Article ID: 1000-341X(2007)02-0273-09

Document code: A

Meromorphic Solutions of a Type of Higher-Order Partial Differential Equations

GAO Ling-yun

(Department of Mathematics, Ji'nan University, Guangdong 510623, China) (E-mail: tgaoly@jnu.edu.cn)

Abstract: Using the value distribution theory in several complex variables, we extend Malmquist type theorem of algebraic differential equation of Steinmetz to higher-order partial differential equations.

Key words: meromorphic solutions; partial differential equations; Malmquist type theorems. MSC(2000): 32A20; 32A22; 32H30; 30D35 CLC number: 0174.52

1. Introduction and main result

For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, we define, for any $r \in \mathbb{R}^+$, $|z| = (|z_1|^2 + \cdots + |z_n|^2)^{1/2}$, $\tau(z) = |z|^2$, $\mathbb{C}^{\ltimes} \langle r \rangle = \{z \in \mathbb{C}^n : |z| = r\}, \mathbb{C}^n(r) = \{z \in \mathbb{C}^n : |z| < r\}.$ Let $\mathbb{C}^n[r] = \{z \in \mathbb{C}^n : |z| \le r\}, d = \partial + \overline{\partial}, d^c = \frac{i}{4\pi}(\overline{\partial} - \partial).$ We then write

$$\omega_n(z) = dd^c \log |z|^2, \sigma_n(z) = d^c \log |z|^2 \wedge \omega_n^{n-1}(z), z \in \mathbb{C}^n \setminus \{0\};$$
$$\nu_n(z) = dd^c |z|^2, \rho_n(z) = \nu_n^n(z), z \in \mathbb{C}^n.$$

Thus $\sigma_n(z)$ defines a positive measure on $\mathbb{C}^n \langle r \rangle$ with total measure one and ρ_n is a normalized Lebesgue measure on \mathbb{C}^n such that $\mathbb{C}^n(r)$ has measure r^{2n} . Let \mathbb{P}^1 be the Riemann sphere, and f be a meromorphic function on \mathbb{C}^n , i.e., f can be written as a quotient of two holomorphic functions which are relatively prime. Thus f can be regarded as a meromorphic map $f: \mathbb{C}^n \to \mathbb{P}^1$ such that $f^{-1}(\infty) \neq \mathbb{C}^n$.

For $a, b \in \mathbb{P}^1$, the chordal distance from a to b is denoted by || a, b ||,

$$|a, \infty|| = \frac{1}{\sqrt{1+|a|^2}}, ||a, b|| = \frac{|a-b|}{\sqrt{1+|a|^2}\sqrt{1+|b|^2}}, a, b \in \mathbb{C},$$

where || a, a || = 0 and $0 \le || a, b || = || b, a || \le 1$.

For 0 < s < r, the characteristic of f is defined by

$$T(r,f) = \int_s^r \frac{1}{t^{2n-1}} \int_{\mathbb{C}^n[t]} f^*(\omega) \bigwedge \nu_n^{n-1} \mathrm{d}t = \int_s^r \frac{1}{t} \int_{\mathbb{C}^n[t]} f^*(\omega) \bigwedge \omega_n^{n-1} \mathrm{d}t.$$

Received date: 2005-07-01; Accepted date: 2007-01-16

Foundation item: the National Natural Science Foundation of China (10471065); the Natural Science Foundation of Guangdong Province (04010474).

Let ν be a divisor on \mathbb{C}^n . We identify ν with its multiplicity function and define

$$\nu(r) = \{ z \in \mathbb{C}^n : |z| < r \} \bigcap \operatorname{supp}\nu, r > 0.$$

The pre-counting function of ν is defined by

$$n(r,\nu) = \sum_{z \in \nu(r)} \nu(z), \quad \text{if} \quad n = 1; n(r,\nu) = r^{2-2n} \int_{\nu(r)} \nu \nu_n^{n-1}, \quad \text{if} \quad n > 1.$$

The counting function of ν is defined by

$$N(r,\nu) = \int_{s}^{r} n(t,\nu) \frac{\mathrm{d}t}{t}, r > s.$$

Let f be a meromorphic function on \mathbb{C}^n . If $a \in \mathbb{P}^1$ and $f^{-1}(a) \neq \mathbb{C}^n$, the *a*-divisor $\nu(f, a) \ge 0$ is defined, and its pre-counting function and counting function will be denoted by n(r, f, a) and N(r, f, a), respectively.

If $a \in \mathbb{P}^1$ and $f^{-1}(a) \neq \mathbb{C}^n$, then we define the proximity function as follows

$$m(r, f, a) = \int_{|z|=r} \log \frac{1}{\|a, f(z)\|} \sigma_n \ge 0, r > 0.$$

For a divisor ν on \mathbb{C}^n , let

$$\overline{n}(r,\nu) = \sum_{z \in \nu(r)} 1, \quad \text{if} \quad n = 1; \ \overline{n}(r,\nu) = r^{2-2n} \int_{\nu(r)} \nu_n^{n-1}, \quad \text{if} \quad n > 1,$$
$$\overline{N}(r,\nu) = \int_s^r \overline{n}(t,\nu) \frac{\mathrm{d}t}{t}, \quad \overline{N}(r,f,a) = \overline{N}(r,\nu(f,a)).$$

The first main theorem states that

$$T(r, f) = N(r, f, a) + m(r, f, a) - m(s, f, a).$$

For a meromorphic function w on \mathbb{C}^n , let

$$\Omega_1(z, w, Dw, \dots, D^n w) = \sum_{(i) \in I} a_{(i)}(z) w^{i_0} (Dw)^{i_1} \cdots (D^n w)^{i_n},$$
$$\Omega_2(z, w, Dw, \dots, D^n w) = \sum_{(i) \in J} b_{(j)}(z) w^{j_0} (Dw)^{j_1} \cdots (D^n w)^{j_n},$$

where $D^k w = (\partial_1)^{k_1} \cdots (\partial_n)^{k_n} w$ is the partial derivative of w of order $k = k_1 + \cdots + k_n$, $\partial_j = \partial/\partial z_j$; $\{a_{(i)}(z)\}, \{b_{(j)}(z)\}$ are meromorphic functions on \mathbb{C}^n ; I, J are two finite sets of multiindices $(i) = (i_0, i_1, \ldots, i_n)$ and $(j) = (j_0, j_1, \ldots, j_n)$ respectively; and $i_0, i_1, \ldots, i_n, j_0, j_1, \ldots, j_n$ are non-negative integers.

For partial differential polynomials $\Omega_1(z, w, Dw, \dots, D^n w), \Omega_2(z, w, Dw, \dots, D^n w)$, we adopt the notation, respectively:

$$\lambda_1 = \max\{\sum_{l=0}^n i_l\}, \Delta_1 = \max\{\sum_{l=0}^n (l+1)i_l\}; \lambda_2 = \max\{\sum_{l=0}^n j_l\}, \Delta_2 = \max\{\sum_{l=0}^n (l+1)j_l\}.$$

In this paper we consider the following partial differential equation

$$\frac{\Omega_1(z, w, Dw, \dots, D^n w)}{\Omega_2(z, w, Dw, \dots, D^n w)} = H(z, w), \tag{1}$$

where H(z, w) is a meromorphic function on \mathbb{C}^{n+1} with $z \in \mathbb{C}^n$ and $w \in \mathbb{C}$.

In 1978, N. Steinmetz investigated the problem of the existence of admissible solutions of algebraic differential equation of the form

$$\Omega(z, w) = H(z, w), \tag{2}$$

where $\Omega(z, w) = \sum_{(i)} a_{(i)}(z) w^{i_0}(w')^{i_1} \cdots (w^{(n)})^{i_n}$, and H(z, w) is quotient of entire functions in variables z and w. They obtained

Theorem A^[1] If the differential equation (2) admits an admissible meromorphic solution w(z), then (2) must be degenerate into a polynomial in w and

$$\deg_w H(z, w) \le \Delta,$$

where $\Delta = \max\{i_0 + 2i_1 + \ldots + (n+1)i_n\}.$

Recently, the papers^[2-4] have investigated the problem of some Malmquist-type theorems of partial differential equations on \mathbb{C}^n . In particular, [2] extends Theorem A to partial differential equations:

Theorem B^[3] Let a_1, \ldots be a sequence of distinct complex numbers which tends to a finite limit value a, and set $H_j(z) = H(z, a_j)$. If the partial differential equation $\Omega(z, w, Dw, \ldots, D^n w) =$ H(z, w) admits a meromorphic solution w(z) that satisfies the condition

$$\sum_{(i)\in I} T(r, a_{(i)}) + T(r, H_j) = S(r, w), j = 1, 2, \dots,$$

then the equation is a polynomial in w and $\deg_w H(z, w) \leq w(\Omega)$ (weight of Ω).

In [7] we considered the existence of admissible solution of general algebraic differential equations of the form

$$\frac{\Omega_1(z,w)}{\Omega_2(z,w)} = H(z,w),\tag{3}$$

where

$$\Omega_1(z,w) = \sum_{(i)} a_{(i)}(z) w^{i_0}(w')^{i_1} \cdots (w^{(n)})^{i_n},$$
$$\Omega_2(z,w) = \sum_{(j)} b_{(j)}(z) w^{j_0}(w')^{j_1} \cdots (w^{(n)})^{j_n}$$

are differential polynomials with meromorphic coefficients $\{a_{(i)}\}\$ and $\{b_{(j)}\}\$, respectively, (i) and (j) are two finite index sets, and H(z, w) is a meromorphic function in z and w.

We obtained

Theorem C^[7] If w(z) is an admissible meromorphic solutions of (3), then H(z, w) must be rational function in w, and the degree of w satisfies

$$\deg_w H(z, w) \le \lambda + (\Delta - \lambda)(1 - \theta(w, \infty)) \le \Delta,$$

where $\lambda = \max\{\lambda_1, \lambda_2\}, \Delta = \max\{\Delta_1, \Delta_2\}, \theta(w, \infty) = 1 - \limsup \frac{\overline{N}(r, w)}{T(r, w)}.$

For Equation (1), we will prove

Theorem 1 Let c_1, c_2, \ldots be a sequence of distinct complex numbers which tends to a finite limit value c. And set $H_j(z) = H(z, c_j)$. If Equation (1) admits a meromorphic solution w(z) that satisfies the condition

$$\sum_{(i)} T(r, a_{(i)}) + \sum_{(j)} T(r, b_{(j)}) + T(r, H_j) = S(r, w), j = 1, 2, \dots,$$

then H(z, w) must be rational function in w, and the degree of w satisfies

$$\deg_w H(z, w) \le \Delta,$$

where $\Delta = \max{\{\Delta_1, \Delta_2\}}.$

2. Some lemmas

Lemma 1^[5] Let w(z) be a meromorphic function on \mathbb{C}^n . Then

$$\int_{\mathbb{C}^n \langle r \rangle} \log^+(|D^k w(z)|/|w(z)|) \sigma_n \le 17(\log^+(rT(r,w))),$$

for all large r outside a set I with $\int_I d\log r < \infty$, where $\log^+ x = \log x$, if $x \ge 1$; $\log^+ x = 0$, if $0 \le x < 1$.

Lemma 2 (The second main theorem)^[3] Let f(z) be a meromorphic function on \mathbb{C}^n . If $a_1, \ldots, a_q \in \mathbb{P}^1$ are distinct constants, then

$$(q-2)T(r,f) \le \sum_{i=1}^{q} \overline{N}(r,f,a_i) + S_1(r),$$

where $S_1(r) \leq O(\log(rT(r, f)))$ for all large r outside a set I with $\int_I d\log r < \infty$.

3. Proof of Theorem 1

Let w(z) be an admissible meromorphic solutions of Equation (1). For $c_1 \in E$, set

$$\varphi_1(z;c_1) = \frac{\Omega_1}{H(z,c_1)(w-c_1)} - \frac{\Omega_2}{w-c_1} = \frac{\Omega_1 - \Omega_2 H(z,c_1)}{H(z,c_1)(w-c_1)}.$$
(4)

Because w is a meromorphic solutions of Equation (1), we know that

$$\operatorname{supp}\nu(w,c_1) \subseteq \operatorname{supp}\nu(\varphi_1(z;c_1),0).$$

276

Take $z \in \mathbb{C}^n$ with $\nu(w, c_1) > 0$ and let $\theta_{n,z}$ denote the ring of holomorphic functions defined in some neighborhood of $z \in \mathbb{C}^n$. If $w - c_1$ is irreducible in $\theta_{n,z}$, then $w - c_1$ devides $\Omega_1 - \Omega_2 H(z, c_1)$ in $\theta_{n,z}$ (Weak Nullstellensatz), which implies $\nu(\varphi_1(z; c_1), \infty) = 0$.

If $w - c_1$ is not irreducible, then there exists an irreducible $g \in \theta_{n,z}$ such that g(z) = 0and g divides $w - c_1$ in $\theta_{n,z}$ because $\theta_{n,z}$ is a unique factorization domain. Then g divides $\Omega_1 - \Omega_2 H(z, c_1)$ in $\theta_{n,z}$. Consequently, we have

$$\nu(\varphi_1(z;c_1),\infty) \le \nu(w,c_1) - 1.$$

Now we take $c_1, c_2 \in E, c_1 \neq c_2$ and set

$$\varphi_2(z;c_1,c_2) = \frac{\Omega_1[H(z,c_2)(w-c_2) - H(z,c_1)(w-c_1)]}{H(z,c_2)(w-c_2)H(z,c_1)(w-c_1)} - \frac{(c_1-c_2)\Omega_2H(z,c_1)H(z,c_2)}{H(z,c_2)(w-c_2)H(z,c_1)(w-c_1)}.$$

If $\nu(w,c_j) > 0$ and $a_{(i)} \neq \infty, b_{(j)} \neq \infty, H(z,c_j) \neq 0, \infty \ (j=1,2)$, we have

$$\begin{aligned} \Omega_1[H(z,c_2)(w-c_2) - H(z,c_1)(w-c_1)] &- (c_1-c_2)\Omega_2 H(z,c_1)H(z,c_2) \\ &= \Omega_1[H(z,c_2)(w-c_1+c_1-c_2) - H(z,c_1)(w-c_1)] - (c_1-c_2)\Omega_2 H(z,c_1)H(z,c_2) \\ &= \Omega_1[H(z,c_2)(c_1-c_2)] - (c_1-c_2)\Omega_2 H(z,c_1)H(z,c_2) = 0. \end{aligned}$$

It shows that $\nu(\varphi_2(z; c_1; c_2), \infty) \le \nu(w, c_j) - 1, j = 1, 2.$

In general, we take distinct $c_1, c_2, \ldots, c_k \in E$ and set

$$\varphi_k(z; c_1, \dots, c_k) = \varphi_{k-1}(z; c_1, \dots, c_{k-1}) - \varphi_{k-1}(z; c_1, \dots, c_{k-2}, c_k)$$
$$= (\Omega_1 Q_{k-1}(z, w) - \Omega_2 Q_{k-2}(z, w)) / \prod_{j=1}^k H(z, c_j)(w - c_j), \tag{5}$$

where $Q_k(z, w)$ is a polynomial of degree k - 1 in w, and its coefficients are combination with $H_j(z)(j = 1, 2, ..., k)$. By induction, from Equation (5), if $\nu(w, c_j) > 0$, and $a_{(i)} \neq \infty, b_{(j)} \neq \infty, H(z, c_j) \neq 0, \infty$ (j = 1, 2, ..., k), we have

$$\nu(\varphi_k(z;c_1,c_2,\ldots,c_k),\infty) \le \nu(w,c_j) - 1.$$

Next we prove that $\varphi_{k+1} \equiv 0$ if w(z) is a meromorphic solution of Equation (1). Suppose $\deg_w H(z, w) = k = \Delta$ and $\varphi_{k+1} \neq 0$. By the first main theorem, it follows that

$$T(r,w) = T(r,w-c_{k+1}) + O(1) = T(r,\prod_{j=1}^{k+1}(w-c_j)/\prod_{j=1}^{k}(w-c_j)) + o(1)$$
$$\leq T(r,\varphi_{k+1}/\prod_{j=1}^{k}(w-c_j)) + T(r,\varphi_{k+1}/\prod_{j=1}^{k+1}(w-c_j)) + O(1).$$
(6)

Now we estimate $T(r, \varphi_{k+1} / \prod_{j=1}^{k} (w - c_j))$ and $T(r, \varphi_{k+1} / \prod_{j=1}^{k+1} (w - c_j))$.

$$m(r, \frac{\varphi_{k+1}}{\prod_{j=1}^{k} (w - c_j)}) = m(r, \frac{\Omega_1 Q_k(z, w) - \Omega_2 Q_{k-1}(z, w)}{\prod_{j=1}^{k+1} H(z, c_j)(w - c_j) \prod_{j=1}^{k} (w - c_j)})$$

$$\leq m(r, \frac{\Omega_1}{\prod\limits_{j=1}^{k+1} (w - c_j)}) + m(r, \frac{Q_k(z, w)}{\prod\limits_{j=1}^{k} (w - c_j)}) + m(r, \frac{\Omega_2}{\prod\limits_{j=1}^{k+1} (w - c_j)}) + m(r, \frac{Q_{k-1}(z, w)}{\prod\limits_{j=1}^{k} (w - c_j)}) + 2\sum m(r, \frac{1}{H(z, c_j)}) + O(1).$$

We note that

$$|w/(w-c_j)| \le 1 + |c_j|/|w-c_j| \le (1+|c_j|)(1/|w-c_j|)^+ \le c(1/|w-c_j|)^+,$$
(7)

where $|a|^+ = \max\{1, |a|\}, c = \max\{1 + |c_j|\}$. Thus

$$|\Omega_1 / \prod_{j=1}^{k+1} (w - c_j)| \le c^{k+1} \sum |a_{(i)}(z)| (\prod_j |\frac{Dw}{(w - c_j)}|) \dots (\prod_j |\frac{D^n w}{(w - c_j)}|) (\prod_j |\frac{1}{(w - c_j)}|^+),$$

$$|\Omega_2 / \prod_{j=1}^{k+1} (w - c_j)| \le c^{k+1} \sum |b_{(j)}(z)| (\prod_j |\frac{Dw}{(w - c_j)}|) \dots (\prod_j |\frac{D^n w}{(w - c_j)}|) (\prod_j |\frac{1}{(w - c_j)}|^+),$$

where $\prod_j \left| \frac{D^{\alpha}w}{(w-c_j)} \right|$ is $i_{1\alpha}$ -fold product, and $\prod_j \left(\left| \frac{1}{w-c_j} \right| \right)^+$ is $(k+1-\lambda_t-t_0)(t=i,j)$ -fold product. So

$$m(r,\Omega_1/\prod_{j=1}^{k+1}(w-c_j)) \le \sum_{j=1}^k m(r,\frac{1}{w-c_j}) + \sum_{(i)} m(r,a_{(i)}) + O\{\sum_{\alpha=1}^n \sum_{j=1}^{k+1} m(r,\frac{D^{\alpha}w}{w-c_j})\}.$$
 (8)

$$m(r,\Omega_2/\prod_{j=1}^{k+1}(w-c_j)) \le \sum_{j=1}^k m(r,\frac{1}{w-c_j}) + \sum_{(j)} m(r,b_{(j)}) + O\{\sum_{\alpha=1}^n \sum_{j=1}^{k+1} m(r,\frac{D^{\alpha}w}{w-c_j})\}.$$
 (9)

$$m(r, Q_k(z, w) / \prod_{j=1}^k (w - c_j)) \le \sum_{j=1}^k m(r, \frac{1}{w - c_j}) + \sum_{j=1}^k m(r, H_j) + O(1).$$
(10)

$$m(r, Q_{k-1}(z, w) / \prod_{j=1}^{k} (w - c_j)) \le \sum_{j=1}^{k} m(r, \frac{1}{w - c_j}) + \sum_{j=1}^{k} m(r, H_j) + O(1).$$
(11)

By (8), (9), (10), (11) and Lemma 1, we have

$$m(r,\varphi_{k+1}/\prod_{j=1}^{k}(w-c_j)) \le 4\sum_{j=1}^{k}m(r,\frac{1}{w-c_j}) + \sum_{(i)}m(r,a_{(i)}) + \sum_{(j)}m(r,b_{(j)}) + 2\sum_{j=1}^{k}m(r,H_j) + S(r,w),$$
(12)

where $S(r,w) = O\{\log(rT(r,w))\}$ for all large r outside a set I with $\int_I d\log r < \infty$.

Similarly, we may deduce that

$$m(r,\varphi_{k+1}/\prod_{j=1}^{k+1}(w-c_j)) \le 4\sum_{j=1}^{k+1}m(r,\frac{1}{w-c_j}) + \sum_{(i)}m(r,a_{(i)}) + \sum_{(j)}m(r,b_{(j)}) + \sum_{(j)}m(r,b_{(j)$$

$$2\sum m(r, H_j) + S(r, w), \tag{13}$$

for all large r outside a set I with $\int_I \mathrm{d}\log r < \infty.$

Now we estimate $N(r, \varphi_{k+1} / \prod_{j=1}^{k} (w - c_j))$ and $N(r, \varphi_{k+1} / \prod_{j=1}^{k+1} (w - c_j))$. By

$$\varphi_{k+1} / \prod_{j=1}^{k} (w - c_j) = (\Omega_1 Q_k(z, w) - \Omega_2 Q_{k-1}(z, w)) / \prod_{j=1}^{k+1} H(z, c_j) (w - c_j) \prod_{j=1}^{k} (w - c_j), \quad (14)$$

we know that the poles of $\varphi_{k+1}/\prod_{j=1}^{k}(w-c_j)$ may arise from one of the following cases:

- (i). The poles of $\{a_{(i)}(z)\}, \{b_{(j)}(z)\};$
- (ii). The poles and the zeros of $\{H_j(z)\}$;
- (iii). The zeros of $w c_j$ for which the cases (i) and (ii) are not satisfied;
- (iv). The poles of w(z).

Case (i). Its contribution to $N(r, \varphi_{k+1} / \prod_{j=1}^{k} (w-c_j))$ is $\sum N(r, \nu(a_{(i)}, \infty)) + \sum N(r, \nu(b_{(j)}, \infty))$. **Case (ii)**. Its contribution to $N(r, \varphi_{k+1} / \prod_{j=1}^{k} (w-c_j))$ is $\sum N(r, \nu(H_j, \infty)) + \sum N(r, \nu(H_j, 0))$.

Case (iii). According to the above discussion, we have

$$\nu(\varphi_{k+1} / \prod_{j=1}^{k} (w - c_j), \infty) \le 2\nu(w, c_j) - 1$$

Thus, its contribution is at most $\sum_{j=1}^{k} [2N(r,\nu(w,c_j)) - \overline{N}(r,\nu(w,c_j))].$

Case (iv). If z_0 is a pole of w with multiplicity τ , then it is the poles of the denominator of right-side of the equality (14) with multiplicity $(2\Delta - 1)\tau$. But z_0 is at most the poles of the numerator of right-side of the equality (14) with multiplicity $(2\Delta - 1)\tau$. Hence, it follows that the poles of w(z) does not arise from the poles of $\varphi_{k+1}/\prod_{j=1}^{k}(w-c_j)$.

From Cases (i)–(iv) if follows that

$$N(r, \varphi_{k+1} / \prod_{j=1}^{k} (w - c_j))$$

$$\leq \sum_{j=1}^{k} [2N(r, \nu(w, c_j)) - \overline{N}(r, \nu(w, c_j))] + \sum_{j=1}^{k} N(r, \nu(H_j, \infty)) + \sum_{j=1}^{k} N(r, \nu(H_j, 0)) + \sum_{(i)} N(r, \nu(a_{(i)}, \infty)) + \sum_{(j)} N(r, \nu(b_{(j)}, \infty)).$$
(15)

In a similar fashion, we have

$$N(r, \varphi_{k+1} / \prod_{j=1}^{k+1} (w - c_j))$$

$$\leq \sum_{j=1}^{k+1} [2N(r, \nu(w, c_j)) - \overline{N}(r, \nu(w, c_j))] + \sum_{j=1}^{k+1} N(r, \nu(H_j, \infty)) +$$

$$\sum_{j=1}^{k+1} N(r,\nu(H_j,0)) + \sum_{(i)} N(r,\nu(a_{(i)},\infty)) + \sum_{(j)} N(r,\nu(b_{(j)},\infty)).$$
(16)

Combining (6), (12), (13), (15) and (16), we obtain

$$T(r,w) \leq 8 \sum_{j=1}^{k+1} m(r, \frac{1}{w - c_j}) + \sum_{j=1}^{k+1} [4N(r, \nu(w, c_j)) - 2\overline{N}(r, \nu(w, c_j))] + 2 \sum_{j=1}^{k+1} T(r, H_j) + 2 \sum_{j=1}^{k+1} T(r, \frac{1}{H_j}) + 2 \sum_{(i)} T(r, a_{(i)}) + 2 \sum_{(j)} T(r, b_{(j)}) + S(r, w).$$

$$(17)$$

We choose 17 systems which are distinct from each other $\{c_j\}$ (j = 1, 2, ..., 17(k+1)) and apply Inequality (17) to every system. Combining the above seventeen inequalities, we deduce

$$\begin{split} 17T(r,w) \leq &8\sum_{j=1}^{17(k+1)} m(r,\frac{1}{w-c_j}) + \sum_{j=1}^{17(k+1)} [4N(r,\nu(w,c_j)) - 2\overline{N}(r,\nu(w,c_j))] + \\ &2\sum_{j=1}^{17(k+1)} T(r,H_j) + 2\sum_{j=1}^{17(k+1)} T(r,\frac{1}{H_j}) + 34\sum_{(i)} T(r,a_{(i)}) + \\ &34\sum_{(j)} T(r,b_{(j)}) + S(r,w). \end{split}$$

By Lemma 2, we have

$$17T(r,w) \leq 16T(r,w) + 2\sum_{j=1}^{17(k+1)} T(r,H_j) + 2\sum_{j=1}^{17(k+1)} T(r,\frac{1}{H_j}) + 34\sum_{(i)} T(r,a_{(i)}) + 34\sum_{(j)} T(r,b_{(j)}) + S(r,w), \quad (18)$$

By $\sum_{(i)} T(r, a_{(i)}) + \sum_{(j)} T(r, b_{(j)}) + T(r, H_j) = S(r, w)(j = 1, 2, ...)$ and Inequality (18), we deduce $1 \leq 0$. This is a contradiction. It follows that $\varphi_{k+1} \equiv 0$.

It follows that w satisfies the following equation

$$\Omega_1 Q_k(z, w) = \Omega_2 Q_{k-1}(z, w).$$

Define

$$R(z, w) = H(z, w) - \frac{Q_k(z, w)}{Q_{k-1}(z, w)}.$$

We claim that $R(z, c_j) \equiv R_j(z) \equiv 0$ for j = 1, 2, ... Assume to the contrary that $R_j \not\equiv 0$. Then

$$\overline{N}(r, w = c_j) \leq N(r, R_j = 0) \leq T(r, R_j) + O(1)$$
$$\leq T(r, H_j) + \sum_{l=1}^{k+1} T(r, H_l) + O(1) = S(r, w).$$

By Lemma 2, there are at most two values c_j such that the inequality above holds. Hence $R(z,c_i) \equiv 0$, or

$$H(z,c_j) = \frac{Q_k(z,c_j)}{Q_{k-1}(z,c_j)}, \text{ for all } z \in \mathbb{C}^n.$$

Hence, the identity theorem implies $H(z, w) = \frac{Q_k(z, w)}{Q_{k-1}(z, w)}$. This completes the proof.

Acknowledgement The author would lkie to thank the referee for his careful reading of the manuscript and many useful comments for improvements of the presentation.

参考文献:

- [1] STEINMETZ N. Eigenschaften eindeutiger Losungen gewohnlicher Differentialgleichungen im komplexen [D]. Karlsurhe, Dissertation, 1978.
- TU Zhen-han. Some Malmquist-type theorems of partial differential equations on C^n [J]. J. Math. Anal. [2]Appl., 1993, **179**(1): 41–60.
- [3] HU Pei-chu, YANG Chung-chun. Further results on factorization of meromorphic solutions of partial differential equations [J]. Results Math., 1996, 30(3-4): 310-320.
- [4] TU Zhen-han. On meromorphic solutions of some algebraic partial differential equations on \mathbb{C}^n [J]. J. Math. Anal. Appl., 1997, **214**(1): 1–10.
- [5] BIANCOFIORE A, STOLL W. Another proof of the lemma of the logarithmic derivative in several complex variables [J]. Ann. of Math. Stud., 100, Princeton Univ. Press, Princeton, N.J., 1981.
- [6] GAO Ling-yun. Some results on admissible algebroid solutions of complex differential equations [J]. Indian J. Pure Appl. Math., 2001, **32**(7): 1041–1050.
- [7] GAO Ling-yun. Admissible meromorphic solutions of a type of higher-order algebraic differential equation [J]. J. Math. Res. Exposition, 2003, **23**(3): 443–448.

一类高阶偏微分方程的亚纯解

高凌云 (暨南大学数学系,广东广州 510632)

摘要:利用多复变值分布理论,我们将 Steinmetz 的代数微分方程的 Malmquist 型定理推广到 复偏微分方程中.

关键词: 亚纯解; 偏微分方程; Malmquist 型定理.