计算机模拟双层矩形位相光栅的实时变分束特征

李幼平,陆登波

(武汉工业学院 计算机与信息工程系,武汉 430023)

摘 要: 双层矩形光栅随入射角的不同可得到不同数目的光束。基于这一现象,通过改变双层光 栅的入射角,并对其进行优化就可得到效率高且光强分布均匀的光束。对利用双层矩形相位光栅 实时变分束特征制作新型分束器的方法进行了理论探讨,并对2束、3束、4束光分束分别进行了 分析。通过计算机模拟,从理论上求出了优化参数,并对结果进行了讨论。理论分析表明,通过对 入射角进行优化可以得到衍射效率高且光强分布均匀的分束器。该研究为制作方便实用、造价低 廉的分束器提供了理论基础。

关键词: 双层矩形相位光栅;实时;变分束;计算机模拟 中图分类号:TP311 文献标志码:A

Computer Simulation of real-time variational beam Feature of double-deck rectangle phase grating

LI You-ping, LU Deng-bo

(Department of Computer, Wuhan Polytechnic University, Wuhan 430023, China)

Abstract: The light which goes through a double-deck rectangle phase grating with different incidence angles can produce different numbers of beams. Based on the phenomenon, the beam which has high efficiency and uniform distributed light intensity can be obtained by changing and optimizing the grating's incidence angle. The method of making a new type of splitter by the real-time variational beam feature of the double-deck rectangle phase grating was investigated theoretically. Two, three or four beams produced by the method were analyzed respectively. Through the simulation with a computer, the optimizing parameters of incidence angle were theoretically derived and the result was discussed. Theoretical analysis shows that the splitter with high diffraction efficiency and uniform distributed light intensity can be designed by incidence angle optimization. The study provides a theoretical basis for making practical and cheap splitting device.

Key words: double-deck rectangle phase grating; real time; variation beam; computer simulation

引言

分束器是一种很重要的光学元件,它在机器视 觉取样、集成光学以及光纤通讯中有着重要作用。 目前制造分束器的主要方法有复合全息法、 Damman 光栅法等,但这些方法获得的分束器有一 个共同点,即每一个分束器只能分出一定的光束 数,也就是说,每一给定的光束数都对应一独立的 系统。这样就导致了造价高,而且也不方便。

作者简介:李幼平(1973-),男,湖北武汉人,武汉工业学院讲师,主要从事信息光学的研究。E-mail;jiss118@126.com

收稿日期:2004-12-28; 修回日期:2005-11-16

本文所讨论的是一种制造分束器的新方法。它 能按照自己的需要(即所要求的光束数),只需要改 变一参数(实时)而整个系统不用改变,就可得到自 己所需要的结果。由于双层矩形光栅随入射角的不 同可得到不同数目的光束,本文正是基于这一现 象,通过改变双层光栅的入射角,并对其进行优化 而得到高效率且光强均匀的光束。通过计算机模拟 进行理论推导,并对结果进行了讨论。本文所述分 束器的优点是,能够方便自如地得到自己所需要的 光束,而且仅需一个系统,有一定的通用性。

1 光束分布的理论推导

在这里,考虑的是2个相同的周期性矩形位相 光栅,中间夹一层介质,设介质的折射率为*n*,厚度 为*l*,光栅的周期为*d*,如图1所示。

图1 光线经过双层矩形位相光栅示意图

Fig. 1 Schematic diagram of beam passing through the doubledecked rectangular phase diffraction grating

设光束的入射角为*i*,其衍射角为*θ*,则光束经 过第1层光栅后的光强为

$$I' = I_0 \frac{\sin^2\beta}{\beta^2} \frac{\sin^2N\gamma}{\sin^2\gamma}$$

式中, I_0 代表入射光的光强; $\beta = \frac{1}{2} \frac{2\pi}{\lambda} b \sin \theta$;N= 总缝数; $\gamma = \frac{\pi}{\lambda} d \sin \theta$;d为光栅常数;b为缝 宽,这里 $b = \frac{d}{2}$; λ 为入射光的波长。 对初始光强归一化,则

$$I' = \frac{\sin^2 \beta}{\beta^2} \frac{\sin^2 N\lambda}{\sin^2 \gamma} \tag{1}$$

由光栅方程 $d(\sin\theta + n\sin i) = k\lambda(k$ 为主极大级, $k = 0, \pm 1, \pm 2$ ······)导出

$$\sin\theta = \left(\frac{k\lambda}{d} - n\sin i\right) \tag{2}$$

式中, n 为介质折射率。代入(1)式有

式中, $k=0,\pm 1,\pm 2,\dots$ 。同理,可求出光线经过第2 层光栅后的光强 I'',这时光线的入射角变为 θ ;设衍 射角为 α ,则光栅方程为

$$d(\sin\theta + n\sin\alpha) = k'\lambda \qquad k' = 0, \pm 1, \pm 2, \cdots$$
$$I'' = \frac{I'\sin^2\left[\frac{\pi b}{\lambda}(\frac{k'\lambda}{dn} - \frac{\sin\theta}{n})\right]\sin^2\left[\frac{N\pi d}{\lambda}(\frac{k'\lambda}{dn} - \frac{\sin\theta}{n})\right]}{\left[\frac{\pi b}{\lambda}(\frac{k'\lambda}{d} - \frac{\sin\theta}{n})\right]\sin^2\left[\frac{\pi d}{\lambda}(\frac{k'\lambda}{d} - \frac{\sin\theta}{n})\right]}$$

考虑到光栅引起相位的变化,光线经过第1层 光栅后的振幅变为

$$A' = \frac{\sin\left[\frac{\pi b}{\lambda} (\frac{k\lambda}{d} - n\sin i)\right]}{\frac{\pi b}{\lambda} (\frac{k\lambda}{d} - n\sin i)} \times \frac{\sin\left[\frac{N\pi d}{\lambda} (\frac{k\lambda}{d} - n\sin i)\right]}{\sin\left[\frac{\pi}{\lambda} d(\frac{k\lambda}{d} - n\sin i)\right]} \times \exp\left[-i(N-1)\frac{\delta}{2}\right]$$

设A_k为经过第2层光栅后的各级振幅

$$A_{k} = \frac{A' \sin\left[\frac{\pi b}{\lambda} \left(\frac{k'-k}{dn}\lambda - \sin i\right)\right]}{\frac{\pi b}{\lambda} \left[\frac{(k'-k)\lambda}{nd} - \sin i\right]} \times \frac{\sin\left[\frac{N\pi d}{\lambda} \left(\frac{k'-k}{dn}\lambda - \sin i\right)\right]}{\sin\left[\frac{\pi d}{\lambda} \left(\frac{k'-k}{dn}\lambda - \sin i\right)\right]} \times \exp\left[i(N-1)\frac{\delta}{2}\right]}$$

式中, *k* 为光线经过第1 层光栅后的衍射级, *k'* 为 光线经过第2 层光栅后的衍射级。

经过第1层光栅后,衍射光将要在宽度为*l*的 介质中传输,在介质中第*m*级衍射光的传输因子 *H_m*定义为

$$H_{m} = \exp\left\{i\frac{2\pi}{\lambda}nl\left[1 - (\frac{M\lambda}{nd} - \sin i)^{2}\right]^{\frac{1}{2}}\right\}$$

式中,λ是入射光波长;n是介质折射率;d为光 栅周期,则最终的衍射光分布可通过对整个2层矩 形SVHG 的传输做傅里叶变换而得到,即

 $\{A_n\} = f[t(x) \otimes pt(x)]$

式中,t(x)为光栅透过率函数; \otimes 代表卷积运算, 由卷积定理可得: $\{A_n\} = \{A_m p_m\} \otimes \{A_j\}$,此式可简 化^[5]。

以下仅对感兴趣的级次进行变化。 2 束的情况(±1 级): $A_{+1}=A_{+1}H_{+1}A_{+1,0}+A_0H_0A_{0,+1}$ $A_{=1}=A_0H_0A_{0,-1}+A_{-1}H_{-1}A_{-1,0}$ 3 束情况(0,±1 级): $A_0=A_{+1}H_{+1}A_{+1,-1}+A_0H_0A_{0,0}+$ $A_{-1}H_{-1}A_{-1,+1}$ $A_{-1}=A_0H_0A_{0,-1}+A_{-1}H_{-1}A_{-1,0}$ $A_{+1}=A_{+1}H_{+1}A_{+1,0}+A_0H_0A_{0,+1}$ 4 束情况(±1,±2): $A_{-1}=A_{+1}H_{+1}A_{+1,-2}+A_{-2}H_{-2}A_{-2,+1}$ $A_{+1}=A_{+2}H_{+2}A_{+2,-1}+A_{-1}H_{-1}A_{-1,+2}$ $A_{-2}=A_{-1}H_{-1}A_{-1,-1}$ $A_{+2}=A_{+1}H_{+1}A_{+1,-2}$

2 定义评估函数并进行优化

为了制造尽可能好的分束器,必须定义这个光 学元件的物理特性。一个好的分束器应给出最大的 可利用能量,在 p 个有用的衍射级中,每一级归一 化的传输效率为

 $\eta_n = |A_n|^2$

式中, A_n 为第n级衍射光的振幅,定义无反射这 个有用级次的总能量 E_T 为

 $E_{\scriptscriptstyle T} = \sum_{\scriptscriptstyle m} \eta_{\scriptscriptstyle m}$

一个好的分束器也必须同时将总的有用能量 在 *p* 个级次中尽可能地平均分配,故用 *p* 个级次的 标准偏差来表示这一性能:

 $\sigma^2 = \sum_m (\eta_m - \frac{1}{p} \sum_k \eta_k)^2$

至此可以定义一个优化过程中的评估函数,它 被定义为标准偏差与总能量比值的平方,即

$$f(\theta) = \left[\frac{\sum_{m} (|A_{n}|^{2} - \frac{1}{p} \sum_{k} |A_{k}|^{2})^{2}}{\sum_{m} |A_{k}|^{2}}\right]$$

由于 $f(\theta)$ 其实是 $\sin\theta$ 的函数,设 $\sin\theta = x$,则f可简化为x的函数。通过对x参数进行优化,即求 出f(x)的最小值所对应的x值,就可得到高性能分 束器所需参数x。 求 f(x)的最小值的优化过程,可采用黄金分割法。

• 91 •

3 理论计算结果及分析

理论计算结果及对应的优化参数见表1。其中 已知的参数为: $\lambda = 0.618 \ \mu m$, $l = 150 \ \mu m$, n = 1.5, $N = 10\ 000$ 。

表1 矩形SVHG 的理论衍射效率

Fable 1	Rectangular	SVHG	theory	diffraction	efficiency
----------------	-------------	------	--------	-------------	------------

角度/(°)	分束数	衍射级/%			总效率/%
		0	± 1	± 2	
13	2		45.2		90.4
49	3	20.3	35.4		91.1
33.38	4		19.6	21.6	82.4

在以上数据中,由于仅仅只对一个参数进行了 优化,所以效率不是很高。另外用黄金分割法,只能 求仅有一个峰值的函数的最小值,但从实际计算中 得到的函数是一个多峰的,我们把这个函数进行分 割得到了现在的结果。因而,此结果也不是特别的 精确。如果能把其他参数再优化一些,也许会得到 更满意的结果。

4 结束语

本文从理论上证明了通过对入射角进行优化 可得到高衍射效率且光强分布均匀的分束器,从计 算结果可以看出,有些效率还不是很高,且光强均 匀性也不太好,这主要是因为还没有对其它参数进 行优化,但作为方便使用、造价低廉的分束器,其它 分束器则难以比拟,因此具有现实可行性。

参考文献:

- [1] WANG Kuo-ping. Holography with surface plasmon coupled waveguide modes[J]. Appl Optics, 1995, 34 (29):6666-6671.
- [2] ANDRE G, SONG L, ROGER A L. Multiple beam generation using a stratified volume holog-raphic grating[J]. Appl Optics, 1995, 27(6):5582-5587.
- [3] MASANORI L, HIROYUKI A, KAZOU E. Holographic Fourier diffraction gratings with a high diffraction[J]. Appl Optics, 1992, 14(5): 4051-4057.
- [4] 姚启钧. 光学教程[M]. 北京:高等教育出版社,2002: 126-131.
- [5] 蔡春平.光纤折射率的依赖关系[J].应用光学,2000, 21(5):13-18.