Meromorphic Solutions of a Type of Higher－Order Partial Differential Equations

GAO Ling－yun
（Department of Mathematics，Ji＇nan University，Guangdong 510623，China ）
（E－mail：tgaoly＠jnu．edu．cn）

Abstract

Using the value distribution theory in several complex variables，we extend Malmquist type theorem of algebraic differential equation of Steinmetz to higher－order partial differential equations．

Key words：meromorphic solutions；partial differential equations；Malmquist type theorems． MSC（2000）：32A20；32A22；32H30；30D35
CLC number：O174．52

1．Introduction and main result

For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ ，we define，for any $r \in \mathbb{R}^{+},|z|=\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}, \tau(z)=|z|^{2}$ ， $\mathbb{C}^{\ltimes}\langle r\rangle=\left\{z \in \mathbb{C}^{n}:|z|=r\right\}, \mathbb{C}^{n}(r)=\left\{z \in \mathbb{C}^{n}:|z|<r\right\}$ ．Let $\mathbb{C}^{n}[r]=\left\{z \in \mathbb{C}^{n}:|z| \leq r\right\}, d=$ $\partial+\bar{\partial}, d^{c}=\frac{i}{4 \pi}(\bar{\partial}-\partial)$. We then write

$$
\begin{gathered}
\omega_{n}(z)=d d^{c} \log |z|^{2}, \sigma_{n}(z)=d^{c} \log |z|^{2} \wedge \omega_{n}^{n-1}(z), z \in \mathbb{C}^{n} \backslash\{0\} \\
\nu_{n}(z)=d d^{c}|z|^{2}, \rho_{n}(z)=\nu_{n}^{n}(z), z \in \mathbb{C}^{n}
\end{gathered}
$$

Thus $\sigma_{n}(z)$ defines a positive measure on $\mathbb{C}^{n}\langle r\rangle$ with total measure one and ρ_{n} is a normalized Lebesgue measure on \mathbb{C}^{n} such that $\mathbb{C}^{n}(r)$ has measure $r^{2 n}$ ．Let \mathbb{P}^{1} be the Riemann sphere， and f be a meromorphic function on \mathbb{C}^{n} ，i．e．，f can be written as a quotient of two holomorphic functions which are relatively prime．Thus f can be regarded as a meromorphic map $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{1}$ such that $f^{-1}(\infty) \neq \mathbb{C}^{n}$ ．

For $a, b \in \mathbb{P}^{1}$ ，the chordal distance from a to b is denoted by $\|a, b\|$ ，

$$
\|a, \infty\|=\frac{1}{\sqrt{1+|a|^{2}}},\|a, b\|=\frac{|a-b|}{\sqrt{1+|a|^{2}} \sqrt{1+|b|^{2}}}, a, b \in \mathbb{C},
$$

where $\|a, a\|=0$ and $0 \leq\|a, b\|=\|b, a\| \leq 1$ ．
For $0<s<r$ ，the characteristic of f is defined by

$$
T(r, f)=\int_{s}^{r} \frac{1}{t^{2 n-1}} \int_{\mathbb{C}^{n}[t]} f^{*}(\omega) \bigwedge \nu_{n}^{n-1} \mathrm{~d} t=\int_{s}^{r} \frac{1}{t} \int_{\mathbb{C}^{n}[t]} f^{*}(\omega) \bigwedge \omega_{n}^{n-1} \mathrm{~d} t
$$

Received date：2005－07－01；Accepted date：2007－01－16
Foundation item：the National Natural Science Foundation of China（10471065）；the Natural Science Founda－ tion of Guangdong Province（04010474）．

Let ν be a divisor on \mathbb{C}^{n}. We identify ν with its multiplicity function and define

$$
\nu(r)=\left\{z \in \mathbb{C}^{n}:|z|<r\right\} \bigcap \operatorname{supp} \nu, r>0
$$

The pre-counting function of ν is defined by

$$
n(r, \nu)=\sum_{z \in \nu(r)} \nu(z), \text { if } n=1 ; n(r, \nu)=r^{2-2 n} \int_{\nu(r)} \nu \nu_{n}^{n-1}, \text { if } n>1
$$

The counting function of ν is defined by

$$
N(r, \nu)=\int_{s}^{r} n(t, \nu) \frac{\mathrm{d} t}{t}, r>s
$$

Let f be a meromorphic function on \mathbb{C}^{n}. If $a \in \mathbb{P}^{1}$ and $f^{-1}(a) \neq \mathbb{C}^{n}$, the a-divisor $\nu(f, a) \geq 0$ is defined, and its pre-counting function and counting function will be denoted by $n(r, f, a)$ and $N(r, f, a)$, respectively.

If $a \in \mathbb{P}^{1}$ and $f^{-1}(a) \neq \mathbb{C}^{n}$, then we define the proximity function as follows

$$
m(r, f, a)=\int_{|z|=r} \log \frac{1}{\|a, f(z)\|} \sigma_{n} \geq 0, r>0
$$

For a divisor ν on \mathbb{C}^{n}, let

$$
\begin{gathered}
\bar{n}(r, \nu)=\sum_{z \in \nu(r)} 1, \text { if } n=1 ; \bar{n}(r, \nu)=r^{2-2 n} \int_{\nu(r)} \nu_{n}^{n-1}, \text { if } n>1 \\
\bar{N}(r, \nu)=\int_{s}^{r} \bar{n}(t, \nu) \frac{\mathrm{d} t}{t}, \quad \bar{N}(r, f, a)=\bar{N}(r, \nu(f, a))
\end{gathered}
$$

The first main theorem states that

$$
T(r, f)=N(r, f, a)+m(r, f, a)-m(s, f, a)
$$

For a meromorphic function w on \mathbb{C}^{n}, let

$$
\begin{aligned}
& \Omega_{1}\left(z, w, D w, \ldots, D^{n} w\right)=\sum_{(i) \in I} a_{(i)}(z) w^{i_{0}}(D w)^{i_{1}} \cdots\left(D^{n} w\right)^{i_{n}} \\
& \Omega_{2}\left(z, w, D w, \ldots, D^{n} w\right)=\sum_{(j) \in J} b_{(j)}(z) w^{j_{0}}(D w)^{j_{1}} \cdots\left(D^{n} w\right)^{j_{n}}
\end{aligned}
$$

where $D^{k} w=\left(\partial_{1}\right)^{k_{1}} \cdots\left(\partial_{n}\right)^{k_{n}} w$ is the partial derivative of w of order $k=k_{1}+\cdots+k_{n}$, $\partial_{j}=\partial / \partial z_{j} ;\left\{a_{(i)}(z)\right\},\left\{b_{(j)}(z)\right\}$ are meromorphic functions on $\mathbb{C}^{n} ; I, J$ are two finite sets of multiindices $(i)=\left(i_{0}, i_{1}, \ldots, i_{n}\right)$ and $(j)=\left(j_{0}, j_{1}, \ldots, j_{n}\right)$ respectively; and $i_{0}, i_{1}, \ldots, i_{n}, j_{0}, j_{1}, \ldots, j_{n}$ are non-negative integers.

For partial differential polynomials $\Omega_{1}\left(z, w, D w, \ldots, D^{n} w\right), \Omega_{2}\left(z, w, D w, \ldots, D^{n} w\right)$, we adopt the notation, respectively:

$$
\lambda_{1}=\max \left\{\sum_{l=0}^{n} i_{l}\right\}, \Delta_{1}=\max \left\{\sum_{l=0}^{n}(l+1) i_{l}\right\} ; \lambda_{2}=\max \left\{\sum_{l=0}^{n} j_{l}\right\}, \Delta_{2}=\max \left\{\sum_{l=0}^{n}(l+1) j_{l}\right\} .
$$

In this paper we consider the following partial differential equation

$$
\begin{equation*}
\frac{\Omega_{1}\left(z, w, D w, \ldots, D^{n} w\right)}{\Omega_{2}\left(z, w, D w, \ldots, D^{n} w\right)}=H(z, w) \tag{1}
\end{equation*}
$$

where $H(z, w)$ is a meromorphic function on \mathbb{C}^{n+1} with $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}$.
In 1978, N. Steinmetz investigated the problem of the existence of admissible solutions of algebraic differential equation of the form

$$
\begin{equation*}
\Omega(z, w)=H(z, w) \tag{2}
\end{equation*}
$$

where $\Omega(z, w)=\sum_{(i)} a_{(i)}(z) w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}}$, and $H(z, w)$ is quotient of entire functions in variables z and w. They obtained

Theorem $\mathbf{A}^{[1]}$ If the differential equation (2) admits an admissible meromorphic solution $w(z)$, then (2) must be degenerate into a polynomial in w and

$$
\operatorname{deg}_{w} H(z, w) \leq \Delta
$$

where $\Delta=\max \left\{i_{0}+2 i_{1}+\ldots+(n+1) i_{n}\right\}$.
Recently, the papers ${ }^{[2-4]}$ have investigated the problem of some Malmquist-type theorems of partial differential equations on \mathbb{C}^{n}. In particular, [2] extends Theorem A to partial differential equations:

Theorem $\mathbf{B}^{[3]}$ Let a_{1}, \ldots be a sequence of distinct complex numbers which tends to a finite limit value a, and set $H_{j}(z)=H\left(z, a_{j}\right)$. If the partial differential equation $\Omega\left(z, w, D w, \ldots, D^{n} w\right)=$ $H(z, w)$ admits a meromorphic solution $w(z)$ that satisfies the condition

$$
\sum_{(i) \in I} T\left(r, a_{(i)}\right)+T\left(r, H_{j}\right)=S(r, w), j=1,2, \ldots
$$

then the equation is a polynomial in w and $\operatorname{deg}_{w} H(z, w) \leq w(\Omega)$ (weight of Ω).
In [7] we considered the existence of admissible solution of general algebraic differential equations of the form

$$
\begin{equation*}
\frac{\Omega_{1}(z, w)}{\Omega_{2}(z, w)}=H(z, w) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}(z, w)=\sum_{(i)} a_{(i)}(z) w^{i_{0}}\left(w^{\prime}\right)^{i_{1}} \cdots\left(w^{(n)}\right)^{i_{n}} \\
& \Omega_{2}(z, w)=\sum_{(j)} b_{(j)}(z) w^{j_{0}}\left(w^{\prime}\right)^{j_{1}} \cdots\left(w^{(n)}\right)^{j_{n}}
\end{aligned}
$$

are differential polynomials with meromorphic coefficients $\left\{a_{(i)}\right\}$ and $\left\{b_{(j)}\right\}$, respectively, (i) and (j) are two finite index sets, and $H(z, w)$ is a meromorphic function in z and w.

We obtained

Theorem $\mathbf{C}^{[7]}$ If $w(z)$ is an admissible meromorphic solutions of (3), then $H(z, w)$ must be rational function in w, and the degree of w satisfies

$$
\operatorname{deg}_{w} H(z, w) \leq \lambda+(\Delta-\lambda)(1-\theta(w, \infty)) \leq \Delta
$$

where $\lambda=\max \left\{\lambda_{1}, \lambda_{2}\right\}, \Delta=\max \left\{\Delta_{1}, \Delta_{2}\right\}, \theta(w, \infty)=1-\limsup \frac{\bar{N}(r, w)}{T(r, w)}$.
For Equation (1), we will prove
Theorem 1 Let c_{1}, c_{2}, \ldots be a sequence of distinct complex numbers which tends to a finite limit value c. And set $H_{j}(z)=H\left(z, c_{j}\right)$. If Equation (1) admits a meromorphic solution $w(z)$ that satisfies the condition

$$
\sum_{(i)} T\left(r, a_{(i)}\right)+\sum_{(j)} T\left(r, b_{(j)}\right)+T\left(r, H_{j}\right)=S(r, w), j=1,2, \ldots
$$

then $H(z, w)$ must be rational function in w, and the degree of w satisfies

$$
\operatorname{deg}_{w} H(z, w) \leq \Delta
$$

where $\Delta=\max \left\{\Delta_{1}, \Delta_{2}\right\}$.

2. Some lemmas

Lemma $1^{[5]}$ Let $w(z)$ be a meromorphic function on \mathbb{C}^{n}. Then

$$
\int_{\mathbb{C}^{n}\langle r\rangle} \log ^{+}\left(\left|D^{k} w(z)\right| /|w(z)|\right) \sigma_{n} \leq 17\left(\log ^{+}(r T(r, w))\right)
$$

for all large r outside a set I with $\int_{I} \mathrm{~d} \log r<\infty$, where $\log ^{+} x=\log x$, if $x \geq 1$; $\log ^{+} x=0$, if $0 \leq x<1$.

Lemma 2 (The second main theorem) ${ }^{[3]}$ Let $f(z)$ be a meromorphic function on \mathbb{C}^{n}. If $a_{1}, \ldots, a_{q} \in \mathbb{P}^{1}$ are distinct constants, then

$$
(q-2) T(r, f) \leq \sum_{i=1}^{q} \bar{N}\left(r, f, a_{i}\right)+S_{1}(r)
$$

where $S_{1}(r) \leq O(\log (r T(r, f)))$ for all large r outside a set I with $\int_{I} \mathrm{~d} \log r<\infty$.

3. Proof of Theorem 1

Let $w(z)$ be an admissible meromorphic solutions of Equation (1). For $c_{1} \in E$, set

$$
\begin{equation*}
\varphi_{1}\left(z ; c_{1}\right)=\frac{\Omega_{1}}{H\left(z, c_{1}\right)\left(w-c_{1}\right)}-\frac{\Omega_{2}}{w-c_{1}}=\frac{\Omega_{1}-\Omega_{2} H\left(z, c_{1}\right)}{H\left(z, c_{1}\right)\left(w-c_{1}\right)} . \tag{4}
\end{equation*}
$$

Because w is a meromorphic solutions of Equation (1), we know that

$$
\operatorname{supp} \nu\left(w, c_{1}\right) \subseteq \operatorname{supp} \nu\left(\varphi_{1}\left(z ; c_{1}\right), 0\right)
$$

Take $z \in \mathbb{C}^{n}$ with $\nu\left(w, c_{1}\right)>0$ and let $\theta_{n, z}$ denote the ring of holomorphic functions defined in some neighborhood of $z \in \mathbb{C}^{n}$. If $w-c_{1}$ is irreducible in $\theta_{n, z}$, then $w-c_{1}$ devides $\Omega_{1}-\Omega_{2} H\left(z, c_{1}\right)$ in $\theta_{n, z}$ (Weak Nullstellensatz), which implies $\nu\left(\varphi_{1}\left(z ; c_{1}\right), \infty\right)=0$.

If $w-c_{1}$ is not irreducible, then there exists an irreducible $g \in \theta_{n, z}$ such that $g(z)=0$ and g divides $w-c_{1}$ in $\theta_{n, z}$ because $\theta_{n, z}$ is a unique factorization domain. Then g divides $\Omega_{1}-\Omega_{2} H\left(z, c_{1}\right)$ in $\theta_{n, z}$. Consequently, we have

$$
\nu\left(\varphi_{1}\left(z ; c_{1}\right), \infty\right) \leq \nu\left(w, c_{1}\right)-1
$$

Now we take $c_{1}, c_{2} \in E, c_{1} \neq c_{2}$ and set

$$
\varphi_{2}\left(z ; c_{1}, c_{2}\right)=\frac{\Omega_{1}\left[H\left(z, c_{2}\right)\left(w-c_{2}\right)-H\left(z, c_{1}\right)\left(w-c_{1}\right)\right]}{H\left(z, c_{2}\right)\left(w-c_{2}\right) H\left(z, c_{1}\right)\left(w-c_{1}\right)}-\frac{\left(c_{1}-c_{2}\right) \Omega_{2} H\left(z, c_{1}\right) H\left(z, c_{2}\right)}{H\left(z, c_{2}\right)\left(w-c_{2}\right) H\left(z, c_{1}\right)\left(w-c_{1}\right)} .
$$

If $\nu\left(w, c_{j}\right)>0$ and $a_{(i)} \neq \infty, b_{(j)} \neq \infty, H\left(z, c_{j}\right) \neq 0, \infty(j=1,2)$, we have

$$
\begin{aligned}
& \Omega_{1}\left[H\left(z, c_{2}\right)\left(w-c_{2}\right)-H\left(z, c_{1}\right)\left(w-c_{1}\right)\right]-\left(c_{1}-c_{2}\right) \Omega_{2} H\left(z, c_{1}\right) H\left(z, c_{2}\right) \\
& \quad=\Omega_{1}\left[H\left(z, c_{2}\right)\left(w-c_{1}+c_{1}-c_{2}\right)-H\left(z, c_{1}\right)\left(w-c_{1}\right)\right]-\left(c_{1}-c_{2}\right) \Omega_{2} H\left(z, c_{1}\right) H\left(z, c_{2}\right) \\
& \quad=\Omega_{1}\left[H\left(z, c_{2}\right)\left(c_{1}-c_{2}\right)\right]-\left(c_{1}-c_{2}\right) \Omega_{2} H\left(z, c_{1}\right) H\left(z, c_{2}\right)=0 .
\end{aligned}
$$

It shows that $\nu\left(\varphi_{2}\left(z ; c_{1} ; c_{2}\right), \infty\right) \leq \nu\left(w, c_{j}\right)-1, j=1,2$.
In general, we take distinct $c_{1}, c_{2}, \ldots, c_{k} \in E$ and set

$$
\begin{align*}
\varphi_{k}\left(z ; c_{1}, \ldots, c_{k}\right) & =\varphi_{k-1}\left(z ; c_{1}, \ldots, c_{k-1}\right)-\varphi_{k-1}\left(z ; c_{1}, \ldots, c_{k-2}, c_{k}\right) \\
& =\left(\Omega_{1} Q_{k-1}(z, w)-\Omega_{2} Q_{k-2}(z, w)\right) / \prod_{j=1}^{k} H\left(z, c_{j}\right)\left(w-c_{j}\right) \tag{5}
\end{align*}
$$

where $Q_{k}(z, w)$ is a polynomial of degree $k-1$ in w, and its coefficients are combination with $H_{j}(z)(j=1,2, \ldots, k)$. By induction, from Equation (5), if $\nu\left(w, c_{j}\right)>0$, and $a_{(i)} \neq \infty, b_{(j)} \neq$ $\infty, H\left(z, c_{j}\right) \neq 0, \infty(j=1,2, \ldots, k)$, we have

$$
\nu\left(\varphi_{k}\left(z ; c_{1}, c_{2}, \ldots, c_{k}\right), \infty\right) \leq \nu\left(w, c_{j}\right)-1
$$

Next we prove that $\varphi_{k+1} \equiv 0$ if $w(z)$ is a meromorphic solution of Equation (1).
Suppose $\operatorname{deg}_{w} H(z, w)=k=\Delta$ and $\varphi_{k+1} \not \equiv 0$. By the first main theorem, it follows that

$$
\begin{align*}
T(r, w) & =T\left(r, w-c_{k+1}\right)+O(1)=T\left(r, \prod_{j=1}^{k+1}\left(w-c_{j}\right) / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)+o(1) \\
& \leq T\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)+T\left(r, \varphi_{k+1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right)+O(1) \tag{6}
\end{align*}
$$

Now we estimate $T\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)$ and $T\left(r, \varphi_{k+1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right)$.

$$
m\left(r, \frac{\varphi_{k+1}}{\prod_{j=1}^{k}\left(w-c_{j}\right)}\right)=m\left(r, \frac{\Omega_{1} Q_{k}(z, w)-\Omega_{2} Q_{k-1}(z, w)}{\prod_{j=1}^{k+1} H\left(z, c_{j}\right)\left(w-c_{j}\right) \prod_{j=1}^{k}\left(w-c_{j}\right)}\right)
$$

$$
\begin{aligned}
& \leq m\left(r, \frac{\Omega_{1}}{\prod_{j=1}^{k+1}\left(w-c_{j}\right)}\right)+m\left(r, \frac{Q_{k}(z, w)}{\prod_{j=1}^{k}\left(w-c_{j}\right)}\right)+m\left(r, \frac{\Omega_{2}}{\prod_{j=1}^{k+1}\left(w-c_{j}\right)}\right)+ \\
& m\left(r, \frac{Q_{k-1}(z, w)}{\prod_{j=1}^{k}\left(w-c_{j}\right)}+2 \sum m\left(r, \frac{1}{H\left(z, c_{j}\right)}\right)+O(1) .\right.
\end{aligned}
$$

We note that

$$
\begin{equation*}
\left|w /\left(w-c_{j}\right)\right| \leq 1+\left|c_{j}\right| /\left|w-c_{j}\right| \leq\left(1+\left|c_{j}\right|\right)\left(1 /\left|w-c_{j}\right|\right)^{+} \leq c\left(1 /\left|w-c_{j}\right|\right)^{+}, \tag{7}
\end{equation*}
$$

where $|a|^{+}=\max \{1,|a|\}, c=\max \left\{1+\left|c_{j}\right|\right\}$. Thus

$$
\begin{aligned}
& \left|\Omega_{1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right| \leq c^{k+1} \sum\left|a_{(i)}(z)\right|\left(\prod_{j}\left|\frac{D w}{\left(w-c_{j}\right)}\right|\right) \cdots\left(\prod_{j}\left|\frac{D^{n} w}{\left(w-c_{j}\right)}\right|\right)\left(\prod_{j}\left|\frac{1}{\left(w-c_{j}\right)}\right|^{+}\right), \\
& \left|\Omega_{2} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right| \leq c^{k+1} \sum\left|b_{(j)}(z)\right|\left(\prod_{j}\left|\frac{D w}{\left(w-c_{j}\right)}\right|\right) \cdots\left(\prod_{j}\left|\frac{D^{n} w}{\left(w-c_{j}\right)}\right|\right)\left(\prod_{j}\left|\frac{1}{\left(w-c_{j}\right)}\right|^{+}\right),
\end{aligned}
$$

where $\prod_{j}\left|\frac{D^{\alpha} w}{\left(w-c_{j}\right)}\right|$ is $i_{1 \alpha}$-fold product, and $\prod_{j}\left(\left|\frac{1}{w-c_{j}}\right|\right)^{+}$is $\left(k+1-\lambda_{t}-t_{0}\right)(t=i, j)$-fold product. So

$$
\begin{gather*}
m\left(r, \Omega_{1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right) \leq \sum_{j=1}^{k} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{(i)} m\left(r, a_{(i)}\right)+O\left\{\sum_{\alpha=1}^{n} \sum_{j=1}^{k+1} m\left(r, \frac{D^{\alpha} w}{w-c_{j}}\right)\right\} . \tag{8}\\
m\left(r, \Omega_{2} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right) \leq \sum_{j=1}^{k} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{(j)} m\left(r, b_{(j)}\right)+O\left\{\sum_{\alpha=1}^{n} \sum_{j=1}^{k+1} m\left(r, \frac{D^{\alpha} w}{w-c_{j}}\right)\right\} . \tag{9}\\
m\left(r, Q_{k}(z, w) / \prod_{j=1}^{k}\left(w-c_{j}\right)\right) \leq \sum_{j=1}^{k} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{j=1}^{k} m\left(r, H_{j}\right)+O(1) . \tag{10}\\
m\left(r, Q_{k-1}(z, w) / \prod_{j=1}^{k}\left(w-c_{j}\right)\right) \leq \sum_{j=1}^{k} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{j=1}^{k} m\left(r, H_{j}\right)+O(1) . \tag{11}
\end{gather*}
$$

By (8), (9), (10), (11) and Lemma 1, we have

$$
\begin{align*}
m\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right) \leq & 4 \sum_{j=1}^{k} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{(i)} m\left(r, a_{(i)}\right)+\sum_{(j)} m\left(r, b_{(j)}\right)+ \\
& 2 \sum m\left(r, H_{j}\right)+S(r, w), \tag{12}
\end{align*}
$$

where $S(r, w)=O\{\log (r T(r, w))\}$ for all large r outside a set I with $\int_{I} \mathrm{~d} \log r<\infty$.
Similarly, we may deduce that

$$
m\left(r, \varphi_{k+1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right) \leq 4 \sum_{j=1}^{k+1} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{(i)} m\left(r, a_{(i)}\right)+\sum_{(j)} m\left(r, b_{(j)}\right)+
$$

$$
\begin{equation*}
2 \sum m\left(r, H_{j}\right)+S(r, w) \tag{13}
\end{equation*}
$$

for all large r outside a set I with $\int_{I} \mathrm{~d} \log r<\infty$.
Now we estimate $N\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)$ and $N\left(r, \varphi_{k+1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right)$. By

$$
\begin{equation*}
\varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)=\left(\Omega_{1} Q_{k}(z, w)-\Omega_{2} Q_{k-1}(z, w)\right) / \prod_{j=1}^{k+1} H\left(z, c_{j}\right)\left(w-c_{j}\right) \prod_{j=1}^{k}\left(w-c_{j}\right) \tag{14}
\end{equation*}
$$

we know that the poles of $\varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)$ may arise from one of the following cases:
(i). The poles of $\left\{a_{(i)}(z)\right\},\left\{b_{(j)}(z)\right\}$;
(ii). The poles and the zeros of $\left\{H_{j}(z)\right\}$;
(iii). The zeros of $w-c_{j}$ for which the cases (i) and (ii) are not satisfied;
(iv). The poles of $w(z)$.

Case (i). Its contribution to $N\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)$ is $\sum N\left(r, \nu\left(a_{(i)}, \infty\right)\right)+\sum N\left(r, \nu\left(b_{(j)}, \infty\right)\right)$.
Case (ii). Its contribution to $N\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right)$ is $\sum N\left(r, \nu\left(H_{j}, \infty\right)\right)+\sum N\left(r, \nu\left(H_{j}, 0\right)\right)$.
Case (iii). According to the above discussion, we have

$$
\nu\left(\varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right), \infty\right) \leq 2 \nu\left(w, c_{j}\right)-1
$$

Thus, its contribution is at most $\sum_{j=1}^{k}\left[2 N\left(r, \nu\left(w, c_{j}\right)\right)-\bar{N}\left(r, \nu\left(w, c_{j}\right)\right)\right]$.
Case (iv). If z_{0} is a pole of w with multiplicity τ, then it is the poles of the denominator of right-side of the equality (14) with multiplicity $(2 \Delta-1) \tau$. But z_{0} is at most the poles of the numerator of right-side of the equality (14) with multiplicity $(2 \Delta-1) \tau$. Hence, it follows that the poles of $w(z)$ does not arise from the poles of $\varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)$.

From Cases (i)-(iv) if follows that

$$
\begin{align*}
& N\left(r, \varphi_{k+1} / \prod_{j=1}^{k}\left(w-c_{j}\right)\right) \\
& \quad \leq \sum_{j=1}^{k}\left[2 N\left(r, \nu\left(w, c_{j}\right)\right)-\bar{N}\left(r, \nu\left(w, c_{j}\right)\right)\right]+\sum_{j=1}^{k} N\left(r, \nu\left(H_{j}, \infty\right)\right)+ \\
& \quad \sum_{j=1}^{k} N\left(r, \nu\left(H_{j}, 0\right)\right)+\sum_{(i)} N\left(r, \nu\left(a_{(i)}, \infty\right)\right)+\sum_{(j)} N\left(r, \nu\left(b_{(j)}, \infty\right)\right) . \tag{15}
\end{align*}
$$

In a similar fashion, we have

$$
\begin{aligned}
& N\left(r, \varphi_{k+1} / \prod_{j=1}^{k+1}\left(w-c_{j}\right)\right) \\
& \quad \leq \sum_{j=1}^{k+1}\left[2 N\left(r, \nu\left(w, c_{j}\right)\right)-\bar{N}\left(r, \nu\left(w, c_{j}\right)\right)\right]+\sum_{j=1}^{k+1} N\left(r, \nu\left(H_{j}, \infty\right)\right)+
\end{aligned}
$$

$$
\begin{equation*}
\sum_{j=1}^{k+1} N\left(r, \nu\left(H_{j}, 0\right)\right)+\sum_{(i)} N\left(r, \nu\left(a_{(i)}, \infty\right)\right)+\sum_{(j)} N\left(r, \nu\left(b_{(j)}, \infty\right)\right) \tag{16}
\end{equation*}
$$

Combining (6), (12), (13), (15) and (16), we obtain

$$
\begin{align*}
T(r, w) \leq & 8 \sum_{j=1}^{k+1} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{j=1}^{k+1}\left[4 N\left(r, \nu\left(w, c_{j}\right)\right)-2 \bar{N}\left(r, \nu\left(w, c_{j}\right)\right)\right]+2 \sum_{j=1}^{k+1} T\left(r, H_{j}\right)+ \\
& 2 \sum_{j=1}^{k+1} T\left(r, \frac{1}{H_{j}}\right)+2 \sum_{(i)} T\left(r, a_{(i)}\right)+2 \sum_{(j)} T\left(r, b_{(j)}\right)+S(r, w) . \tag{17}
\end{align*}
$$

We choose 17 systems which are distinct from each other $\left\{c_{j}\right\}(j=1,2, \ldots, 17(k+1))$ and apply Inequality (17) to every system. Combining the above seventeen inequalities, we deduce

$$
\begin{aligned}
17 T(r, w) \leq & 8 \sum_{j=1}^{17(k+1)} m\left(r, \frac{1}{w-c_{j}}\right)+\sum_{j=1}^{17(k+1)}\left[4 N\left(r, \nu\left(w, c_{j}\right)\right)-2 \bar{N}\left(r, \nu\left(w, c_{j}\right)\right)\right]+ \\
& 2 \sum_{j=1}^{17(k+1)} T\left(r, H_{j}\right)+2 \sum_{j=1}^{17(k+1)} T\left(r, \frac{1}{H_{j}}\right)+34 \sum_{(i)} T\left(r, a_{(i)}\right)+ \\
& 34 \sum_{(j)} T\left(r, b_{(j)}\right)+S(r, w) .
\end{aligned}
$$

By Lemma 2, we have

$$
\begin{align*}
17 T(r, w) \leq & 16 T(r, w)+2 \sum_{j=1}^{17(k+1)} T\left(r, H_{j}\right)+ \\
& 2 \sum_{j=1}^{17(k+1)} T\left(r, \frac{1}{H_{j}}\right)+34 \sum_{(i)} T\left(r, a_{(i)}\right)+34 \sum_{(j)} T\left(r, b_{(j)}\right)+S(r, w), \tag{18}
\end{align*}
$$

By $\sum_{(i)} T\left(r, a_{(i)}\right)+\sum_{(j)} T\left(r, b_{(j)}\right)+T\left(r, H_{j}\right)=S(r, w)(j=1,2, \ldots)$ and Inequality (18), we deduce $1 \leq 0$. This is a contradiction. It follows that $\varphi_{k+1} \equiv 0$.

It follows that w satisfies the following equation

$$
\Omega_{1} Q_{k}(z, w)=\Omega_{2} Q_{k-1}(z, w)
$$

Define

$$
R(z, w)=H(z, w)-\frac{Q_{k}(z, w)}{Q_{k-1}(z, w)}
$$

We claim that $R\left(z, c_{j}\right) \equiv R_{j}(z) \equiv 0$ for $j=1,2, \ldots$. Assume to the contrary that $R_{j} \not \equiv 0$. Then

$$
\begin{aligned}
\bar{N}\left(r, w=c_{j}\right) & \leq N\left(r, R_{j}=0\right) \leq T\left(r, R_{j}\right)+O(1) \\
& \leq T\left(r, H_{j}\right)+\sum_{l=1}^{k+1} T\left(r, H_{l}\right)+O(1)=S(r, w)
\end{aligned}
$$

By Lemma 2，there are at most two values c_{j} such that the inequality above holds．Hence $R\left(z, c_{j}\right) \equiv 0$ ，or

$$
H\left(z, c_{j}\right)=\frac{Q_{k}\left(z, c_{j}\right)}{Q_{k-1}\left(z, c_{j}\right)}, \text { for all } z \in \mathbb{C}^{n}
$$

Hence，the identity theorem implies $H(z, w)=\frac{Q_{k}(z, w)}{Q_{k-1}(z, w)}$ ．This completes the proof．
Acknowledgement The author would lkie to thank the referee for his careful reading of the manuscript and many useful comments for improvements of the presentation．

参考文献：

［1］STEINMETZ N．Eigensdhaften eindeutiger Losungen gewohnlicher Differentialgleichungen im komplexen［D］． Karlsurhe，Dissertation， 1978
［2］TU Zhen－han．Some Malmquist－type theorems of partial differential equations on C^{n}［J］．J．Math．Anal． Appl．，1993，179（1）：41－60．
［3］HU Pei－chu，YANG Chung－chun．Further results on factorization of meromorphic solutions of partial differ－ ential equations［J］．Results Math．，1996，30（3－4）：310－320．
［4］TU Zhen－han．On meromorphic solutions of some algebraic partial differential equations on \mathbb{C}^{n}［J］．J．Math． Anal．Appl．，1997，214（1）：1－10．
［5］BIANCOFIORE A，STOLL W．Another proof of the lemma of the logarithmic derivative in several complex variables［J］．Ann．of Math．Stud．，100，Princeton Univ．Press，Princeton，N．J．， 1981.
［6］GAO Ling－yun．Some results on admissible algebroid solutions of complex differential equations［J］．Indian J． Pure Appl．Math．，2001，32（7）：1041－1050．
［7］GAO Ling－yun．Admissible meromorphic solutions of a type of higher－order algebraic differential equation ［J］．J．Math．Res．Exposition，2003，23（3）：443－448．

一类高阶偏微分方程的亚纯解

高凌云
（暨南大学数学系，广东 广州510632）
摘要：利用多复变值分布理论，我们将 Steinmetz 的代数微分方程的 Malmquist 型定理推广到复偏微分方程中。

关键词：亚纯解；偏微分方程；Malmquist 型定理．

