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ABSTRACT

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were
generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements
of each transient wave train were made at locations before and after breaking. Applying a nonlinear deterministic
decomposition approach to the measured elevation, the free-wave components of the transient wave train were
derived by excluding the contribution from bound-wave components. The comparison of the amplitude or energy
spectra of free-wave components before and after a breaker can accurately reveal the energy dissipation as a
function of frequency. It is found that the energy loss is almost exclusively from wave components at frequencies
higher than the spectral peak frequency. Although the energy density of the wave components of frequencies
near the peak frequency is the largest, they do not significantly gain or lose energy after the breaking. It is also
observed that wave components of frequencies significantly below or near the peak frequency gain a small
portion (about 12%) of energy lost by the high-frequency waves. These findings are quite different from the
empirical formulas presently used for determining wave dissipation due to wave breaking. Hence, they have
important implications to the ocean wave energy budget, specially to the energy transfer at frequencies below
and near the spectral peak frequency.

1. Introduction

Although wave energy is eventually dissipated in
shallow waters and on beaches, wave breaking plays a
dominant role in dissipating ocean surface wave energy
in deep and intermediate-depth water (Anis and Moum
1995; Terray et al. 1996; Drennan et al. 1996). Better
understanding of wave breaking is crucial to the pre-
diction of wind-driven wave spectra (WAMDI Group
1988). Present understanding of energy dissipation re-
sulting from wave breaking is far from adequate and its
estimate is inaccurate (Phillips 1984; Komen et al. 1984,
1994; Melville 1996). While wave energy at a given
frequency may be reduced owing to wave breaking, at
the same time its energy may also change due to the
input from wind and the energy transfer to or from
waves of different frequencies. Hence, direct measure-
ments of energy dissipation due to wave breaking in the
sea is extremely difficult. As an alternative, the dissi-
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pation of wave breaking is often measured and inves-
tigated in laboratories. An irregular wave train can be
generated by a computer-controlled wavemaker in a
two-dimensional (2D) wave flume in such a way that
wave energy focuses at a prescribed location and results
in an isolated breaker. Since no wind is present in the
wave flume and the energy transfer among different
wave frequencies is negligible owing to the small length
scale of the wave breaking, the differences in energy
before and after an isolated breaker can be viewed as
the dissipation due to wave breaking.

The above laboratory technique was employed by
Rapp and Melville (1990), who extensively studied the
velocity field induced by different types of isolated
breakers and the related losses of momentum and en-
ergy. By comparing the spectra measured before and
after an isolated breaker, they observed that 1) major
energy loss occurs at the ‘‘second harmonic’’ band and
slight loss at the higher end of the ‘‘first harmonic’’
band, and 2) the low-frequency waves in all cases stud-
ied propagate through breaking, even the intense plung-
ing breaking, without significant loss of energy. The
wave train generated in the study of Rapp and Melville
(1990) consists of many wave components of different
frequencies. The first harmonic and second harmonic
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bands were referred to the frequency bands centered at
the spectral peak frequency and twice of that frequency,
respectively. They also reported that even though the
wave was not breaking, the spectra at different locations
changed significantly at high and low frequencies. They
attributed these changes to the growth of the forced (or
bound) wave components. Later, Melville (1996) point-
ed out that spectra at low frequency displayed a slight
increase downstream of the breaking region. He thought
it would be consistent with the generation of free long
waves resulting from the change in the gradients of the
radiation stress accompanying breaking. The slight en-
ergy increase in low-frequency waves implies that
breaking is not just a sink of wave energy, but can also
be a source to waves of low frequencies. His implication
is qualitatively different from the formulation currently
used to model energy dissipation in wind-driven ocean
waves. The latter considers wave breaking to be an en-
ergy sink to all waves, regardless of their frequencies.
More recently, Kway et al. (1998) also conducted lab-
oratory studies of wave breaking and obtained similar
observations as those of Rapp and Melville. Although
important observations of energy dissipation due to
wave breaking as a function of frequency have been
made and they have important implication to ocean
wave models concerning the long-term evolution of a
wave spectrum, no effort has been made to quantify the
energy loss at high frequencies and to resolve a subtle
difference between the observations that the waves of
low frequencies propagate through the breaking without
significant loss of energy (Rapp and Melville 1990;
Kway et al. 1998) and that they slightly gain energy
through wave breaking (Melville 1996). If the low-fre-
quency waves do gain energy, then two key questions
need to be answered. What is the magnitude of the gain
and is it important to wave models concerning the long-
term evolution of a wave spectrum? To fill the gap in
our knowledge of energy dissipation, this study employs
the same laboratory technique to investigate and quan-
tify the energy dissipation as a function of wave fre-
quency caused by various types of isolated breakers.
Since the energy gain or loss is very small, specially at
the low-frequency band, accurate measurements and
computation of wave energy spectra are crucial. A major
obstacle in the previous studies for determining the en-
ergy dissipation as a function of wave frequency is the
significant changes in both high- and low-frequency
bands of the wave spectra measured at different loca-
tions along a wave flume even in the absence of wave
breaking. The changes in wave energy at low- and high-
frequency bands due to the presence of bound-wave
components can be significant and interfere with the
changes due to wave breaking in the same frequency
bands. In other words, the presence of bound-wave en-
ergy contaminates the measurements of energy loss and
gain due to wave breaking if the energy dissipation is
determined by a direct comparison of the wave spectra
measured before and after a breaker. To overcome this

difficulty, the contributions of bound-wave components
in the resultant wave elevation must be thoroughly un-
derstood and considered separately from those of free-
wave components.

2. Decoupling of bound-wave components

An ocean wave field consists of a continuum of mono-
chromatic wave components of different frequencies,
amplitudes and advancing in different directions. These
basic wave components, known as free-wave (or linear)
components, obey the dispersion relation. Due to the
nonlinear nature of surface waves, the free-wave com-
ponents interact among themselves. According to their
effects on wave characteristics, the wave–wave inter-
actions can be classified into ‘‘strong’’ and ‘‘weak’’ in-
teractions (Phillips 1979; Sue and Green 1981). The
effects of the strong interactions are observable as
‘‘bound-wave’’ components immediately after the in-
teractions start. In contrast to free-wave components,
bound-wave components do not obey the dispersion re-
lation. The effects of weak interactions (also known as
resonant interactions) may be substantial in a duration
of hundreds of wave periods after the interactions start.
Through the weak interactions, wave energy is trans-
fered among free-wave components of different fre-
quencies permanently. Hence, the weak interactions are
crucial to the long-term evolution of wave spectra, yet
negligible to the change of spectra in a short distance,
say in a length scale comparable to a single breaker. On
the other hand, the effects of strong wave–wave inter-
actions or bound-wave components depend on the in-
teracting free-wave components and exist temporarily
(except the second and high harmonics of a free-wave
component). That is, when the free-wave components
whose interaction results in the bound-wave components
no longer travel together, the corresponding bound-wave
components disappear (Yuen and Lake 1982). Hence,
the energy of bound-wave components is unimportant
to the long-term evolution of ocean wave spectra.

When a transient wave train propagates in a 2D flume,
the bound-wave components instantaneously change a
wave spectrum at very high and low frequencies in two
ways. First, far upstream of wave breaking, the free-
wave components of different frequencies in the tran-
sient wave train have not superposed yet, and thus no
strong interactions between these free-wave components
occur. When relatively low-frequency free-wave com-
ponents overtake relatively high-frequency free-wave
components near the location of breaking, the strong
interactions among them occur and bound-wave com-
ponents become great. That is why the energy at very
high and low frequency bands significantly increases
right before the breaking as observed in Rapp and Mel-
ville (1990) and Kway et al. (1998). When the low-
frequency free-wave components surpass the high-fre-
quency components downstream of breaking, the strong
interactions between them disappear and so do the cor-
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FIG. 1. Sketch of wave gauges for the measurement of transient breaking waves.

responding bound-wave components. The occurrence
and disappearance of bound-wave components along the
wave flume can make the spectra at different locations
quite different. Second, the measured spectra at very
high and low frequency bands are the resultant of the
free-wave and bound-wave components in these bands.
Because the phase velocities of a free-wave and bound-
wave component of the same frequency are different,
the resultant amplitude (spectrum) at a frequency chang-
es from one location to another even though the am-
plitudes of the underling free-wave and bound-wave
components do not change.

From the view of the long-term evolution of wave
spectra, the energy loss and gain of the free-wave com-
ponents are relevant and the occurrence and disappear-
ance of bound-wave components are irrelevant. To ac-
curately quantify the energy loss and gain due to wave
breaking, it is desirable to decouple the contributions
of the bound-wave components from the measured el-
evation. The separation of the bound-wave components
from the free-wave components can be accomplished
through a nonlinear decomposition of an irregular or
transient wave train (Zhang et al. 1996), in which the
bound-wave components can be deterministically cal-
culated based on the measured (resultant) wave eleva-
tion and then decoupled from the latter. The free-wave
components can then be derived using the fast Fourier
transform (FFT) based on the modified measured ele-
vation. The free-wave components are assumed to be
steady within a short distance and in the absence of
breaking. Therefore, the differences in the amplitudes
of free-wave components before and after an isolated
breaker can accurately reveal the energy loss or gain of
free-wave components due to wave breaking.

3. Experiment setup

The experiment was conducted in a 2D wave flume
at the Hydromechanics Laboratory of the Civil Engi-
neering Department at Texas A&M University. The
flume is 36.1 m in length overall, 0.91 m wide and 1.22
m deep. The water depth during the experiment was
0.91 m. Very steep transient wave trains were formed
by sequentially generating a series of waves from high
to low frequencies that superposed at a downstream lo-
cation. The mechanism of generating a transient wave
train was similar to that used by Rapp and Melville

(1990). However, our spectra have a sharp peak and
constant wave steepness for each free-wave component
while their spectra have a ‘‘top hat’’ shape with constant
amplitude for each free-wave component.

As the wave train propagated along the flume, it be-
came steep due to wave energy focussing and eventually
broke as a plunging or spilling breaker. Different types
of breakers can be realized by varying the wave steep-
ness of the free-wave components (Krafft and Kim
1987). Four resistance-type surface-piercing wave gaug-
es were used to measure the wave elevation before and
after a breaker. The relative positions of the wave gauges
in the wave flume are sketched in Fig. 1. The sampling
rate of measuring wave elevation was at least 50 Hz.
For reference, the location where the wave breaking
occurred is also marked. The exact locations of the wave
gauges varied slightly in measuring different transient
wave trains according to their spectral peak frequencies
and types of breakers. Attention was paid to place wave
gauge B2 before any breaking occurred and wave gauge
A1 about 1.5 to 2.0 m downstream of a breaker where
no traces of air entrainment were observed. The wave
gauges were calibrated using a linear least squares re-
gression. The standard deviation of the calibration was
0.2 mm. Because the wavemaker is computer-con-
trolled, the transient wave trains can be almost identi-
cally repeated. Each of the wave trains were run and
measured four times.

4. Measurements and data analysis

a. Characteristics of transient wave trains

In total, 13 different breaking and nonbreaking tran-
sient wave trains were generated and measured in the
flume. Their main characteristics are listed in Table 1.
The letters P, S and N denote a plunging, spilling, and
nonbreaking wave train, respectively. Following Rapp
and Melville (1990) and Banner and Peregrine (1993),
a nonbreaking wave is defined as one where the free
surface remains smooth as the wave train propagates
through the packet envelope. A spilling breaker is de-
fined as one where the fluid appears to break out of the
surface and ‘‘white water’’ falls down the front face of
the wave. A plunging breaker is defined as one where
the breaking commences with wave overturning forming
a forward moving sheet of water that curls down into



SEPTEMBER 2000 2407M E Z A E T A L .

TABLE 1. Experimental transient breaking waves classified by type of breaking: peak frequency, amplitude, wave steepness before and
after the breaking, and wave energy gain to loss ratio. The superscript markers on the wave trains refer to wave trains that were measured
by wave gages at the same exact position. s 2 is the free-wave spectrum variance, v is the angular peak frequency and g is the acceleration
of gravity. Egain and Eloss refer, respectively, to the total potential energy gained and lost by the low and high frequency wave components
during wave breaking.

Wave train

Peak
frequency

(Hz)

Peak
amplitude

(cm)

Wave steepness
before

2vs 21g

Wave steepness
after

2vs 21g

Wave energy gain
to loss ratio

Egain

Eloss

P1*
P2,

P3
P4
P5

0.73
0.73
0.63
0.63
0.53

2.011
1.778
2.280
2.044
2.231

0.0687
0.0584
0.0551
0.0549
0.0392

0.0520
0.0518
0.0483
0.0486
0.0357

0.072
0.127
0.085
0.064
0.129

S18
S2•

S3
S4

0.73
0.73
0.63
0.53

1.611
1.390
1.351
1.548

0.0559
0.0461
0.0369
0.0278

0.0439
0.0430
0.0345
0.0265

0.267
0.086
0.084
0.170

N1*
N2,

N38
N4•

0.73
0.73
0.73
0.73

1.342
1.153
1.343
1.150

0.0480
0.0398
0.0473
0.0392

0.0463
0.0384
0.0465
0.0384

FIG. 3. Resultant wave elevation spectra before a plunging breaker.

FIG. 2. Time history of surface displacement at various distances
from the observed breaking point, xb. Wave peak parameters vp 5
3.96 rad s21 and kp 5 1.74 m21. Wave breaking was observed between
(x 2 xb)kp 5 20.64 and 3.18.

the water. Each breaking transient wave train contained
a single breaker. The very steep but nonbreaking wave
trains (N1–N4) were, respectively, similar to, but slight-
ly smaller than, the breaking wave trains P1, P2, S1,
and S2 in wave elevation. The measurements of the
nonbreaking wave trains (N1–N4) were aimed at ex-

amining the magnitude of various errors made in de-
termining energy loss and gain of free-wave compo-
nents.

For illustrating the measurements and data analysis,
the wave train P3 involving a strong plunging breaker
is used as an example in the description. A general view
of wave elevations of P3 measured before and after the
wave breaker are plotted as a function of time in Fig. 2.

The resultant amplitude spectra of the elevations mea-
sured before and after a breaker were obtained using
the FFT, and are given, respectively, in Figs. 3 and 4.
The time series input to the FFT is 20.48 s long (1024
points). The spectral peak frequency of P3 is 0.63 Hz
and the wave amplitude above 2.25 Hz is insignificant
and thus the spectra are truncated at this frequency. The
resultant amplitude spectra are obtained from the FFT
of a single time series without making the ensemble
average or frequency band merge. Figure 3 shows that
the two spectra measured at two different locations be-
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FIG. 4. Resultant wave elevation spectra after a plunging breaker.

fore the wave breaking are similar overall. Specially,
near the peak frequency the amplitudes are almost iden-
tical. However, there are large discrepancies within the
frequency band (1.00–1.90 Hz) higher than the peak
frequency and relatively small discrepancies in the low-
frequency band (0.1–0.5 Hz). The high-frequency and
low-frequency bands, respectively, correspond to those
of the second-order sum-frequency and difference-fre-
quency interactions that result from the interactions be-
tween the free-wave components near the peak fre-
quency (0.50–0.95 Hz). Similar features are also ob-
served in Fig. 4 for the two spectra measured after
breaking. These observations are similar to those of
Rapp and Melville (1990) and Kway et al. (1998).

The resultant amplitude at a given frequency is es-
sentially the superposition of a free-wave component
and bound-wave components at the same frequency.
Near the spectral peak frequency, the contributions to
the resultant amplitude from the free-wave components
are dominant while those from the bound-wave com-
ponents are insignificant. In the absence of breaking
(between B1 and B2, and between A1 and A2), they
are expected to remain the same because the effects of
weak interactions are negligible within a short distance.
In the higher frequency (sum-frequency) and very low-
frequency (difference-frequency) bands, the contribu-
tions from the bound-wave components are comparable
to or even greater than those from the free-wave com-
ponents (Zhang et al. 1996). Consequently, large dis-
crepancies are expected in these frequency bands as
elucidated in section 2. The reasons for why the dis-
crepancies in the low-frequency band are much smaller
than the counterparts in the high-frequency band are 1)
the distance between the two gauges located either be-
fore or after breaking is small in comparison with the
wavelengths of either free-wave or bound-wave com-
ponents in the low-frequency band but large in com-
parison with the those in the high-frequency band, 2)
the amplitudes of both bound-wave and free-wave com-
ponents in the low-frequency band are very small, and
3) various errors made in measuring free-wave com-
ponents are much greater in the high-frequency band

than in the low-frequency band, which will be further
discussed.

b. Computation of free-wave components

The Hybrid wave model (HWM) developed recently
by Zhang et al. (1996) allows a deterministic nonlinear
decomposition of an irregular wave field. The input to
the HWM is a time series of a wave property recorded
at a fixed point in the case of a unidirectional irregular
wave train. In this study, the measurements of surface
elevation were used as the input. Based on the input,
the HWM first calculates the bound-wave components
and then decouples their effects from the measured el-
evation. After the decoupling of the bound-wave com-
ponents, the free-wave components can be obtained
from the FFT of the modified measurement. The cal-
culation of bound-wave components, however, needs to
know the free-wave components whose strong inter-
actions result in the bound-wave components. Hence,
the decomposition of an irregular wave train into free-
wave components is accomplished through an iterative
procedure that consists of three steps: computation of
free-wave components, computation of bound-wave
components, and decoupling the bound-wave compo-
nents from the measurement. The formulation for the
computation of bound-wave components in the HWM
is accurate at least up to second order in wave steepness.
The iterative procedure in the decomposition is found
to be convergent when applied to very steep wave trains
including irregular wave trains close to breaking (Spell
et al. 1996). After the amplitudes and initial phases of
the free-wave components in an irregular wave train are
obtained, a variety of resultant wave properties, say sur-
face elevation, dynamic pressure and wave-induced par-
ticle velocities near the location of measurements can
be deterministically predicted by superposing the con-
tribution from free-wave and bound-wave components
and allowing for their respective propagation. These
predictions are useful to many applications of offshore
engineering and ocean wave measurements (Cao and
Zhang 1997; Couch and Conte 1997; Meza et al. 1999).
In addition, they were employed to examine the accu-
racy of the HWM. Extensive comparisons between the
predicted wave properties obtained using the HWM and
the corresponding measurements were made and
showed that the HWM is reliable and much more ac-
curate than linear spectral methods and their modifi-
cations (Spell et al. 1996; Randall et al. 1993). For more
details of the HWM and its results, readers are referred
to Zhang et al. (1996) and Spell et al. (1996).

Using the HWM, the amplitudes and initial phases of
free-wave components were computed based upon the
same elevation measurement used for computing the
resultant amplitude spectra. The free-wave amplitude
spectra of wave train P3 at locations B1 and B2 (before
the breaking) are shown in Fig. 5 and those at locations
A1 and A2 (after the breaking) in Fig. 6. It should be
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FIG. 5. Free wave elevation spectra before a plunging breaker. FIG. 6. Free wave elevation spectra after a plunging breaker.

noted that the initial phases of the free-wave compo-
nents are also different from those of the resultant wave
components. Since they are irrelevant to energy dissi-
pation, their presentation is omitted.

Figure 5 shows that the two free-wave amplitude
spectra measured at two different locations before the
breaking are very close not only in the frequency band
close to the peak frequency but in the low- and high-
frequency bands as well. In comparison, the two cor-
responding resultant amplitude spectra shown in Fig. 3
are very close only at frequencies near the spectral peak,
but show substantial differences in the high-frequency
band. As mentioned previously, the differences in the
high-frequency band of the resultant amplitude spectra
are due to the presence of bound-wave components re-
sulting from the strong (sum-frequency) interactions. In
the free-wave amplitude spectra, the corresponding con-
tributions of bound-wave components are excluded and
the spectra are hence very similar in the entire frequency
range. The same trend is observed in the comparison
between the two spectra of free-wave amplitudes at lo-
cations after the breaking (Fig. 6). However, it is noticed
that there still exist small discrepancies mainly in the
high-frequency band between the two free-wave am-
plitude spectra in Figs. 5 and 6. These differences are
due to the errors made in measuring and determining
the free-wave components. The magnitude of errors are
discussed below.

c. Magnitude of errors

Five types of errors (or uncertainties) exist in mea-
suring wave elevation and determining free-wave am-
plitudes. They are

1) errors in measuring wave elevation,
2) errors resulting from inexact repeat of a transient

wave train in different runs,
3) errors due to the presence of transverse waves in the

flume,
4) neglect of viscous effects due to the side walls and

bottom of the flume, and

5) neglect of bound wave components of third order or
higher in wave steepness.

The first three errors are related to the measurements
and experiment facility and the last two to the assump-
tions made in the analysis.

The calibration of the wave gauges indicates that the
errors in measuring wave elevation have a standard de-
viation (s 5 0.2 mm). These errors are approximated
as random errors of a normal distribution (s 5 0.2 mm
and mean 5 0). It should be noted that the error in each
discrete elevation data is different from the error of a
resultant wave amplitude obtained using the FFT. A
wave component of period T involves n (5T/dt) discrete
sampling elevation data in one period, where dt is the
time increment between two neighboring sampling data
and equal to 0.02 s (50 Hz) in most of our measurements.
Assuming the random error of each discrete elevation
data is independent of that of other elevation data, they
remain independent after multiplying by the weighting
function of the FFT (whose modulus is unity). Noticing
that the amplitude of a wave component of period T
(Fourier coefficient) is obtained through averaging n
elevation data multiplying by the FFT weighting func-
tion, the error of the wave amplitude is hence an average
of the individual errors of the n data. Following the
central limit theorem, the error of the resultant wave
amplitude of period T has a normal distribution of a
standard deviation sT 5 s/ n. For T 5 2 s, its standardÏ
deviation is 0.02 mm. Further, the duration of the ele-
vation time series used in the FFT is many times of T
and the actual error becomes even smaller than the
above estimate.

The repeatability of a transient wave train in a flume
depends on the precision of its wave generation facility.
It is examined by comparing the resultant amplitude
spectra of different runs but measured at the same lo-
cation. Since the spectra are calculated from a measured
elevation using the FFT, the measurement errors are also
included in the difference between the two spectra of
different runs. Figure 7 plots the resultant amplitude
spectra for two different runs of the breaking wave train
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FIG. 7. Resultant wave elevation spectra of two different runs at a
fixed location before (B2) and after (A1) a plunging breaker.

P3 at the locations B2 and A1, respectively. The figure
shows that the resultant wave spectra of two different
runs are almost identical, indicating that repeatability of
wave trains is satisfactory. The differences between the
two spectra of different runs are very small, especially
in the low-frequency band, which also indirectly con-
firms that the measurement errors at the low-frequency
band are indeed small. The discrepancies, however, in
the high-frequency band is much greater. The large dis-
crepancies in the high-frequency band are due mainly
to the transverse waves generated in the flume.

When a transient wave train advancing in a flume is
steep, transverse waves will be generated. The wave
flume is 0.91 m wide and the water depth during the
tests was 0.91 m. Thus the first six modes of the trans-
verse waves have the natural frequencies of 0.92, 1.31,
1.60, 1.85, 2.07, and 2.26 Hz, in sequence. Different
from free and bound waves, the transverse waves do
not advance in the flume and in general they superpose
on the surface of a wave train differently in different
runs and in different locations. As shown in Fig. 7, at
the same location (either B2 or A1), the largest differ-
ences between the spectra of different runs occur at the
frequencies near those natural frequencies of transverse
waves. The presence of the transverse waves is found
to be the major cause that the errors are much greater
in the high-frequency band than in the low-frequency
band. It is also responsible for the relatively large dis-
crepancies in the high-frequency band of the free-wave

spectra of the same run but obtained in different loca-
tions (see Figs. 5 and 6).

The viscous effects of the side walls and bottom of
a flume are expected to reduce the wave energy down-
stream. However, the longest distance between any two
wave gauges in all measurements is less than 9 m. Be-
cause the wave gauges were placed in the middle of the
flume, the reduction due to viscous effects on the am-
plitudes of wave components in the frequency range that
we are interested in is insignificant.

Finally, the high-order bound waves (third order or
higher) cannot be extracted from the measurements us-
ing the HWM. Hence, they result in errors when com-
paring free-wave amplitude spectra obtained at different
locations. The last two types of errors are expected to
be small in comparison with the errors caused by the
transverse waves.

To quantify the magnitude of total errors described
above, the measurements of nonbreaking transient wave
trains were made. The nonbreaking wave trains (N1–
N4) are very steep and resemble the breaking wave
trains (P1, P2, S1, and S2) in the elevation profile but
of slightly smaller amplitudes. The free-wave amplitude
spectra were obtained from their elevation measure-
ments using the HWM as those of breaking wave trains.
The wave gauges for measuring nonbreaking wave
trains were deliberately placed in the same locations for
measuring the breaking wave trains. Because there is
no wave breaking between two wave gauges (say, B2
and A1) in the case of nonbreaking wave trains, the
differences in the free-wave amplitude spectra of a non-
breaking wave train obtained at different locations are
considered as the errors. The magnitude of the differ-
ences is hence an indicator of total errors discussed
above. The amplitude-difference spectra of four non-
breaking wave trains (N1 to N4) are given in Fig. 8.
The difference spectrum of a nonbreaking wave train
was obtained by subtracting the average of its free-wave
spectra at A1 and A2 of four runs from that of B1 and
B2. The frequency in Fig. 8 is normalized by the cor-
responding spectral peak frequency. The figure shows
that the amplitude differences overall are small. The
magnitude of the errors is very small (0.1–0.2 mm) in
the low-frequency range ( f / f p 5 0.8–0.9) and relatively
small (0.5–1.0 mm) in the high-frequency range ( f / f p

5 1.1–2.0). The results are consistent with the analysis
regarding the magnitude of errors in the different fre-
quency bands. Although the magnitude of errors in dif-
ferent frequency bands shown in Fig. 8 belongs to non-
breaking wave trains, we expect the related error mag-
nitude in measuring breaking wave trains is of the same
order. It will be shown in the next section that the mea-
sured energy loss and gain of breaking wave trains is
of order of 1.0 mm in the low-frequency band and of
order of 2–5 mm in the high-frequency band, which are
much greater than the errors in the respective frequency
bands. Further, the trend of errors shown in the non-
breaking wave trains is quite different from that of gain
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FIG. 8. Free-wave amplitude-difference spectra for very steep nonbreaking wave trains of Table
1: Ab and Aa are, respectively, the average free-wave amplitude spectra before and after breaking,
f is the wave frequency and f p is the spectral peak frequency.

FIG. 9. Averaged free-wave elevation spectra, before (Ab) and after (Aa) a plunging breaker,
and their difference spectrum (Ab 2 Aa). The dotted lines represent the 95% confidence interval
(62 1 ) of the amplitude-difference spectrum. The spectral peak frequency f p 5 0.632 2s sÏ b a

Hz and sb and sa are the standard deviations of the mean spectra before and after breaking,
respectively.

and loss energy in breaking wave trains. For example,
the amplitude difference in the low-frequency band of
all nonbreaking wave trains, indicates a small energy
decrease downstream while the free-wave amplitudes in
the low-frequency band of all breaking wave trains
slightly increase after the breaking (see Figs. 9 and 10).

Based on the error analysis and measured results, we
remark that the errors made in the measurements and
data analysis will not fundamentally change the results
of energy loss and gain due to wave breaking.

5. Energy dissipation due to wave breaking

The free-wave amplitude spectra before and after the
breaking of a transient wave train were respectively av-
eraged for the two locations and four different runs. The
differences between the average free-wave amplitude
spectra of the wave train P3 before and after the break-
ing are shown as a function of the frequency normalized
by the spectral peak frequency in Fig. 9. To provide a
reference, the average free-wave amplitude spectrum
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FIG. 10. Free-wave amplitude-difference spectra for (a) plunging and (b) spilling wave trains of
Table 1: Ab and Aa are, respectively, the average free-wave amplitude spectra before and after
breaking, f is the wave frequency, and f p is the spectral peak frequency.

before and after the breaking of P3 are also plotted.
Additionally, Fig. 9 shows the 95% confidence band
(62 1 ) of the amplitude-difference spectrum.2 2s sÏ b a

However, the free-wave spectra 95% confidence bands,
which are four times the standard deviation of the mean
spectra (62sb for before breaking and 62sa for after
breaking), are not plotted to avoid too many lines.

The comparison of the free-wave amplitude spectra
before and after the breaking shows that the free-wave
amplitudes at the frequencies near and below the spec-
tral peak frequency change a little, indicating that there
is no significant energy loss or gain. On the other hand,
all free-wave amplitudes in the frequency band ( f / f p 5
1.2–2.5), significantly higher than the spectral peak fre-
quency, become much smaller after the breaking. These
observations are consistent with Rapp and Melville

(1990) and Kway et al. (1998), although their obser-
vations were based on the comparison of the resultant
amplitude spectra. By carefully examining the differ-
ence in free-wave amplitudes before and after the break-
ing, it is observed that there is small energy loss at the
frequencies slightly higher than the peak frequency and
a small gain in the frequency band slightly below the
peak frequency. Although the free-wave components
near the spectral peak are the most energetic, the am-
plitude-difference spectrum shows that the energy loss
is dominantly contributed from the free-wave compo-
nents in the high-frequency band ( f / f p 5 1.2–2.5). The
loss (3–5 mm) is much greater than the uncertainties
(or errors) (62 1 , 0.3–1.9 mm) in the high-2 2s sÏ b a

frequency band. The amplitude-difference spectrum
clearly shows energy gain in the low-frequency band.
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Although the energy gain is very small, the uncertainties
in the amplitude-difference spectrum in the low-fre-
quency band are smaller. For example, at f / f p 5 0.85
the 95% confidence band of the amplitude difference,
(62 1 ), is 60.3 mm, much smaller than the2 2s sÏ b a

measured energy loss (1 mm) at this frequency. The
above observations further confirm that the measure-
ment errors or uncertainties in the amplitude-difference
spectrum are respectively much smaller than the energy
loss or gain in the high- and low-frequency bands. The
evidence of the energy gain supports an earlier obser-
vation of Melville (1996) that wave breaking could be
the energy source to waves at very low frequencies.

To ensure the above observed trend of energy loss
and gain with respect to wave frequency is general and
not limited to the wave train P3, the corresponding re-
sults of all breaking wave trains studied are derived and
summarized in Fig. 10. The amplitude-difference spec-
tra before and after a plunging breaker and a spilling
breaker are presented in Figs. 10a and 10b, respectively.
The frequencies are normalized by their corresponding
peak frequencies. Although the trend of energy dissi-
pation with respect to normalized frequency varies in
detail in different wave trains, three major features ob-
served in Fig. 9 are found to be independent of the type
of breaker. They are 1) dominant energy loss is con-
tributed from the free-wave components in the high-
frequency band (significantly higher than the peak fre-
quency), 2) the energy loss or gain near the peak fre-
quency is insignificant, and 3) a small energy gain oc-
curs in the low-frequency band, below the spectral peak
frequency. In comparing Fig. 10a and Fig. 10b, it is
found that the energy loss of a plunging breaker is in
general greater than that of a spilling breaker. This ob-
servation is expected from the intuition and also con-
sistent with Rapp and Melville (1990) and Kway et al.
(1998). It is also shown that the corresponding energy
gain in the low-frequency band after a plunging breaker
is in general greater than after a spilling breaker. The
small energy gain in most transient wave trains studied
is confined to the frequency band below the peak fre-
quency. However, in three cases (P5, S3, and S4), the
low-frequency band, which gains energy after the break-
ing, extends its upper boundary to slightly above the
peak frequency although the center of the energy-gain-
ing band is still significantly below the spectral peak.
The extension of the upper boundary of an energy-gain-
ing band possibly correlates to the center of the energy-
losing (high-frequency) band located at the frequency
much higher than the peak frequency.

Energy dissipation due to wave breaking dominantly
contributed from the free-wave components of frequen-
cies significantly higher than the peak frequency is not
limited to the transient wave trains generated in flumes.
It should be anticipated in ocean waves based on heu-
ristic explanations. In an ocean wave field, free-wave
components of different frequencies travel together,
short-wavelength (high frequency) components ride on

the surface of long-wave (low frequency) components
and become shorter and steeper at the crests and longer
and flatter at the troughs of long-wave components. This
phenomenon is known as short-wave modulation by
long waves and has been well documented (Phillips
1981; Longuet-Higgins 1987; Zhang and Melville
1990). When the crests of many free-wave components
of different frequencies align, the local resultant wave
elevation becomes extremely steep and may lead to
wave breaking. Wave breaking, of both spilling and
plunging breakers occurs at steep wave crests where
short-wave components are located. This is why the
energy loss in waves due to the breaking is at the ex-
pense of the short-wave components whose frequencies
are higher than the peak frequency.

Most dissipated energy due to wave breaking trans-
fers to the turbulence kinetic energy of seawater near
the free surface (Rapp and Melville 1990; Thorpe 1993;
Melville 1994). It is possible that a fraction of the dis-
sipated energy of high-frequency free-wave components
transfers to the energy of low-frequency free-wave com-
ponents. It is of interest to find the ratio of the energy
gain in the low-frequency free-wave components to the
energy loss in the high-frequency free-wave components
after an isolated breaker. As shown in Figs. 10a and
10b, the frequency bands of gaining and losing energy
are clearly separated in the frequency domain. Hence,
we may respectively compute the total loss in the high-
frequency band and total gain in the low-frequency band
by the integrations in the frequency domain. The low-
and high-frequency bands were fixed as f / f p 5 0.65–
1.0 and 1.0–3.25, respectively. The energy gain–loss
ratio of each breaking transient wave train is presented
in Table 1. It is found that the ratios of all breaking
transient wave trains are substantially smaller than unity.
The majority of them are indeed smaller than 15%. They
also vary significantly for different wave trains, ranging
from 6.4% to 26.7%. The average of all ratios is found
to be about 12% and the median is 8.5%. The magnitude
of the energy gain–loss ratio will be used to investigate
the long-term evolution of ocean wave spectra in the
next section.

In addition to presenting the differences in free-wave
amplitudes as a function of the normalized frequency
as in Fig. 10, we also plot energy dissipation or gain
due to wave breaking against the phase velocity in Fig.
11, where the energy dissipation or gain are respectively
normalized by the wave energy and phase velocity at
the spectral peak. Figure 11 combines the results of
plunging and spilling transient wave trains together. As
expected, the figure shows that the trend of energy dis-
sipation with respect to the normalized phase velocity
is independent of the type of breakers. The energy loss
is mainly in the range C/Cp 5 0.40–0.95 and the small
energy gain in the range C/Cp 5 1.03–1.25. These ob-
servations again suggest that the gain and loss of energy
during wave breaking are closely related to the spectral
peak frequency (or phase velocity). It is also found that
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FIG. 11. Normalized free-wave energy dissipation spectra of the plunging and spilling wave
trains of Table 1: Ab2 and Aa2 are, respectively, the average free-wave energy spectra before and
after breaking, Ap2 is the average spectral peak wave energy, C and Cp are the wave phase velocity
and the peak’s phase velocity, respectively.

the range of C/Cp for energy loss based on laboratory
observations is consistent with field observations. Based
on field observations of the dissipation of kinetic energy
in the mixed layer and the incidence of wave breaking,
Thorpe (1993) determined that the characteristic break-
ing event speed is much smaller than the dominant wave
phase speed (C/Cp 5 0.25). Melville (1994) using more
recent field and laboratory measurements of the dissi-
pation of kinetic energy in the mixed layer estimated
that C/Cp 5 0.4–0.63. Employing a novel acoustic in-
strument to track individual ocean breaking events Ding
and Farmer (1994) showed that C/Cp 5 0.45–0.75.
Smith et al. (1996) using Doppler radar measurements
of ocean wave groups and breaking waves found that
C/Cp 5 0.8. Their observations suggest that the wave
breaking in the ocean is associated with the dominant
wave and that the breaking (or energy dissipation) is
from shorter waves (C/Cp K 1.0). The range of C/Cp

for waves losing energy found in all above field obser-
vations except for Thorpe (1993) are virtually in the
same range as shown in Fig. 11. This consistency con-
firms that the nondimensional variables used in the lab-
oratory tests are relevant to ocean waves.

6. Implications to long-term evolution of ocean
wave spectra

The long-term evolution of an ocean wave spectrum
in space and time can be described by an energy transfer
equation. In deep water and in the absence of currents
it takes the form

]E
1 = · (C E ) 5 S , and (1)g tot]t

S 5 S 1 S 1 S ,tot in nl dis

where E denotes the wave energy density which is a
function of the horizontal coordinates, time, wave fre-
quency and direction, and Cg is the group velocity; Stot

is the total energy transfer rate, which consists of three
parts; Sin stands for the source term regarding the energy
input from wind, Snl describes the rate of energy transfer
between wave components of different frequencies ow-
ing to the nonlinear resonant (quartet) wave–wave in-
teractions, and Sdis is the wave energy dissipation term
due mainly to wave breaking.

So far the spectral representation of the dissipation
term, Sdis, in the energy transfer equation has been em-
pirically proposed. The third generation ocean wave
models, such as the WAM Model (WAMDI Group 1988;
Komen et al. 1994), use the following formulation to
estimate Sdis,

mn
v â

S 5 C v E(v), (2)dis ds 1 2 [ ]v âPM

where
4v

â 5 m ,o 2g

mo denotes the zeroth moment of the spectrum, v the
radian wave frequency, and v the mean frequency of
the spectrum. Here is related to the square of waveâ
steepness and indicates the overall steepness of an ocean
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wave field, and is the value of when the spectrumâ âPM

of a wave field is of the Pierson–Moskowitz type. The
parameters, Cds, m, and n can be calibrated according
to field measurements. The parameter n, was chosen to
be 2 by Komen et al. (1984) and 4 by Janssen (1991).
The product of parameters,

m
â

C v ,ds [ ]âPM

plays an important role in determining the total energy
dissipation rate of a wave field but bears no effects on the
energy dissipation rate as a function of wave frequency.
The dependence of the dissipation rate on the frequency
is essentially described by the kernel, (v/v) nE(v) in Eq.
(2). The kernel indicates that the dissipation rate due to
wave breaking is proportional to the magnitude of wave
energy density at a frequency and to either the second
(Komen et al. 1984) or fourth power (Janssen 1991) of
the frequency.

The measurements reported in this study are the en-
ergy dissipation caused by an isolated breaker. Wave
breaking at the sea surface usually occurs sporadically
and irregularly. The energy dissipation of an isolated
breaker is not the same as the dissipation rate of an
ocean wave field. The former can be related to the latter
when the probabilities of various types of breakers in
an ocean wave field can be determined. However, it is
noticed that the measurements of energy dissipation in
all cases studied, regardless of spilling and plunging
breakers, show a consistent trend of energy dissipation
with respect to the normalized frequency. Thus, this
general trend of the energy dissipation with respect to
the frequency in transient wave trains is expected to be
proportional to that of the dissipation rate in unidirec-
tional ocean waves. The trend revealed from the mea-
surements can be used to examine the empirical kernel
used in the WAM regarding the dependence of the dis-
sipation rate on the frequency. There are two striking
differences between the trend revealed by our measure-
ments and the kernel of the empirical formulation. First,
the measurements show that there is almost no signif-
icant energy loss or gain in the frequency band near the
spectral peak frequency, although the energy density is
the largest there. This observation clearly contradicts
the kernel that the energy loss rate at a frequency is
proportional to the energy density at the frequency, in-
dicating the kernel may be invalid to waves of fre-
quencies near the peak frequency. The measurements
also indicate that the energy loss during wave breaking
comes mainly from the frequencies significantly higher
than the spectral peak frequency. In the high-frequency
band, the measurements seem to be consistent with the
kernel that the energy loss increases with the increase
in wave frequency and that the energy loss is related to
the magnitude of the energy density. However, it needs
more data and further analyses to determine the kernel
function in the high-frequency band. Second, the small

energy gain at low frequencies is opposite to the kernel,
which predicts a small energy loss rate. Although the
magnitude of the measured energy gain in the low-fre-
quency band is relatively small, it has important im-
plications to the energy budget in the low-frequency
band because there the energy input from wind is usually
insignificant and the energy transfer from the high fre-
quency band due to the nonlinear resonant wave inter-
actions is relatively small as well.

The finding of the energy gain in the low-frequency
band (mainly below the spectral peak frequency) due
to wave breaking is crucial to the controversy regarding
the energy imbalance in low-frequency ocean waves
raised by Davidan and Lavrenov (1991). Utilizing the
left hand side of Eq. (1), they estimated the total energy
transfer rate as a function of frequency for different
developed stages of ocean waves, ranging from steady-
state waves at small fetches to almost fully developed
wind-driven waves. In their computation, the local
change in wave energy density is neglected (]E/]t 5 0)
because of the steady-state assumption, and the total
energy transfer rate (Stot) is hence determined solely by
the ‘‘convective’’ term. The two-dimensional spectra
used in their computation were approximately modeled
and the parameters used to quantify the spectra of dif-
ferent developed stages of wind-driven waves were cal-
ibrated based on field measurements (Davidan et al.
1985). To study itemized energy transfer rates, they also
respectively estimated the energy input rate from the
wind (Sin) and the energy transfer rate due to nonlinear
quartet resonance interactions (Snl). The formulation
given by Snyder et al. (1981) was used for the com-
putation of Sin and the Boltzmann’s integral expression
(Hasselmann 1962) for Snl. Hence, the formulas used in
their computation of Sin and Snl are similar to those used
by the WAMDI group (1988). In comparing Stot with Sin

1 Snl, they found that there is a significant energy im-
balance in the low-frequency band in all wave stages
they studied. The imbalance indicates that Stot is much
greater than Snl 1 Sin at the low-frequency range. To
show the magnitude of the imbalance, their result of the
energy transfer rates as a function of wave frequency
of a nearly fully developed sea is reproduced in Fig.
12. For reference, the energy density spectrum is also
plotted in the figure.

Figure 12 shows that Stot is relatively large and pos-
itive at low frequencies (below the peak frequency) and
close to zero at the frequencies significantly higher than
the peak frequency. This implies that the spectral peak
frequency will gradually downshift (toward a lower fre-
quency) with the increase in the fetch length and that
the energy density approximately reaches an equilibrium
in the high-frequency band. The input from wind, Sin,
is relatively large at high frequencies and diminishes to
zero (negligible) at low frequencies, which is expected
from the formulation of Snyder et al. (1981). The energy
transfer rate due to nonlinear resonant interactions are
positive in the low-frequency band and negative in the



2416 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 12. Normalized source functions for a nearly fully developed fetch-limited sea: f is the
wave frequency and S* and E* are, respectively, the transfer rate and the energy density normalized
in terms of the gravity g, the friction velocity u

*
, and the spectral peak frequency f p; is theS*tot

total energy transfer rate, is the energy input by the wind and is the energy transfer by theS* S*in nl

nonlinear resonant (quartet) wave–wave interactions. The normalization is defined as S* 5
(g2/ )S and E* 5 f p(g2/ )E. This figure is reproduced from Davidan and Lavrenov’s (1991)4 4u u* *

Fig. 4.

majority region of the high-frequency band, consistent
with the result given by Hasselmann et al. (1985) and
Komen et al. (1994). As shown in Fig. 12, Stot is sig-
nificantly greater than Snl in the low-frequency band.
Davidan and Lavrenov (1991) were not sure how to
compute the dissipation rate Sdis and thus it was not
computed. To quantify the differences between Stot and
Snl in the low-frequency band, we respectively integrated
Stot and Snl over the low-frequency band ( f / f p 5 0.55–
1.0). It is found that the integrated Snl is only about 22%
of the integrated Stot when Sdis 5 0 is assumed. If the
dissipation rate, Sdis, was computed according to the
formulation suggested in the WAM, the imbalance in
the low-frequency range would be even greater.

The large energy imbalance at low frequencies raises
a question: through which mechanism or from which
source, energy is transferred to waves at low frequencies
because the nonlinear energy transfer through resonance
interactions accounts only for a small portion of the total
energy increase rate of waves at low frequencies. Our
laboratory observations suggest that wave energy can
be gained at the low frequencies due to wave breaking
at the expenses of energy loss of waves at high fre-
quencies. To explore the possibility that wave breaking
is the major energy source to waves of low frequencies,
efforts were made to find whether or not the energy
imbalance at the low frequencies can be approximately
accounted by the energy gain at the low frequencies
through the mechanism of wave breaking. A rough es-
timate of the energy gain rate in the low-frequency band

due to wave breaking was made based on our mea-
surements.

As shown in Fig. 12, Stot . 0 in the high-frequency
band, indicating that the energy density in the frequency
band significantly higher than the peak spectral fre-
quency is approximately in equilibrium. Hence, the dis-
sipation rate in the high-frequency band can be deduced
by Sdis . 2(Sin 1 Snl). Consequently, the energy dis-
sipation rate in the high-frequency band was calculated
by integrating 2(Sin 1 Snl) over the frequency band
( f / f p 5 1.30–3.35). Based on our measurements (see
Table 1), the average gain–loss ratio is about 12%. As-
suming the energy dissipation in the high-frequency
band was mainly caused by wave breaking, the energy
gain rate in the low-frequency band ( f / f p 5 0.55–1.0)
can then be obtained by multiplying the integrated Sdis

in the high-frequency band with the average ratio (12%).
The estimated energy gain rate in the low-frequency
band due to wave breaking turned out to be about 50%
of the integrated total energy gain rate (Stot) in the low-
frequency band and is more than twice of the integrated
energy transfer rate Snl resulting from resonant quartet
interactions. The above estimate shows that the energy
gain is in the same order of the energy imbalance cal-
culated by Davidan and Lavrenov (1991). Although the
above estimate is rough and further studies are required
to quantify the energy gain in waves of low frequencies,
we remark that wave breaking is likely a major energy
source to ocean waves at low frequencies, which has
not been considered in current ocean wave models.
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It is worth mentioning that wind gustiness, the other
major source possibly contributing to the total energy
gain of waves at low frequencies, had been proposed
by Davidan and Lavrenov (1991). Specially in the later
stages of wave growth, it was thought that the growth
of low-frequency waves can be greatly affected by wind
gustiness (Komen et al. 1994). The effects of gustiness
on the growth of waves at low frequencies were quan-
tified by Nikolayeva and Tsimring (1986) and more re-
cently by Miles and Ierley (1998). Nikolayeva and
Tsimring (1986) indicated a considerable enhancement
of energy transfer due to gustiness to low-frequency
waves in well-developed wind-driven waves. Miles and
Ierley (1998), however, found that in well-developed
wind-driven waves the energy input from wind gustiness
to low-frequency waves is only about 1/80 of that pre-
dicted by Nikolayeva and Tsimring and actually smaller
than that predicted by Miles (1959). Therefore, based
on the study of Miles and Ierley (1998) wind gustiness
is not likely to be a candidate to provide significant
energy to waves of low frequencies.

7. Conclusions and future work

The HWM was used to decouple the bound-wave
components from the measured wave elevations. Be-
cause of the exclusion of bound-wave components, the
free-wave amplitude spectra of steep transient wave
trains are almost steady in the absence of wave breaking
and within a short distance. Different from the com-
parison of the resultant amplitude spectra (Rapp and
Melville 1990; Kway et al. 1998), the dependence of
energy dissipation on wave frequency in breaking waves
can be more accurately determined by comparing the
free-wave amplitude spectra before and after an isolated
breaker. The energy dissipations due to various isolated
breakers show a consistent pattern with respect to wave
frequency. First, wave breaking in an irregular wave
field consisting of many free-wave components mainly
consumes energy of those frequencies significantly
higher than the spectral peak frequency. Second, wave
components of frequencies close to the spectral peak
frequency lose or gain insignificant energy during wave
breaking although their energy density is the greatest
among all wave components in an irregular wave field.
Finally, wave components of frequencies below the
spectral peak gain a small portion (about 12%) of energy
lost by the wave components of high frequencies. These
findings contradict current empirical formulas used for
determining wave dissipation due to wave breaking.
They have important implications to the ocean wave
energy budget, specially to the energy growth rate of
wave components at frequencies below and near the
spectral peak frequency.

Our experimental study probably is the first attempt
to estimate the energy gain in the low-frequency band
in terms of the energy loss in the high-frequency band
in a transient wave train containing an isolated breaker.

However, the effort to quantify analytically how much
energy can be transferred to low-frequency waves from
breaking high-frequency waves was made three decades
ago. Longuet-Higgins (1969) proposed a mechanism
called ‘‘maser’’ to compute the energy gain due to short-
wave breaking over a periodic long wave. Nevertheless,
Hasselmann (1971) showed that the work done on the
long wave by the breaking of short waves through the
maser mechanism was balanced by the loss of potential
energy arising from the mass transport. Hence, the
breaking short waves could not provide the energy to
long waves through the maser mechanism. Melville
(1996) suggested that the transfer of energy to low-
frequency waves could be due to the release of free-
long-wave components resulting from the change in the
gradients of the radiation stress accompanying breaking,
but failed to render a quantitative relation between the
changes in the radiation stress and energy gain in low-
frequency waves. It seems that the understanding of how
energy is transferred to low-frequency waves during
breaking is still a challenging task and requires further
investigation.

Wave breaking in deep or intermediate-depth water
usually occurs when local wave energy exceeds a certain
level due to the crest alignment of a great number of
free-wave components. While in shallow water, wave
breaking may be induced by shoaling effects. Because
wave breaking in our measurements was generated by
a wave focusing technique, our results may be only
relevant to the wave breaking in deep or intermediate-
depth water. Also due to the limitation of 2D flumes,
the results presented here may not be valid if the di-
rections of the high-frequency band and low-frequency
band of an ocean wave field are quite different. It is of
great interest to study the energy dissipation of direc-
tional wave breaking in a large three-dimensional wave
basin.
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