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1. Introduction

In 1987, Horvath[1], replacing convex hulls by contractible sets, gave a purely topological

version of the KKM theorem. Since then, Park and Kim[2] introduced the concepts of admissible

set-valued mappings and generalized convex (or G-convex) spaces. Verma[3] introduced the

concepts of G-H-convex spaces. Ben-El-Mechaiekh et.al[4] introduced the concepts of L-convex

spaces. They established some KKM type theorems in these spaces respectively. L-convex space

includes all the above abstract convex spaces as special cases. Ding[5] proved some new KKM type

theorems and coincidence theorems involving admissible set-valued mappings and the set-valued

mappings with compactly local intersection property in L-convex spaces. Ding [6] established

some new generalized KKM type theorems for generalized G-KKM and S-KKM type mappings

from a nonempty set into a G-convex space. Deng and Xia[7] generalized the corresponding

results in [6] to general topological spaces without any convexity assumptions.

Inspired by the above research works, in this paper, we first introduce a class of finite con-

tinuous topological spaces (in short, FC-spaces ) without any convexity structure. Then some

new KKM type theorems involving admissible set-valued mappings and the set-valued mapping

with compactly local intersection property are proved in FC-spaces. As applications, some new
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coincidence theorems and fixed point theorems are obtained in FC-spaces. Our results unify and

generalize many known results in recent literature.

2. Preliminaries

Let X and Y be two nonempty sets. We will denote by 2Y and 〈X〉 the family of all subsets

of Y and the family of all nonempty finite subsets of X , respectively. For any A ∈ 〈X〉, we

denote by |A| the cardinality of A. Let ∆n be the standard n-dimensional simplex with vertices

e0, e1, . . . , en. If J is a nonempty subset of {0, 1, . . . , n}, we denote by ∆J the convex hull of the

vertices {ej : j ∈ J}.

The following notions were introduced by Ding[8].

Let A be a subset of a topological spaceX . A is called to be compactly open (resp., compactly

closed) in X if for any nonempty compact subset K of X , A
⋂
K is open (resp., closed) in K.

For any given subset A of X , define the compact closure and the compact interior of A, denoted

by ccl(A) and cint(A), as

ccl(A) =
⋂

{B ⊂ X : A ⊂ B and B is compactly closed in X},

cint(A) =
⋃

{B ⊂ X : B ⊂ A and B is compactly open in X}.

It is easy to see that cint(A) (resp., ccl(A)) is compactly open (resp., compactly closed) in

X and for each nonempty compact subset K of X , since ccl(A)
⋂
K = K

⋂
(
⋂
{B ⊂ X : A ⊂

B andB is compactly closed in X}) =
⋂
{B

⋂
K ⊂ K : A

⋂
K ⊂ B

⋂
K andB

⋂
K is closed in K},

we have ccl(A)
⋂
K = clK(A

⋂
K) . Since cint(A)

⋂
K = K

⋂
(
⋃
{B ⊂ X : B ⊂ A and B ⊂

X is compactly open}) =
⋃
{K

⋂
B ⊂ K : K

⋂
B ⊂ K

⋂
A and K

⋂
B ⊂ K is open},we have

cint(A)
⋂
K = intK(A

⋂
K), where clK(A

⋂
K) and intK(A

⋂
K) denote the closure and the

interior of A
⋂
K in K, respectively. It is clear that a subset A of X is compactly open (resp.,

compactly closed) in X if and only if cint(A) = A (resp., ccl(A) = A).

Definition 2.1 Let X be a set and Y be a topological space. A mapping G : X → 2Y is said to

be transfer compactly open-valued (resp., transfer compactly closed-valued) on X if for x ∈ X

and for each nonempty compact subset K of Y , y ∈ G(x)
⋂
K (resp., y 6∈ G(x)

⋂
K) implies

that there exists a point x′ ∈ X such that y ∈ intK(G(x′)
⋂
K) (resp., y 6∈ clK(G(x′)

⋂
K)).

Clearly, each open-valued (resp., closed-valued) mapping is transfer open-valued (resp., trans-

fer closed-valued)[9]) and is also compactly open-valued (resp., compactly closed-valued). Each

transfer open-valued (resp., transfer closed-valued) mapping is transfer compactly open-valued

(resp., transfer compactly closed-valued) and the inverse is not true in general.

Definition 2.2 Let X and Y be two topological spaces. G : X → 2Y is a set-valued mapping.

(1) G is said to be compact if G(X) is included in a compact subset of Y ;

(2) G is said to have the local intersection property on X if for each x ∈ X with G(x) 6= ∅,

there exists an open neighborhood N (x) of x in X such that
⋂

z∈N (x)G(z) 6= ∅[10];

(3) G is said to have the compactly local intersection property on X if for each nonempty
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compact subset K of X and for each x ∈ K with G(x) 6= ∅, there exists an open neighborhood

N (x) of x in X such that
⋂

z∈N (x)
⋂

K G(z) 6= ∅[11].

Clearly, if G has the compactly local intersection property, then for any compact subset

K of X , the restriction G |K : K → 2Y of G on K has the local intersection property. It is

also clear that each set-valued mapping with local intersection property has the compactly local

intersection property and the inverse is not true in general.

The following notion was introduced by Ding [12].

Definition 2.3 (X, {ϕN}) is said to be a finitely continuous space (in short, FC-space) if X

is a topological space and for each N = {x0, . . . , xn} ∈ 〈X〉, there exists a continuous mapping

ϕN : ∆n → X . A subset M of an FC-space X is said to be an FC-subspace of X if for

each N = {x0, . . . , xn} ∈ 〈X〉 and for any {xi0 , . . . , xik
} ⊂ N

⋂
M , ϕN (∆k) ⊂ M where ∆k =

co({eij
: j = 0, . . . , k}).

Remark 2.1 It is clear that FC-space is a new class of topological spaces without any linear and

convexity structure. FC-space includes H-space [1], G-convex space[2], G-H space [3], L-space[4],

and many topological spaces with abstract convexity structure as special cases, see [1–6] and the

references therein.

The following notions were introduced by Park[2].

Let X and Y be two topological spaces. For a given class U of set-valued mappings, U(X,Y )

denotes the set of set-valued mappings T : X → Y belonging to U , and Uc the set of finite

composites of set-valued mappings in U .

Let U denote the class of set-valued mappings satisfying the following properties:

(1) U contains the class C of (single-valued) continuous mappings;

(2) Each F ∈ Uc(X,Y ) is upper semicontinuous (in short, u.s.c.) on X with nonempty

compact values;

(3) For any standard n-dimensional simplex ∆n, each F ∈ Uc(∆n,∆n) has a fixed point.

A class Uk
c (X,Y ) is defined as follows: F ∈ Uk

c (X,Y ) if and only if for any compact subset

K of X there exists an F ∗ ∈ Uc(K,Y ) such that F ∗(x) ⊂ F (x), ∀ x ∈ K. Clearly, U ⊂ Uc ⊂ Uk
c .

Lemma 2.1[11] Let X and Y be topological spaces and G : X → 2Y be a set-valued mapping

with nonempty values. Then the following conditions are equivalent:

(I) G has the compactly local intersection property;

(II) For each compact subset K of X and for each y ∈ Y , there exists an open subset Oy of

X (which may be empty) such that Oy

⋂
K ⊂ G−1(y) and K =

⋃
y∈Y (Oy

⋂
K);

(III) For each compact subset K of X , there exists a set-valued mapping F : X → 2Y

such that for any y ∈ Y , F−1(y) is open or empty in X ; F−1(y)
⋂
K ⊂ G−1(y), ∀ y ∈ Y , and

K =
⋃

y ∈Y (F−1(y)
⋂
K);

(IV) For each compact subset K of X and for each x ∈ K, there exists y ∈ Y such that

x ∈ cintG−1(y)
⋂
K and K =

⋃
y∈Y (cintG−1(y)

⋂
K) =

⋃
y∈Y (G−1(y)

⋂
K);

(V) G−1 : Y → 2X is transfer compactly open-valued on Y .
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3. KKM type theorem and coincidence theorems

Theorem 3.1 Let Y be a topological space, (X, {ϕN}) be an FC-space, F ∈ Uk
c (X,Y ) and

G : X → 2Y such that

(i) For each x ∈ X , G(x) is compactly open in Y ;

(ii) For eachN = {x0, . . . , xn} ∈ 〈X〉 and for each {ei0 , . . . , eik
} ⊂ {e0, . . . , en}, F (ϕN (∆k)) ⊂

⋃k
j=0(Y \G(xij

)) where ∆k = co({eij
: j = 0, . . . , k}).

Then we have

(a) For any N = {x0, . . . , xn} ∈ 〈X〉, F (ϕN (∆n))
⋂

(
⋂n

i=0(Y \G(x))) 6= ∅.

(b) For any N = {x0, . . . , xn} ∈ 〈X〉, there exists a y ∈ F (φN (∆n)) such that G−1(y)
⋂
N =

∅.

Proof We first prove the conclusions (a) and (b) are equivalent.

(a)⇒(b). By (a), for eachN ∈ 〈X〉 and for any x ∈ N , F (ϕN (∆n))
⋂

(
⋂

x∈N (Y \G(x))) 6= ∅, it

follows that there exists a y ∈ F (ϕN (∆n)) such that y ∈
⋂

x∈N(Y \G(x)), that is y 6∈
⋃

x∈N G(x),

i.e., N
⋂
G−1(y) = ∅ and so the conclusion (b) holds.

(b)⇒(a) is easy, we omit its proof here.

Hence, it is enough to show that the conclusion (a) holds. Suppose the conclusion (a) is not true.

Then there exists a set N = {x0, ..., xn} ∈ 〈X〉 such that F (ϕN (∆n))
⋂

(
⋂

x∈N(Y \ G(x))) = ∅.

It follows that

F (ϕN (∆n)) ⊂
⋃

x∈N

G(x). (3.1)

Since ϕN (∆n) is compact in X and F ∈ Uk
c (X,Y ), there exists an F̃ ∈ Uc(ϕN (∆n), Y ) such

that

F̃ (x) ⊂ F (x), ∀ x ∈ ϕN (∆n). (3.2)

Since F̃ is u.s.c with compact values and ϕN (∆n) is compact, F̃ (ϕN (∆n)) is compact in Y .

By (3.1) and (3.2), we have

F̃ (ϕN (∆n)) =
n⋃

i=0

(G(xi)
⋂
F̃ (ϕN (∆n))).

By (i), {G(xi)
⋂
F̃ (ϕN (∆n))}n

i=0 is an open cover of F̃ (ϕN (∆n)). Let {ψi}n
i=0 be the continuous

partition of unity subordinated to the open cover, i.e., for each i ∈ {0, 1, ..., n}, ψi : F̃ (ϕN (∆n)) →

[0, 1] is continuous;

{y ∈ F̃ (ϕN (∆n)) : ψi(y) 6= 0} ⊂ G(xi)
⋂
F̃ (ϕN (∆n)) ⊂ G(xi); (3.3)

and
∑n

i=0 ψi(y) = 1, ∀ y ∈ F̃ (ϕN (∆n)). Define a mapping ψ : F̃ (ϕN (∆n)) → ∆n by

ψ(y) =

n∑

i=0

ψi(y)ei, ∀ y ∈ F̃ (ϕN (∆n)).

Then ψ is continuous and hence ψF̃ϕN ∈ UC(∆n,∆n). Therefore, ψF̃ϕN has a fixed point
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z0 ∈ ∆n, that is z0 ∈ ψF̃ϕN (z0). Hence there exists a y0 ∈ F̃ (ϕN (z0)) such that

z0 = ψ(y0) =
∑

j∈J(y0)

ψj(y0)ej ∈ ∆J(y0),

where J(y0) = {j ∈ {0, 1, ..., n} : ψj(y0) 6= 0}. It follows from (ii) that

y0 ∈ F̃ (ϕN (z0)) ⊂ F̃ (ϕN (∆J(y0))) ⊂ F (ϕN (∆J(y0))) ⊂
⋃

j ∈J(y0)

(Y \G(xj)).

Therefore, there exists a j0 ∈ J(y0) such that y0 6∈ G(xj0 ). On the other hand, by the definition

of J(y0), we have ψj0(y0) 6= 0 and it follows from (3.3) that y0 ∈ G(xj0 ) ,which is a contradiction.

This completes the proof. 2

Remark 3.1 Theorem 3.1 does not require the space X to possess any convexity structure.

Theorem 3.1 generalizes Theorem 3.1 of Ding [5] from L-convex space to FC-space.

Here, we give a concrete example of Theorem 3.1.

Let X = (0, 1)
⋃

(2, 3) and Y = [0, 4) with the usual topology. For each N = {x0, x1, ..., xn} ∈

〈X〉, define a mapping ϕN : ∆n → X by ϕN (α) = 1
3

∑n

i=0 αixi, ∀α = {α0, ..., αn} ∈ ∆n. Then

ϕN is continuous. Hence (X, {ϕN}) is an FC-space. Define G : X → 2Y by G(x) = (x+1, 4), x ∈

X and F : X → 2Y by F (x) = [0, x], x ∈ X . It is easy to see that F and G satisfy all the

conditions of Theorem 3.1, hence we have the results of Theorem 3.1. However X only has

topological structure and not any abstract convexity structure.

Corollary 3.1 Let Y be a topological space, (X, {ϕN}) be an FC-space, F ∈ Uk
c (X,Y ) and

T : X → 2Y such that for each x ∈ X , T (x) is compactly closed in Y and for each N =

{x0, x1, ..., xn} ∈ 〈X〉 and for each {ei0 , . . . , eik
} ⊂ {e0, . . . , en}, F (ϕN (∆k)) ⊂

⋃k
j=0 T (xij

)

where ∆k = co({eij
: j = 0, . . . , k}). Then

F (φN (∆n))
⋂

(
⋂

x∈N

T (x)) 6= ∅, ∀N ∈ 〈X〉.

Proof Let G(x) = Y \ T (x) for each x ∈ X . The conclusion of Corollary 3.1 follows from

Theorem 3.1.

Remark 3.2 Corollary 3.1 generalizes the Corollary of Park and Kim[2] from G-convex space

to FC-space, and the Corollary 3.1 of Ding[5] from L-convex space to FC-space.

If X = Y and F is the identity mapping on X , then the Corollary 3.1 reduces to the following

Corollary 3.2.

Corollary 3.2 Let (X, {ϕN}) be an FC-space and T : X → 2X be a set-valued mapping such

that for each for each x ∈ X , T (x) is compactly closed in X and for each N = {x0, . . . , xn} ∈ 〈X〉

and for each nonempty {ei0 , . . . , eik
} ⊂ {e0, . . . , en}, ϕN (∆k) ⊂

⋃k
j=0 T (xij

).

Then ϕN (∆n)
⋂

(
⋂

x∈N T (x)) 6= ∅, ∀N ∈ 〈X〉.

Remark 3.3 Corollary 3.2 is different from Theorem 3.1 of Deng and Xia[7].

Theorem 3.2 Let Y be a topological space and (X, {φN}) be an FC-space, F ∈ Uk
c (X,Y ) and
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T : X → 2Y such that

(i) For each x ∈ X , T (x) is compactly closed in Y ;

(ii) For each N = {x0, . . . , xn} ∈ 〈X〉 and each nonempty {ei0 , . . . , eik
} ⊂ {e0, . . . , en},

F (ϕN (∆k)) ⊂
⋃k

j=0 T (xij
);

(iii) There exists a nonempty compact subset K of Y such that either

(a) For some M ∈ 〈X〉, clF (X) \K ⊂
⋃

x∈M (Y \ T (x)); or

(b) For each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing N such

that F (LN ) \K ⊂
⋃

x∈LN
(Y \ T (x)).

Then clF (X)
⋂
K

⋂
(
⋂

x∈X T (x)) 6= ∅.

Proof Define a mapping G : X → 2Y by G(x) = Y \ T (x). By (i), G(x) is compactly open in

Y for each x ∈ X . Suppose the conclusion is false. Then we have

clF (X)
⋂
K ⊂

⋃

x∈X

((Y \ T (x))
⋂
K) =

⋃

x∈X

(G(x)
⋂
K). (3.4)

Since clF (X)
⋂
K is compact in K, by (3.4), there exists an N = {x0, . . . , xn} ∈ 〈X〉 such

that

clF (X)
⋂
K ⊂

⋃

x∈N

G(x). (3.5)

Case (iii)(a). By the condition (iii)(a) and (3.5), there exists a finite set N1 = N
⋃
M =

{x0, . . . , xn, xn+1, . . . , xn+m} ∈ 〈X〉, such that

clF (X) ⊂
n+m⋃

i=0

G(xi). (3.6)

By the conditions (i), (ii) and Theorem 3.1, we have

F (ϕN1
(∆n+m))

⋂
(

⋂

x∈N1

(Y \G(x))) 6= ∅,

that is F (ϕN1
(∆n+m)) 6⊂

⋃n+m

i=0 G(xi) which is a contradiction with (3.6).

Case (iii)(b). Let LN be the compact FC-subspace of X in the condition (iii)(b). Since

F ∈ Uk
c (X,Y ), there exists an F̃ ∈ Uc(LN , Y ) such that F̃ (x) ⊂ F (x) for all x ∈ LN . By (ii),

we have that for each A = {x0, . . . , xn} ∈ 〈LN〉 and for each {ei0 , . . . , eik
} ⊂ {e0, . . . , en},

F̃ (ϕA(∆k)) ⊂ F (ϕA(∆k)) ⊂
k⋃

j=0

(Y \G(xij
)),

where ∆k = co({eij
: j = 0, . . . , k}). By Uc ⊂ Uk

c , we have F̃ ∈ Uk
c (LN , Y ), By Theorem 3.1,

there exists a y ∈ F̃ (ϕA(∆n)) such that G−1(y)
⋂
A = ∅, It follows that y 6∈ G(x) for all x ∈ A.

Hence we have

y ∈ F̃ (ϕA(∆n))
⋂

(
⋂

x∈A

(Y \G(x))) =
⋂

x∈A

(F̃ (ϕA(∆n))
⋂
T (x)).

Since LN is FC-subspace of X , we have ϕA(∆n) ⊂ LN and y ∈
⋂

x∈A(F̃ (LN )
⋂
T (x)). Since

F̃ is u.s.c. with compact valued and LN is compact, F̃ (LN ) is compact in Y. By (i), T (x)
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is compactly closed. Hence the family {F̃ (LN)
⋂
T (x) : x ∈ LN} has the finite intersection

property. It follows that

F̃ (LN )
⋂

(
⋂

x∈LN

T (x)) 6= ∅.

Take any z ∈ F̃ (LN )
⋂

(
⋂

x∈LN
T (x)) = F̃ (LN) \

⋃
x∈LN

(Y \ T (x)), i.e.,

z ∈ F̃ (LN ) and z 6∈
⋃

x∈LN

(Y \ T (x)) =
⋃

x∈LN

G(x). (3.7)

By (iii)(b), we have z ∈ K, it follows from (3.5) that

z ∈ clF (X)
⋂
K ⊂

⋃

x∈N

G(x).

Hence there exists an x∗ ∈ N ⊂ LN such that z ∈ G(x∗) which contradicts (3.7). This completes

the proof. 2

Remark 3.4 Theorem 3.2 generalizes the Theorem 3.2 of Ding[13] and the Theorem 3.2 of Ding[5]

from G-convex spaces to FC-spaces and from L-convex spaces to FC-spaces respectively, and

the conditions are better than that in Theorem 3.2 of Ding[5].

Theorem 3.3 Let Y be a topological space and (X, {φN}) be an FC-space. Let F ∈ Uk
c (X,Y )

and T : X → 2Y be such that

(i) T is transfer compactly closed-valued on X ;

(ii) For each N = {x0, . . . , xn} ∈ 〈X〉 and any nonempty {ei0 , . . . , eik
} ⊂ {e0, . . . , en},

F (ϕN (∆k)) ⊂
⋃k

j=0 cclT (xij
);

(iii) There exists a nonempty compact subset K of Y such that either

(a) For some M ∈ 〈X〉, clF (X) \K ⊂
⋃

x∈M (Y \ cclT (x)); or

(b) For each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing N such

that F (LN )
⋂

(
⋂

x∈LN
cclT (x)) ⊂ K.

Then we have

clF (X)
⋂
K

⋂
(

⋂

x∈X

T (x)) 6= ∅.

Proof It is easy to show that cclT : X → 2Y satisfies all the conditions of Theorem 3.2. Hence

we have

clF (X)
⋂
K

⋂
(

⋂

x∈X

cclT (x)) 6= ∅.

Since T is transfer compactly closed-valued and clF (X)
⋂
K is compact. we must have

clF (X)
⋂
K

⋂
(

⋂

x∈X

T (x)) = clF (X)
⋂
K

⋂
(

⋂

x∈X

cclT (x)) 6= ∅.

This completes the proof. 2

Remark 3.5 Theorem 3.3 generalizes Theorem 3.3 of Ding[5], Theorems 3.2 and 3.3 of Ding[8]

and Theorems 3 and 4 of Park and Kim[2] from L-convex space and G-convex spaces to FC-space.

By applying Theorem 3.3 we can obtain the following coincidence theorem.
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Theorem 3.4 Let (X, {ϕN}) be an FC-space and K be a nonempty compact subset of a

topological space Y . Let F ∈ Uk
c (X,Y ) and G,P : Y → 2X be such that

(i) G satisfies one of the conditions (I)–(V) in Lemma 2.1;

(ii) For each y ∈ F (X), N = {x0, . . . , xn} ∈ 〈X〉 and

{xij
: j = 0, . . . , k} ⊂ {x0, . . . , xn}

⋂
(cintG−1)−1(y)

imply ϕN (∆k) ⊂ P (y), where ∆k = co({eij
: j = 0, . . . , k});

(iii) clF (X)
⋂
K ⊂

⋃
x∈X G−1(x);

(iv) One of the following conditions holds:

(a) For some M ∈ 〈X〉, clF (X) \K ⊂
⋃

x∈M cintG−1(x);

(b) For each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing N such

that F (LN ) \K ⊂
⋃

x∈LN
cint(G−1(x)).

Then there exists (x0, y0) ∈ X × Y such that x0 ∈ P (y0) and y0 ∈ F (x0), i.e., (x0, y0)is a

coincidence point of P and F .

Proof Define a mapping T : X → 2Y by

T (x) = Y \G−1(x) = {y ∈ Y : x 6∈ G(y)}, ∀x ∈ X.

Then, by (i) and Lemma 2.1, T is transfer compactly closed-valued on X .

Case (iv)(a). By (iv)(a) and Y \ cclT (x) = cintG−1(x) for each x ∈ X , it is easy to see that

the condition (iii)(a) of Theorem 3.3 holds.

Case(iv)(b). By (iv)(b), for each N ∈ 〈X〉, there exists a compact FC-subspace LN of X

containing N such that

F (LN ) \K ⊂
⋃

x∈LN

cint(G−1(x)) =
⋃

x∈LN

(Y \ cclT (x)),

that is, F (LN )
⋂

(
⋂

x∈LN
cclT (x)) ⊂ K. Hence the condition (iii)(b) of Theorem 3.3 holds. By

the condition (iii), we have clF (X)
⋂
K ⊂

⋃
x∈X G−1(x), that is

clF (X)
⋂
K

⋂
(

⋂

x∈X

(Y \G−1(x))) = ∅,

i.e.,

clF (X)
⋂
K

⋂
(

⋂

x∈X

T (x)) = ∅.

Hence the conclusion of Theorem 3.3 does not hold. By Theorem 3.3, there exists an N =

{x0, . . . , xn} ∈ 〈X〉, and a nonempty set {ei0 , . . . , eik
} ⊂ {e0, . . . , en} such that

F (ϕN (∆k)) 6⊂
k⋃

j=0

ccl(T (xij
)) =

k⋃

j=0

(Y \ cint(G−1(xij
))),

where ∆k = co({eij
: j = 0, . . . , k}. So there exist y0 ∈ F (ϕN (∆k)) and x0 ∈ ϕN (∆k) such that

y0 ∈ F (x0) and y0 6∈
k⋃

j=0

(Y \ cintG−1(xij
)).
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It follows that y0 ∈ cintG−1(xij
), ∀ j = 0, . . . , k. Hence we have

{xij
: j = 0, . . . , k} ∈ 〈(cintG−1)−1(y0)〉.

By the condition (ii), we obtain ϕN (∆k) ⊂ P (y0). Therefore, x0 ∈ P (y0) and y0 ∈ F (x0), i.e.,

(x0, y0) is a coincidence point of F and P . This completes the proof. 2

Remark 3.6 Theorem 3.4 generalizes Theorem 3.4 of Ding[5] from L-convex space to FC-space

and the conditions are better. Theorem 3.4 also generalizes Theorems 4.2 and 4.3 of Ding [8] and

Theorem 1 of Park and Kim[2] in several aspects.

Theorem 3.5 Let (X, {ϕN}) be an FC-space and K be a nonempty compact subset of X . Let

G,P : X → 2X be such that

(i) G satisfies one of the conditions (I)–(V) in Lemma 2.1;

(ii) For each x ∈ X , N = {x0, . . . , xn} ∈ 〈X〉 and

{xij
: j = 0, . . . , k} ⊂ {x0, . . . , xn}

⋂
(cintG−1)−1(x)

imply ϕN (∆k) ⊂ P (x);

(iii) For each x ∈ K, G(x) 6= ∅;

(iv) For each N ∈ 〈X〉, there exists a compact FC-subspace LN of X containing N such

that LN \K ⊂
⋃

x∈LN
cint(G−1(x)).

Then P has fixed point in X .

Proof Let Y = X and F (x) = {x} be the identity mapping. Then F ∈ Uc(X,X) ⊂ Uk
c (X,X).

It is easy to check that all conditions of Theorem 3.4 are satisfied. The conclusion follows from

Theorem 3.4.

Corollary 3.3 Let (X, {ϕN}) be an FC-space and K be a compact subset of X . And let

G : X → 2X satisfy the conditions (i), (iii) and (iv) of Theorem 3.5 and the condition (ii) be

replaced by the following condition:

(ii)’ For each x ∈ X, G(x) is an FC-subspace of X .

Then G has fixed point in X .

Remark 3.7 Theorem 3.5 and Corollary 3.3 generalize Theorem 3.5 and Corollary 3.1 of Ding[5]

to FC-spaces.
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