第3卷第6期 2007年11月 Vol.3, No.6 November, 2007

文章编号: 1673-1719 (2007) 06-0362-06

摘要:对广西近百年平均气温及降水量变化进行了多时间尺度的层次结构研究,并与Nino3区的海温距平进行奇异交叉 谱分析。结果表明:平均气温有较强上升趋势并伴有明显的准两年周期振荡;降水则呈下降趋势,主要周期为32a左右 及准两年振荡。1884至1910年代初,广西处于干冷期;1910年代初至1930年前后,处于湿冷期;1930年前后至1950年 代后期,处于湿暖期;1950年代后期至1990年代前期,处于干暖期。ENSO事件3~7a的周期对广西平均气温及降水影 响显著,赤道太平洋海温变化对广西气温的影响主要表现在年代际变化上,对降水的影响主要体现在年际变化上。 关键词:广西;近百年气候变化;小波分析;奇异交叉谱分析 中图分类号:P423/P426 文献标识码:A

引言

目前,全球增温所引发的各种天气气候灾害事件,给世界各国经济发展造成了巨大影响,已引起各国政府、科学家和民众对气候变化的高度重视。 IPCC第四次评估报告对全球气候变化及其可能影响提出了最权威、最全面的认识,并综合评估了2001年以来有关减缓气候变化的最新研究成果^[1-3]。研究表明^[4-5],全球及南北半球平均地面气温序列基本上呈现出几个关键年份及其相应的阶段,大致可认为近百年来全球有3次突然变暖,分别为19世纪末、20世纪20—30年代及70年代末期。丁裕国等^[6]对全球气温的变率特征进行了深入研究,王绍武等^[7]对近年来气候研究进展作了很好的总结,更有 大量的工作揭示了ENSO及QBO等强信号因子对全 球及我国气候的影响^[8-10]。广西气候在全球变暖大 背景下叠加有区域性的气候变化特征,对其变化规 律的探讨有助于对未来趋势的预测,具有重要的研 究价值。涂方旭等^[11]曾对广西近百年来的气温、降 水资料进行订正插补,并对其变化进行了初步研究, 本文在此工作的基础上,运用小波分析及奇异交叉 谱分析对其不同时间尺度上的变化作进一步的探讨, 为短期气候预测提供一定的理论参考。

1 资料及方法

所用资料为广西1884—2002年3个站(南宁、 沙塘、桂林)平均的年平均气温资料、1898—2002

收稿日期: 2007-01-30; 修订日期: 2007-04-24

基金项目:广西科技攻关项目(桂科攻 0592005-2B);广西气象局重点研究项目(桂气科 200401)资助

作者简介:黄雪松(1966-),女,高级工程师,主要从事气候分析与研究工作. E-mail: xshuang9912@163.com

6期

年8个站(梧州、桂林、沙塘、百色、南宁、北海、 龙州、荔浦)平均年降水资料及对应时段的Nino3区 海表温度距平资料。广西气温、降水资料的插补延 长处理过程见文献 [11]。

首先利用小波分析讨论广西气温和降水多时间 尺度的结构特征,然后分别与 Nino3 区海温资料进 行奇异交叉谱分析 (SCSA),试图了解 ENSO 事件 对广西气候变化的影响。本文采用墨西哥小波变换 研究广西近百年平均气温及降水的变化特征。奇异 交叉谱分析的基本原理和方法可参见文献 [12]。

2 近百年广西平均气温变化多时间尺度特征

图1给出了1884—2002年广西年平均气温序列, 由图可见,广西近百年气温呈明显上升趋势,从19 世纪80年代到20世纪20年代,平均气温处于20℃ 以下,而从20世纪20年代至今平均气温在20℃以 上,特别是在40年代气温升至最高值,1946年达到 21.5℃。对整个序列作线性倾向分析,序列以0.05℃/ 10a的趋势上升,与自然时间序列相关系数为0.43, 达到了0.001的显著性水平。其中,1884—1946年 的上升趋势最为显著,以0.15℃/10a的趋势上升,与 自然时间序列相关系数达0.63。

Fig. 1 Temporal variation of the annual mean surface air temperature in Guangxi from 1884 to 2002 (The thick line is the 9-year running mean)

2.1 周期特征

广西近百年气温变化主要以长周期的趋势变化 为主,这从平均气温的小波方差图中亦可看出(图 略),小波方差最大峰值出现在 128 a处,表明气温 存在高于 100 a的长周期。此外在 2~3 a处还有一短 周期峰值,表明序列还存在明显的准两年周期振荡。 图 2给出了广西近百年平均气温的小波变化,从图 中可看到,放大因子 a = 10~14 对应 3 个尺度较大的 负 - 正 - 负中心,且 20世纪40年代中期正距平达到 最大值,为近百年最暖时期;负距平中心峰值在 1900年前后,为近百年最暖时期;而60年代以后的 中心值并不十分明显,这说明序列 80~120 a 左右 的周期最为显著。准两年振荡的变化在不同阶段的 表现亦有所不同,在1900年前后、1940年前后、60 年代和1990年以来表现均较明显,而其他阶段则不 甚显著。

2.2 突变特征

小波变换通过零点的时间可用于突变分析,图 3 给出了广西近百年平均气温分别对应不同时间尺 度的小波变换(这里考虑到序列的长周期、年代际变 化、10 a 左右振荡及准两年周期,我们分别选取以 *a*=1,6,10,14尺度因子作为例子,对应的周期分 别为:2 a,11.3 a,45.2 a,181 a)。对于*a*=13~ 14 对应100 a 以上的长周期尺度而言,突变发生在 1930 年前后,气温从偏冷向偏暖转变,在60、70 年 代到达最高点后开始下降。对于*a*=9~12 对应的 30 a 以上年代际尺度周期,有3个突变点,分别出现 20 世纪30 年代初、50 年代末和80 年代中期,在这 个尺度上将序列分为4个阶段:1884年至1930年代 (偏冷期),1930年代至20世纪50年代末(偏暖期),

气候变化研究进展

2007年

20世纪50年代末至20世纪80年代中期(偏冷期), 20世纪80年代中期至2002年(偏暖期)。从a=6对 应的10a左右周期来看,整个序列的变化虽不是很 显著,但近年来振幅有增大的趋势。对于更短的准 两年周期振荡,近年来变化显著,这种叠加在长周 期上的剧烈短周期振荡,也是不容忽视的。

图 3 1884—2002 年广西年平均气温序列小波变换不同 尺度分解

Fig. 3 Wavelet decomposition on various scales of the annual surface air temperature in Guangxi from 1884 to 2002

3 近百年广西降水变化的多时间尺度特征

对广西近百年降水所作的9 a滑动分析表明(图 4):广西近百年的年平均降水量呈下降趋势,降水 偏多期主要出现在20世纪10—20年代及40—50年 代前期两个时段;60—80年代为降水偏少期,90年 代又向偏多转变。从广西近百年降水的小波方差可 看出(图略),降水并不像气温一样以明显的自然长 周期趋势变化为主,而是以明显的周期振荡为特 点,各种周期的作用都较明显。小波方差最大峰值 出现在 32 a处,次峰值出现 2 a处,另一峰值出现 在 100 a 左右。这表明广西年平均降水存在 30 a 左

右、准两年的短周期振荡及100 a左右的长周期变化 趋势。

从降水小波变化来看(图略),100a左右周期 将广西近百年分成了多雨期和少雨期两个阶段;对 最显著的30a左右周期而言,在20世纪20-80年 代期间表现最为明显,准两年振荡则在1920年前后、 1960年前后及20世纪90年代以后表现最为显著。从 不同时间尺度的小波分解来分析突变得知(图略): a=12即周期为100 a左右的突变点出现在20世纪10 年代初及50年代后期,将降水序列分为3段:偏少 期、偏多期、偏少期。而作为序列最明显周期的30a 左右振荡,突变发生在:1913、1925、1940、1955、 1969、1982、1995年,将序列分为偏少、偏多相间 的8个阶段,这个周期尺度在20世纪40-60年代 振幅最大,表现最为明显。目前仍处于降水偏多期, 但正距平有下降趋势。序列还存在8~10 a左右的振 荡,这个尺度反映了年代际变化,在20世纪10年代、 40-60年代、90年代以来表现较显著。而准两年振 荡则在20世纪初和20世纪末表现显著,目前仍处于 振荡剧烈时段。

综合以上对气温和降水的分析可知,广西在 1884—1910年代初处于干冷时期,1910年代初至 1930年前后处于湿冷期,1930年前后至1950年代后 期处于湿暖期,1950年代后期至1990年代前期处于 干暖期。从序列自身不同的周期特征及变化规律分 析,现在及未来一段时期,将以湿暖为主要特征,并 在此背景下有较明显的短周期振荡。 研究表明,赤道太平洋与大气的动量、能量及 热量等的交换对西太平洋副高、东亚季风的年际变 异及亚太地区气候的影响非常显著。广西地处华南, 为明显的季风气候区,本文选取有较长资料的Nino3 区海温来研究广西气候对赤道东太平洋海温异常的 响应。

4.1 相关分析

对广西近百年平均气温序列与Nino3 区海温进 行相关分析,相关系数为0.152,对降水与Nino3区 海温进行相关分析,相关系数为0.164,二者均为正 相关,但均未达到0.05的显著性水平检验。为了观 察其相关系数随时间的变化情况,我们取 30 a进行 滑动相关计算。图5给出了平均气温及降水与Nino3 区海温随时间的相关变化,从中可看出,平均气温 在1930年以前与海温呈明显正相关,即海温与气温 都偏低,最大相关系数达0.4左右;在1930-1960 年前后,相关系数明显减小,二者之间没有明显的 关系; 而近40a来, 正相关明显增大。研究表明^[13], 1976年前后赤道太平洋海温有一型态的跃变,由冷 态向暖态转变, El Niño 事件明显增多, 而气温亦处 于近百年来的又一个暖期,这也许是对海温异常的 响应。对降水而言,与Nino3 区海温相关最高时段 在1940年代以前,为明显正相关,最高相关系数亦 可达0.4以上;而此后,相关系数明显下降,到1960 年代变为负相关,并持续到1980年代,但相关系数

Fig. 5 The 30-year running correlation coefficients between the annual mean temperature, precipitation over Guangxi and the sea surface temperature in the Nino3 region

较小;近30 a来又以较明显的趋势向正相关转变,表 明近年来广西降水的上升趋势可能是对海温升高的 响应。由此可见,1950年代后期至1990年代前期, 广西处于干暖期,而后则向湿期转变,与海温的变 化也有较一致的对应。

4.2 奇异交叉谱分析

为了进一步研究广西近百年平均气温及降水与 赤道东太平洋 Nino3 区海温在不同时间尺度上的耦 合变化特征,我们将两序列分别作标准化处理,并 取不同参数 n 值进行 SCSA 试验,结果表明,识别出 的周期基本稳定。

表1给出了广西平均气温、降水与Nino3区海温的奇异交叉谱分析结果,从中看出,前5对特征向量基本表征了二者相互作用的主要周期模态。其中,平均气温与Nino3区海温的主要耦合周期模态为70~90a的长周期变化趋势、6~7a的年际变化及2~3a的准两年振荡,而降水与Nino3区海温的主要耦合

表1 广西平均气温、降水与 Nino3 区海温的 SCSA 结果

SCSA results b	between the annual me	ean temperatur	re, precipitatio	n over Guangx	i and the SST	in the Nino3
要 素	特征向量	1	2	3	4	5
平均气温 (n=40)	耦合相关系数	-0.859	-0.680	0.779	0.746	-0.745
	周期 /a	88	68	6~7	6~7	3
	方差贡献	11.5%	7.2%	5.4%	5.3%	4.6%
降水 (n=36)	耦合相关系数	-0.859	0.838	-0.800	0.787	-0.833
	周期 /a	5~6	4~5	4~5	4~5	64
	方差贡献	7.5%	7.4%	6.9%	6.8%	5.7%

365

气候变化研究进展

2007年

周期为60 a 左右的长周期及4~6 a 的年际变化。大量的研究表明, ENSO事件有3~7 a 的振荡周期, 这说明, ENSO事件对广西平均气温、降水在这个周期分量的影响是显著的。

从对应的特征向量来看(图略),平均气温及降 水的长周期变化主要与海温的型态变化有关,这也 与大气的基本型态变化相联系,而短周期的变化主 要与海温的振荡有关,这种耦合特征随时间的变化 是不同的。从平均气温重建的周期分量来看,88a左 右周期在前80a有较大的振幅,而在近40a振幅明 显减小;而64a年左右周期分量在近年却有增强的 表现;6~7a周期的表现一直较平稳,但在近10a期 间却明显增强;而2~3a的耦合分量却表现出两头 强,中间弱的态势,在19世纪后期及20世纪末振幅 均较大,周期表现明显,而在中间时段表现弱且平 稳。对降水而言, 64 a 左右长周期在近 20~30 a 的 振幅较前90a左右明显增大,而4~6a的耦合振荡 却是在1930年代期间及1990年代以后较强,而在其 他时段则相对较弱,这也部分解释了1990年代以来 降水振荡明显,灾害频发的原因。所以,从对Nino3 区海温与广西气温及降水的奇异交叉谱分析来看, 赤道太平洋海温的变化不仅在长时间的型态变化上, 而且在短时间尺度的年际变化上对广西近百年气候 的影响都较为显著。

5 结论

通过对广西近百年平均气温及降水进行多时间 尺度的诊断及其与Nino3 区海温进行的耦合特征分 析,得到以下结论:

(1) 广西近百年平均气温变化以长周期的上升趋势变化为主,存在100 a以上的长周期及2~3 a的准两年周期振荡。降水量呈下降的趋势,存在32 a 周期,准两年振荡及100 a 左右的长周期。

(2) 广西在 1884—1910 年代初处于干冷时期, 1910年代初至 1930年前后处于湿冷期, 1930年前后 至 1950年代后期处于湿暖期, 1950年代后期至 1990 年代前期处于干暖期。从序列自身不同的周期特征 及变化规律来看,现在及未来一段时期,将以湿暖 为主要特征,并伴有较明显的短周期振荡。

(3) 平均气温与Nino3 区海温的主要耦合周期模态为60~90 a 的长周期变化趋势、6~7 a 的年际变化及2~3 a 的准两年振荡,而降水与Nino3 区海温的主要耦合周期为4~6 a 的年际变化及60 a 左右的长周期变化。ENSO 事件3~7 a 的周期变化对广西平均气温、降水的影响是显著的。

(4) 本文揭示出了ENSO事件对广西气温的影响 在年代际时间尺度上较为明显,而对降水在年际尺 度上的影响更为显著。

参考文献

- [1] 秦大河,陈振林,罗勇,等. 气候变化科学的最新认知[J]. 气候 变化研究进展, 2007,3 (2):63-73
- [2] 林而达,吴绍洪,戴晓苏,等.气候变化影响的最新认知[J].气候变化研究进展,2007,3 (3):125-131
- [3] 潘家华,孙翠华,邹骥,等.减缓气候变化的最新科学认知 [J].
 气候变化研究进展,2007,3 (4): 187-194
- [4] 王绍武.近百年气候变化及变率的诊断研究[J].气象学报,1994, 52 (3): 262-273
- [5] 王绍武, 叶瑾琳. 近百年全球气候变暖的分析 [J]. 大气科学, 1995, 19 (5): 545-553
- [6] 丁裕国,刘晶淼,余锦华.近百年全球平均气温年际变化型态的 低频变率特征[J].热带气象学报,2001,12 (3):193-203
- [7] 王绍武.现代气候学研究进展 [M].北京:气象出版社,2000:105-200
- [8] 侯章栓,李晓东.近百年全球气候变化与外强迫因子信号检测[J]. 北京大学学报(自然科学版),2000,36(5):641-650
- [9] 龚道溢,王绍武.近百年全球温度变化的ENSO分量[J].地球科 学进展,1999,14 (5):518-523
- [10] 龚道溢,王绍武.近百年ENSO对全球陆地及中国降水的影响[J].
 科学通报,1999,44 (3):315-320
- [11] 涂方旭,李耀先.广西近百年降水量序列的气候变化特征[J].广 西气象,2000,21 (2): 29-33
- [12] 丁裕国,江志红,施能,等.奇异交叉谱分析及其在气候诊断中的作用[J].大气科学,1999,23(1):91-100
- [13] 李峰,何金海.太平洋区域海温跃变及其与东亚夏季风的关系[J].
 气象科学,2001,21 (3):28-35

消息

Multi-Time-Scale Variations of Recent Centenary Series of Temperature and Precipitation in Guangxi of China

Huang Xuesong¹, Kuang Xueyuan¹, Qin Zhengrong², Huang Meili¹, Lin Kaiping³

(1 Guangxi Climate Center, Nanning 530022, China; 2 Guangxi Meteorological Society, Nanning 530022, China; 3 Nanning Meteorological Bureau, Nanning 530022, China)

Abstract: Wavelet analysis was used in this paper to study the multi-time-scale structure of the temperature and precipitation series in Guangxi Zhuang Autonomous Region in the recent century, and the coupled characteristics between the sea surface temperature of Nino3 region and the two series mentioned above were diagnosed by using singular cross-spectrum analysis (SCSA). The results indicate that the ascending trend accompanied with the quasibiennial oscillations dominated in the temperature variation while the precipitation showed a descending trend with the 32-year and quasi-biennial oscillations. Guangxi climate was characteristic of dry-cold from 1884 to the early 1910s, wet-cold from the early 1910s to around 1930, wet-warm from around 1930 to the late 1950s, and dry-warm from the late 1950s to the early 1990s. The 3–7-year oscillation component of ENSO exerted marked influence on Guangxi climate. The coupled variations of SST in the Nino3 region and Guangxi climate were reflected on the decadal scale for temperature and interannual scale for precipitation.

Key words: Guangxi; climate change in recent century; wavelet analysis; singular cross-spectrum analysis

第二届亚洲气候与冰冻圈国际学术大会在兰州召开

2007年10月22-26日,第二届亚洲气候与冰冻圈 国际学术大会在兰州召开。会议由世界气候研究计划/ 气候与冰冻圈计划(WCRP/CliC)、中国CliC国家委员 会、日本CliC国家委员会和甘肃省气象局联合主办。来 自中国、日本、俄罗斯、蒙古、乌兹别克斯坦、塔吉克 斯坦、印度、巴基斯坦、尼泊尔、韩国、美国、加拿大、 英国、挪威等国家的148位代表出席了大会。会议旨在 全面、系统地评估全球变暖背景下亚洲冰冻圈的变化及 其对本地区乃至全球生态环境、水资源等方面的影响; 促进我国冰冻圈科学研究水平的提高,扩大我国冰冻圈 科学研究的国际影响力和知名度,加强国际交流与合 作,培养和造就一批青年科研人才;同时,进一步强化 我国在亚洲冰冻圈乃至国际冰冻圈研究的主导作用。

会议主题是"亚洲冰冻圈的现状与未来",与会人 员就涉及亚洲冰冻圈的如下科学问题展开了广泛交流: 冰川分布及其变化;2)冻土/多年冻土的分布及其变化;3)积雪、寒区水文及水资源;4)寒区及高山区的陆面过程及大气过程;5)大尺度冰冻圈-大气圈之间的相互作用;6)冰冻圈的预测与预估;7)冰冻圈数据库;8)未来冰冻圈研究的整合、联合策略。

会上WCRP/CliC计划主席Barry Goodison教授介绍 了气候和冰冻圈计划与WMO全球冰冻圈观测网络。此 外,会议组委会主席秦大河院士介绍了亚洲冰冻圈对全 球变化的作用和贡献。

本次会议的成功召开将推动中国相关科学研究的进 一步发展,增进中外科学家在气候变化与冰冻圈领域的 交流与国际合作,也必将深化科技界对冰冻圈变化机理 及影响的认识水平,提高国际冰冻圈研究中以青藏高原 冰冻圈研究为特色的我国冰冻圈研究的地位和影响力。

中国科学院 寒区旱区环境与工程研究所 谢爱红