...,2;, } C N(\M, pon(Ar) C M where Ay, =
co({ei; : j=0,...,k}).

Remark 2.1 It is clear that F'C-space is a new class of topological spaces without any linear and
convexity structure. FC-space includes H-space 1), G-convex spacel?!, G-H space B, L-spacel*,
and many topological spaces with abstract convexity structure as special cases, see [1-6] and the
references therein.

The following notions were introduced by Park(?!.

Let X and Y be two topological spaces. For a given class U of set-valued mappings, U(X,Y)
denotes the set of set-valued mappings T : X — Y belonging to U, and U, the set of finite
composites of set-valued mappings in U.

Let U denote the class of set-valued mappings satisfying the following properties:

(1) U contains the class C' of (single-valued) continuous mappings;

(2) Each F € U.(X,Y) is upper semicontinuous (in short, u.s.c.) on X with nonempty
compact values;

(3) For any standard n-dimensional simplex A,,, each F' € U.(A,,, A,,) has a fixed point.

A class UF(X,Y) is defined as follows: F € U¥(X,Y) if and only if for any compact subset
K of X there exists an F* € U.(K,Y) such that F*(z) C F(z), Vx € K. Clearly, Y C U. C U*.

Lemma 2.1[011

Let X and Y be topological spaces and G : X — 2Y be a set-valued mapping
with nonempty values. Then the following conditions are equivalent:

(I) G has the compactly local intersection property;

(II) For each compact subset K of X and for eachy €Y, there exists an open subset O, of
X (which may be empty) such that O, (K C G~!(y) and K = Uyey (Oy N K);

(III) For each compact subset K of X, there exists a set-valued mapping F : X — 2Y
such that for any y € Y, F~!(y) is open or empty in X; F~'(y)(K C G™!(y), Vy € Y, and
K =U, ey (F ') NEK):;

(IV) For each compact subset K of X and for each x € K, there exists y € Y such that

z € cintGHy) N K and K =, ¢y (cintGHy) N K) = U, ey (G y) N K);
(V) G=':Y — 2% is transfer compactly open-valued on'Y .
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3. KKM type theorem and coincidence theorems

Theorem 3.1 Let Y be a topological space, (X,{¢on}) be an FC-space, F € U*(X,Y) and
G : X — 2Y such that

(i) For each xz € X, G(x) is compactly open inY;

(ii) Foreach N = {xq,...,xn} € (X) and for each{e;,,...,e; } C {eo,...,en}, Flpn(Ak)) C
Ur_o(Y \ G(zs,)) where Ay = co({e;; : j =0,...,k}).
Then we have

(a) Forany N ={xo,...,2n} € (X), F(en(An)) N ( NiZg(Y \ G(2))) # 0.

(b) For any N = {zq,...,z,} € (X), there exists ay € F(¢n(Ay)) such that G~ (y) N =
0.

Proof We first prove the conclusions (a) and (b) are equivalent.

(a)=(b). By (a), for each N € (X) and for any z € N, F(on(An)) (Npen Y\G(2))) # 0, it
follows that there exists a y € F(¢n(An)) such that y € (), oy (Y\G(2)), thatis y & [,y G(2),
i.e., NG~ !(y) = 0 and so the conclusion (b) holds.

(b)=-(a) is easy, we omit its proof here.

Hence, it is enough to show that the conclusion (a) holds. Suppose the conclusion (a) is not true.
Then there exists a set N = {0, ...,z,} € (X) such that F(on(An)) N(Nyen Y\ G(2))) = 0.
It follows that
F(en(An) € | Gl@). (3.1)
zEN

Since pn(A,) is compact in X and F € U¥(X,Y), there exists an F € U.(on(A,),Y) such

that

F(z) C F(z), ¥ = € on(A,). (3.2)
Since F is w.s.c with compact values and pn(A,) is compact, F(on(A,)) is compact in Y.
By (3.1) and (3.2), we have

n

Fen(An) = J(Ga) [ Flen(An))

i=0
By (i), {G(z:) N F(¢n(An)) i is an open cover of F(on(A,)). Let {1}, be the continuous
partition of unity subordinated to the open cover, i.e., for each i € {0,1,...,n},%; : F(on(Ay)) —

[0, 1] is continuous;
{y € Fon(An)) : ¥i(y) # 0} C G(xi) [ Flen(An)) € Glay); (3.3)

and Z?:o Yvily) =1,Vy e F(cpN(An)). Define a mapping ¢ : F(@N(An)) — A, by

P(y) =Y biy)es, Vy € Flon(An)).

=0

Then ) is continuous and hence Foy € Uc(An, A,). Therefore, ¢)Foy has a fixed point
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20 € Ay, that is zo € Fon(2). Hence there exists a yo € F(pn(20)) such that
0=10) = Y vilvo)e; € Ay,

JE€J(yo)

where J(yo) = {j € {0,1,....,n} : ¢¥;(yo) # 0}. It follows from (ii) that

Yo € Fon(20)) C Flon(Ase) € Flen(Asg)) € | (Y \ G(x)).
J €J(yo)

Therefore, there exists a jo € J(yo) such that yo & G(z,). On the other hand, by the definition
of J(yo), we have ¥, (yo) # 0 and it follows from (3.3) that yo € G(x;,) ,which is a contradiction.
This completes the proof. O

Remark 3.1 Theorem 3.1 does not require the space X to possess any convexity structure.
Theorem 3.1 generalizes Theorem 3.1 of Ding [° from L-convex space to FC-space.

Here, we give a concrete example of Theorem 3.1.

Let X = (0,1)UJ(2,3) and Y = [0, 4) with the usual topology. For each N = {z¢,x1, ...,zp} €
(X), define a mapping ¢y : A, — X by pn(a) = %Z?:o a;z;,Va = {ag, ..., an} € A, Then
¢ is continuous. Hence (X, {px}) is an FC-space. Define G : X — 2Y by G(z) = (z+1,4),z €
X and F : X — 2Y by F(z) = [0,7],7 € X. Tt is easy to see that F' and G satisfy all the
conditions of Theorem 3.1, hence we have the results of Theorem 3.1. However X only has

topological structure and not any abstract convexity structure.

Corollary 3.1 Let Y be a topological space, (X,{¢n}) be an FC-space, F € U*(X,Y) and
T : X — 2Y such that for each x € X, T(z) is compactly closed in Y and for each N =
{zo, 21, ..., xn} € (X) and for each {e;,,...,e;.} C {eo,...,en}, Flon(Ak)) C U?:o T(xi,)
where Ay, = co({e;; : j =0,...,k}). Then
Flon(Aa)) () ([ T(w)) #0,¥ N € (X).
zeEN

Proof Let G(z) = Y \ T(x) for each x € X. The conclusion of Corollary 3.1 follows from
Theorem 3.1.

Remark 3.2 Corollary 3.1 generalizes the Corollary of Park and Kim[? from G-convex space
to F'C-space, and the Corollary 3.1 of Dingl® from L-convex space to FC-space.

If X =Y and F is the identity mapping on X, then the Corollary 3.1 reduces to the following
Corollary 3.2.

Corollary 3.2 Let (X,{pn}) be an FC-space and T : X — 2% be a set-valued mapping such
that for each for each x € X, T (x) is compactly closed in X and for each N = {xo,...,z,} € (X)
and for each nonempty {e;,,..., e, C{eo,...,en}, on(Ak) C U?:o T(xi;).

Then on () (1 (N, e T()) # 0, YN € (X).

Remark 3.3 Corollary 3.2 is different from Theorem 3.1 of Deng and Xial”.

Theorem 3.2 Let Y be a topological space and (X, {¢x}) be an FC-space, F € U*(X,Y) and
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T : X — 2Y such that
(i) For each x € X, T (x) is compactly closed in Y’;
(ii) For each N = {xo,...,z,} € (X) and each nonempty {e;,,...,e;,} C {eo,...,en},
k
Flon(bi) € Ul T(a,);
(iii) There exists a nonempty compact subset K of Y such that either
(a) For some M € (X), clF(X)\ K C U,cp (Y \T(x)); or
(b) For each N € (X), there exists a compact FC-subspace Ly of X containing N such
that F(Ln)\ K CU,ep, (Y \T(2)).
Then clF(X)NK N (Nyex T(x)) #0.

Proof Define a mapping G : X — 2Y by G(z) = Y \ T(z). By (i), G() is compactly open in
Y for each x € X. Suppose the conclusion is false. Then we have
dF(X)K c [ J((\T@)(K) = | (G K). (3.4)
zeX zeX
Since clF (X)) K is compact in K, by (3.4), there exists an N = {xg,...,z,} € (X) such
that
dF(X)(K c | G). (3.5)
zeN
Case (iii)(a). By the condition (iii)(a) and (3.5), there exists a finite set Ny = NJM =
{Zo, .y Tny Tt 1y« -+ s Tnpm } € (X), such that

n+m

dF(X)c | Gla). (3.6)

By the conditions (i), (ii) and Theorem 3.1, we have

F(om (Bnrm) [V [) (Y \G(@) #0,

reN1

that is F(on, (Antm)) ¢ UrZy" G(x;) which is a contradiction with (3.6).

Case (iii)(b). Let Ly be the compact F'C-subspace of X in the condition (iii)(b). Since
F € U*(X,Y), there exists an F € U.(Ly,Y) such that F(z) C F(z) for all z € Ly. By (ii),
we have that for each A = {zo,...,2,} € (Ln) and for each {e;,,...,e;. } C{eo,...,en},

k
F((pA(Ak)) C F SﬁA Ak U Y\G Ilj

where Ay, = co({e;; : j =0,...,k}). By Uc C Uk, we have F e U%(Ly,Y), By Theorem 3.1,
there exists a y € F(pa(Ay)) such that G (y) A = 0, It follows that y & G(x) for all z € A.
Hence we have
y € Flea@)) () ( (N Y\G@) = [ (Flpa(An) () T(x))
€A z€A
Since Ly is FC-subspace of X, we have ¢4(A,) C Ly and y € [, c4(F F(Ly)(OT(z)). Since

F is ws.c. with compact valued and Ly is compact, F(Ly) is compact in Y. By (i), T(x)
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is compactly closed. Hence the family {F(Ly)(T(z) : = € Ly} has the finite intersection
property. It follows that

FEy)()( () T) #0.

reln
Take any 2 € F(Ly) N (Nyepy T@) = FEN)\ Uyer, (V \ T@)), i
z€ F(Ly)andz ¢ U Y\T(x)) = U G(x). (3.7)
z€LN r€LN

By (iii)(b), we have z € K, it follows from (3.5) that
zedF(X)(K c | G).
zeEN
Hence there exists an #* € N C Ly such that z € G(x*) which contradicts (3.7). This completes
the proof. O

Remark 3.4 Theorem 3.2 generalizes the Theorem 3.2 of Ding!*®! and the Theorem 3.2 of Ding[%!
from G-convex spaces to FC-spaces and from L-convex spaces to FC-spaces respectively, and
the conditions are better than that in Theorem 3.2 of Dingl®l.

Theorem 3.3 Let Y be a topological space and (X, {¢x}) be an FC-space. Let F € UF(X,Y)
and T : X — 2Y be such that

(i) T is transfer compactly closed-valued on X;

(ii) For each N = {zg,...,zn} € (X) and any nonempty {ei,,...,ei,} C {€o,.-.,€n},
F(en(Ar)) € U celT(,);

(iii) There exists a nonempty compact subset K of Y such that either

(a) For some M € (X), clF(X)\ K CU,cp /(Y \ cclT(x)); or

(b) For each N € (X), there exists a compact FC-subspace Ly of X containing N such
that F(Ln)( ( Neer, cclT(z)) C K.

Then we have

AF(X)(E() ( () T(x)) #0.

reX
Proof It is easy to show that cclT : X — 2" satisfies all the conditions of Theorem 3.2. Hence

we have

clF(X) me( ﬂ cclT(x)) # 0.

zeX
Since T is transfer compactly closed-valued and clF (X)) K is compact. we must have
AF(X)(E( () T@) = dF(X) (K[ ([ cclT(z)) # 0.
zeX zeX

This completes the proof. O

Remark 3.5 Theorem 3.3 generalizes Theorem 3.3 of Ding!®), Theorems 3.2 and 3.3 of Ding[®!
and Theorems 3 and 4 of Park and Kim!?! from L-convex space and G-convex spaces to FC-space.

By applying Theorem 3.3 we can obtain the following coincidence theorem.
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Theorem 3.4 Let (X,{yn}) be an FC-space and K be a nonempty compact subset of a
topological space Y. Let F € UF(X,Y) and G, P : Y — 2% be such that

(i) G satisfies one of the conditions (I)-(V) in Lemma 2.1;

(ii)) For eachy € F(X), N = {xo,...,x,} € (X) and

{zi; : j=0,...,k} C{zo,...,2p} ﬂ(cintG_l)_l(y)

imply on(Ar) C P(y), where Ay = co({e;; : 5 =0,...,k});

(iii) AF(X)NK C Uex G H2);

(iv) One of the following conditions holds:

(a) For some M € (X), cIF(X)\ K C U,y cintG~ ! (z);

(b) For each N € (X), there exists a compact FC-subspace Ly of X containing N such
that F(Ly)\ K CU,cp, cint(G'(z)).
Then there exists (zg,y0) € X x Y such that g € P(yo) and yo € F(xg), i.e., (zg,y0)is a

coincidence point of P and F.

Proof Define a mapping 7 : X — 2Y by
T(xz)=Y\G Y z)={yeY :2¢ Gy}, Ve eX.

Then, by (i) and Lemma 2.1, T is transfer compactly closed-valued on X.

Case (iv)(a). By (iv)(a) and Y \ cclT(z) = cintG~1(x) for each z € X, it is easy to see that
the condition (iii)(a) of Theorem 3.3 holds.

Case(iv)(b). By (iv)(b), for each N € (X), there exists a compact FC-subspace Ly of X
containing N such that
FILM\K c |J cint(GH(x) = [J (V\cdT(2)),
z€LN z€LN
that is, F(Ln) () ( Neery cclT(z)) C K. Hence the condition (iii)(b) of Theorem 3.3 holds. By
the condition (iii), we have clF(X) K C U,cx G™*(2), that is
AFX)E( () ¥\NG @) =0,

zeX

AF(X) (VK () T(x)) =0.

reX
Hence the conclusion of Theorem 3.3 does not hold. By Theorem 3.3, there exists an N =

ie.,

{zg,...,xn} € (X), and a nonempty set {e;,, ... eik} C {eo,...,en} such that
k
Flon(Aw) ¢ | cc(T (i, U Y\ cint(G™ (x4,))),
=0 =0
where Ay, = co({ei; : j =0,...,k}. So there exist yo € F(¢n(Ax)) and zo € pn(Ay) such that

k
Yo € F(x0) and yo & U (Y \ cintG ™ (z4,)).
j=0
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It follows that yo € cintG~'(z;,), V j=0,...,k. Hence we have
{w, 15 =0, k} € ((eintG™1) " (o).

By the condition (ii), we obtain ¢n(Ag) C P(yo). Therefore, o € P(yo) and yo € F(x0), i.e.,
(z0,Yyo) is a coincidence point of F' and P. This completes the proof. O

[5] from L-convex space to FC-space

(8]

Remark 3.6 Theorem 3.4 generalizes Theorem 3.4 of Ding
and the conditions are better. Theorem 3.4 also generalizes Theorems 4.2 and 4.3 of Ding '®/ and

Theorem 1 of Park and Kim!? in several aspects.

Theorem 3.5 Let (X,{pn}) be an FC-space and K be a nonempty compact subset of X. Let
G,P : X — 2% be such that

(i) G satisfies one of the conditions (I)-(V) in Lemma 2.1;

(ii) For eachx € X, N = {xo,...,xn} € (X) and

{wi, 15 =0,....,k} C {xo, ..., xn} [ )(cintG~1) "} (z)

imply ¢n(Ar) C P(z);

(iii) For each x € K, G(z) # 0;

(iv) For each N € (X), there exists a compact FC-subspace Ly of X containing N such
that Ly \ K C ¢y, cint(G™"(x)).
Then P has fixed point in X.

Proof Let Y = X and F(x) = {2} be the identity mapping. Then F' € U.(X, X) C U*(X, X).
It is easy to check that all conditions of Theorem 3.4 are satisfied. The conclusion follows from
Theorem 3.4.

Corollary 3.3 Let (X,{pn}) be an FC-space and K be a compact subset of X. And let
G : X — 2% satisfy the conditions (i), (iii) and (iv) of Theorem 3.5 and the condition (ii) be
replaced by the following condition:

(ii)’ For each x € X, G(x) is an FC-subspace of X.
Then G has fixed point in X.

Remark 3.7 Theorem 3.5 and Corollary 3.3 generalize Theorem 3.5 and Corollary 3.1 of Ding[%!
to F'C-spaces.
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