Θ-Type Derivation and Derivation Superalgebra of the Finite-Dimensional Modular Lie Superalgebra $W(m, n, l, \underline{t})$

FANG Xiao Chao ${ }^{1}$, ZHANG Yong Zheng ${ }^{2}$

(1. Department of Mathematics, Harbin College, Heilongjiang 150080, China;
2. Department of Mathematics, Northeast Normal University, Jilin 130024, China)
(E-mail: fang_xiao_chao@163.com; zhyz@nenu.edu.cn)

Abstract

In this paper F always denotes a field of characteristic $p>2$. We construct the finitedimensional modular Lie superalgebra $W(m, n, l, \underline{t})$ over a field F, define Θ-type derivation and determine the derivation superalgebra of $W(m, n, l, \underline{t})$.

Keywords modular Lie superalgebra; generator; derivation.
Document code A
MR(2000) Subject Classification 17B50
Chinese Library Classification O152.5

1. Introduction and definition

Modular Lie superalgebra $W(m, n, \underline{t})$ was constructed in [1]. In this paper we construct modular Lie superalgebra $W(m, n, l, \underline{t})$ that extends $W(m, n, \underline{t})$, determine the derivation superalgebra of $W(m, n, l, \underline{t})$, and prove that $W(m, n, l, \underline{t})$ has a new type of derivation called Θ-type derivation. Consequently, $W(m, n, l, \underline{t})$ is not isomorphic to the known Cartan-type modular Lie superalgebras. In this paper F always denotes a field of characteristic $p>2$ and Π is the prime field of F. Then $\Pi=\{0,1,2, \ldots, p-1\} \cong Z_{p}, F$ is a linear space over Π. Set $z_{1}, \ldots, z_{l} \in F$ such that z_{1}, \cdots, z_{l} are linearly independent over Π. Put $G=\left\{\lambda_{1} z_{1}+\cdots+\lambda_{l} z_{l} \mid 0 \leq \lambda_{i}<p, i=1, \ldots, l\right\}$. Then G is additive subgroup of F. We define a truncated polynomial algebra $F\left[y_{1}, y_{2}, \ldots, y_{l}\right]$ such that $y_{i}^{p}=1(i=1, \ldots, l)$. If $\lambda \in G$, then λ can be expressed as $\lambda=\lambda_{1} z_{1}+\cdots+\lambda_{l} z_{l}$. Let $y^{\lambda}=y_{1}^{\lambda_{1}} \cdots y_{l}^{\lambda_{l}}$. It is easy to see

$$
\begin{equation*}
y^{\lambda} y^{\eta}=y^{\lambda+\eta}(\forall \lambda, \eta \in G) \tag{1.1}
\end{equation*}
$$

Let Γ denote $F\left[y_{1}, y_{2}, \ldots, y_{l}\right]$ for short. Then $\Gamma=\operatorname{span}_{F}\left\{y^{\lambda} \mid \lambda \in G\right\}$. Let m and n be the positive integers. Set $\widetilde{\Lambda}=\Lambda(m, n, \underline{t}) \otimes \Gamma$, where $\Lambda(m, n, \underline{t})$ is defined in $\left[1, P_{21}\right]$. Let $Z_{2}=\{\overline{0}, \overline{1}\}$ be the residue ring of integers modulo 2 . Then $\widetilde{\Lambda}$ is an associative superalgebra with a Z_{2}-gradation induced by the trivial Z_{2}-gradation of Γ and the Z_{2}-gradation of $\Lambda(m, n, \underline{t})$:

$$
\widetilde{\Lambda}_{\overline{0}}=\Lambda(m, n, \underline{t})_{\overline{0}} \otimes \Gamma, \quad \widetilde{\Lambda}_{\overline{1}}=\Lambda(m, n, \underline{t})_{\overline{1}} \otimes \Gamma
$$

Received date: 2006-03-21; Accepted date: 2007-07-13
Foundation item: the National Natural Science Foundation of China (No. 10271076); the Educational Commission of Heilongjiang Province (No. 11523065); the Science Foundation for the Youth of Harbin College (No. HXKQ200704).

For $f \in \Lambda(m, n, \underline{t}), y^{\lambda} \in \Gamma$, we denote $f \otimes y^{\lambda}$ which is the element of $\widetilde{\Lambda}$ as $f y^{\lambda}$ for short. In $\widetilde{\Lambda}$, besides Equation (1.1), the following statements hold:

$$
\begin{aligned}
x^{(\alpha)} y^{\lambda} & =y^{\lambda} x^{(\alpha)} \quad\left(\forall \alpha \in N_{0}^{m}, \forall \lambda \in G\right), \\
y^{\lambda} x_{j} & =x_{j} y^{\lambda} \quad(\forall \lambda \in G, j=m+1, \ldots, s) .
\end{aligned}
$$

Then $\left\{x^{(\alpha)} x^{u} y^{\lambda} \mid \alpha \in A(m, \underline{t}), u \in B(n), \lambda \in G\right\}$ is an F-basic of $\widetilde{\Lambda}$. Let $\widetilde{\Lambda}_{i}=\operatorname{span}_{F}\left\{x^{(\alpha)} x^{u} y^{\lambda} \mid \alpha \in\right.$ $A(m, \underline{t}), u \in B(n), \lambda \in G,|\alpha|+|u|=i\}$, where $A(m, \underline{t})$ is defined in [1, p21]. Obviously, $\widetilde{\Lambda}=\bigoplus_{i=0}^{\xi} \widetilde{\Lambda}_{i}$, where $\xi=\sum_{i=1}^{n} \pi_{i}+n, \pi_{i}=p^{t_{i}}-1,(1 \leq i \leq m)$. Put $Y_{0}=\{1,2, \ldots, m\}$, $Y_{1}=\{m+1, m+2, \ldots, s\}, Y=Y_{0} \bigcup Y_{1}, J=Y \backslash\{m\}$.

2. Theorem and proof

Lemma 2.1 Let $D_{1}, D_{2}, \ldots, D_{s}$ be the linear transformations of $\widetilde{\Lambda}$ such that

$$
D_{i}\left(x^{(\alpha)} x^{u} y^{\lambda}\right)= \begin{cases}x^{\left(\alpha-\varepsilon_{i}\right)} x^{u} y^{\lambda}, & \forall i \in Y_{0} \\ x^{(\alpha)} \partial_{i}\left(x^{u}\right) y^{\lambda}, & \forall i \in Y_{1}\end{cases}
$$

where $\partial_{i}=\frac{\partial}{\partial x_{i}}$ are the partial derivations of $\Lambda(n), \forall i \in Y_{1}$. Then $D_{i} \in \operatorname{Der}_{\overline{0}}(\widetilde{\Lambda}), \forall i \in Y_{0}$; $D_{i} \in \operatorname{Der}_{-}(\widetilde{\Lambda}), \forall i \in Y_{1}$.

Proof This proof is similar to the one in [1, Lemma 2.4, p11].
$D_{1}, D_{2}, \ldots, D_{s}$ are called the partial derivations of $\widetilde{\Lambda}$. Let $A=A_{\overline{0}} \oplus A_{\overline{1}}$ be the superalgebra. If $x \in A_{\theta}$, where $\theta \in Z_{2}$, then we call x the Z_{2}-homogeneous element and call θ the Z_{2}-degree of x, denoted by $\operatorname{deg}(x)=\theta$ and written simply as $d(x)=\theta$. By the Lemma 2.1, it is easy to see $d\left(D_{i}\right)=\tau(i)$, where $\tau(i)$ is defined in [1, p12]. If $f \in \widetilde{\Lambda}_{\theta}, D \in \operatorname{Der}_{\mu}(\widetilde{\Lambda})$, where $\theta, \mu \in Z_{2}$, let $(f D)(g):=f D(g), \forall g \in \widetilde{\Lambda}$. It is easy to see $f D \in \operatorname{Der}_{\theta+\mu}(\widetilde{\Lambda})$ by the direct verification.

Lemma 2.2 Let $\sum_{i=1}^{s} f_{i} D_{i} \in \operatorname{Der}_{\theta}(\widetilde{\Lambda}), \sum_{j=1}^{s} g_{j} D_{j} \in \operatorname{Der}_{\mu}(\widetilde{\Lambda})$, where $\theta, \mu \in Z_{2}$. Then

$$
\left[\sum_{i=1}^{s} f_{i} D_{i}, \sum_{j=1}^{s} g_{j} D_{j}\right]=\sum_{i, j=1}^{s} f_{i} D_{i}\left(g_{j}\right) D_{j}-(-1)^{\theta \mu} \sum_{i, j=1}^{s} g_{j} D_{j}\left(f_{i}\right) D_{i}
$$

Proof This proof is similar to the one in [1, Lemma 2.5, p13].
Put $W(m, n, l, \underline{t})=\left\{\sum_{i=1}^{s} f_{i} D_{i} \mid f_{i} \in \widetilde{\Lambda}, \forall i \in Y\right\}$.
Proposition 2.3 $W(m, n, l, \underline{t})$ is a subalgebra of $\operatorname{Der}(\widetilde{\Lambda})$. In particular, it is a Lie superalgebra.
Proof This proof is similar to the one in [1, Lemma 2.6, p13].
We denote Lie superalgebra $W(m, n, l, \underline{t})$ by W. It is easy to see that $W=\oplus_{i=-1}^{\xi-1} W_{i}$ is a Z-graded Lie superalgebra, where $\xi:=\sum_{i=1}^{m} \pi_{i}+n$,

$$
W_{i}=\operatorname{span}_{F}\left\{x^{(\alpha)} x^{u} y^{\lambda} D_{j}| | \alpha|+|u|=i+1, j \in Y\} .\right.
$$

Proposition 2.4 Let $\phi \in \operatorname{Der}_{t}(W), t \geq 0$. Then there is $z \in \operatorname{Nor}_{W}(W):=\{x \in W \mid[x, W] \subseteq W\}$ such that $\phi\left(D_{i}\right)=\operatorname{adz}\left(D_{i}\right), i=1,2, \ldots, s$.

Proof Since factor y^{λ} has no effect on the verification of this Proposition. By virtue of $[1$,

Proposition 2.6, p33], the Proposition holds.
Lemma 2.5 Let $\phi \in \operatorname{Der}_{t}(W)$ and $t \in Z$. If $\phi\left(L_{j}\right)=0$ for $j=-1,0, \ldots, k$, where $k \geq-1$ and $k+t \geq-1$, then $\phi=0$.

Proof This proof is similar to the one in [1, Lemma 2.8, p34].
Theorem 2.6 Let $\Theta=\left\{h:=\left(h_{1}(y), h_{2}(y), \ldots, h_{l}(y)\right) \mid h_{j}(y) \in \Gamma, 1 \leq j \leq l\right\}$. For $\forall h \in \Theta$, we define a linear transformation of W

$$
\begin{equation*}
D_{h}\left(x^{(\alpha)} x^{u} y^{\lambda} D_{i}\right)=\sum_{j=1}^{l} \lambda_{j} h_{j}(y) x^{(\alpha)} x^{u} y^{\lambda} D_{i} \tag{2.2}
\end{equation*}
$$

Then $D_{h} \in \operatorname{Der}_{\overline{0}}(W)$.
Proof From

$$
\left.\begin{array}{rl}
{\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, x^{(\beta)} x^{v} y^{\eta} D_{k}\right]} \\
=x^{(\alpha)} x^{u} y^{\lambda} D_{i}\left(x^{(\beta)} x^{v} y^{\eta}\right) D_{k}-(-1)^{d\left(x^{u} D_{i}\right) d\left(x^{v} D_{k}\right)} x^{(\beta)} x^{v} y^{\eta} D_{k}\left(x^{(\alpha)} x^{u} y^{\lambda}\right) D_{i} \\
=x^{(\alpha)} x^{u} y^{\lambda+\eta} D_{i}\left(x^{(\beta)} x^{v}\right) D_{k}-(-1)^{d\left(x^{u} D_{i}\right) d\left(x^{v} D_{k}\right)} x^{(\beta)} x^{v} y^{\lambda+\eta} D_{k}\left(x^{(\alpha)} x^{u}\right) D_{i} \\
=y^{\lambda+\eta}\left[x^{(\alpha)} x^{u} D_{i}, x^{(\beta)} x^{v} D_{k}\right]
\end{array}\right] \begin{aligned}
& D_{h}\left(\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, x^{(\beta)} x^{v} y^{\eta} D_{k}\right]\right)=\sum_{j=1}^{l}(\lambda+\eta)_{j} h_{j}(y)\left[x^{(\alpha)} x^{u} D_{i}, x^{(\beta)} x^{v} D_{k}\right] y^{\lambda+\eta} \\
& {\left[\begin{array}{rl}
{\left[D_{h}\left(x^{(\alpha)} x^{u} y^{\lambda} D_{i}\right), x^{(\beta)} x^{v} y^{\eta} D_{k}\right]} & =\left[\sum_{j=1}^{l} \lambda_{j} h_{j}(y) x^{(\alpha)} x^{u} y^{\lambda} D_{i}, x^{(\beta)} x^{v} y^{\eta} D_{k}\right] \\
& =\sum_{j=1}^{l} \lambda_{j} h_{j}(y) y^{\lambda+\eta}\left[x^{(\alpha)} x^{u} D_{i}, x^{(\beta)} x^{v} D_{k}\right] \\
& =\sum_{j=1}^{l} \eta_{j} h_{j}(y) y^{\lambda+\eta}\left[x^{(\alpha)} x^{u} D_{i}, x^{(\beta)} x^{v} D_{k}\right]
\end{array}\right.} \\
& \begin{aligned}
{\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, D_{h}\left(x^{(\beta)} x^{v} y^{\eta} D_{k}\right)\right] } & =\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, \sum_{j=1}^{l} \eta_{j}(y) x^{(\beta)} x^{v} y^{\eta} D_{k}\right]
\end{aligned}
\end{aligned}
$$

and $\lambda_{j}+\eta_{j}=(\lambda+\eta)_{j}$, it follows

$$
\begin{aligned}
& D_{h}\left(\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, x^{(\beta)} x^{v} y^{\eta} D_{k}\right]\right) \\
& \quad=\left[D_{h}\left(x^{(\alpha)} x^{u} y^{\lambda} D_{i}\right), x^{(\beta)} x^{v} y^{\eta} D_{k}\right]+\left[x^{(\alpha)} x^{u} y^{\lambda} D_{i}, D_{h}\left(x^{(\beta)} x^{v} y^{\eta} D_{k}\right)\right]
\end{aligned}
$$

That is, $D_{h} \in \operatorname{Der}_{\overline{0}}(W)$.
Let $h=\left(h_{1}(y), h_{2}(y), \ldots, h_{l}(y)\right) \in \Theta$. Then D_{h} is called Θ-type derivation.
Lemma 2.7 Let $D \in \operatorname{Der}(W)$. If $D\left(D_{i}\right)=0, \forall i \in Y$. Then there is $\left(h_{1}(y), h_{2}(y), \ldots, h_{l}(y)\right) \in \Theta$ such that

$$
D\left(y^{\lambda} D_{i}\right)=\sum_{j=1}^{l} \lambda_{j} h_{j}(y) y^{\lambda} D_{i}, \forall \lambda \in G
$$

Proof For $\forall i, j \in Y$, applying D to $\left[y^{\lambda} D_{i}, D_{j}\right]=0$ gives

$$
\begin{equation*}
\left[D\left(y^{\lambda} D_{i}\right), D_{j}\right]=0 \tag{2.3}
\end{equation*}
$$

Since $D\left(y^{\lambda} D_{i}\right) \in W$, we can suppose that

$$
\begin{equation*}
D\left(y^{\lambda} D_{i}\right)=\sum_{k=1}^{s} g_{k i \lambda} D_{k} . \tag{2.4}
\end{equation*}
$$

Applying Equation (2.4) to the Equation (2.3) yields

$$
0=\left[D\left(y^{\lambda} D_{i}\right), D_{j}\right]=\sum_{k=1}^{s}\left[g_{k i \lambda} D_{k}, D_{j}\right]=-\sum_{k=1}^{s}(-1)^{d\left(g_{k i \lambda} D_{k}\right) \tau(j)} D_{j}\left(g_{k i \lambda}\right) D_{k} .
$$

Hence $D_{j}\left(g_{k i \lambda}\right)=0, \forall j, k \in Y$. Consequently, $g_{k i \lambda} \in \Gamma$. We may assume that $g_{k i \lambda}=g(y)_{k i \lambda}$, which yields $D\left(y^{\lambda} D_{i}\right)=\sum_{k=1}^{s} g(y)_{k i \lambda} D_{k}$. Let $D\left(x_{i} D_{i}\right)=\sum_{j=1}^{s} g_{j} D_{j}, g_{j} \in \widetilde{\Lambda}$. Since $\left[D_{i}, x_{i} D_{i}\right]=$ D_{i}, it follows that $\left[D_{i}, D\left(x_{i} D_{i}\right)\right]=0$, thus $\left[D_{i}, \sum_{j=1}^{s} g_{j} D_{j}\right]=0$.

According to the above equation, we have $\sum_{j=1}^{s} D_{i}\left(g_{j}\right) D_{j}=0$, therefore $D_{i}\left(g_{j}\right)=0, j=$ $1,2, \ldots, s$. For $\left[y^{\lambda} D_{i}, x_{i} D_{i}\right]=y^{\lambda} D_{i}$, applying D to the above equation, we have

$$
\begin{aligned}
{\left[D\left(y^{\lambda} D_{i}\right), x_{i} D_{i}\right]+\left[y^{\lambda} D_{i}, D\left(x_{i} D_{i}\right)\right] } & =D\left(y^{\lambda} D_{i}\right), \\
{\left[\sum_{k=1}^{s} g(y)_{k i \lambda} D_{k}, x_{i} D_{i}\right]+\left[y^{\lambda} D_{i}, \sum_{j=1}^{s} g_{j} D_{j}\right] } & =\sum_{k=1}^{s} g(y)_{k i \lambda} D_{k},
\end{aligned}
$$

and

$$
g(y)_{i i \lambda} D_{i}=\sum_{k=1}^{s} g(y)_{k i \lambda} D_{k}
$$

Therefore, if $k \neq i$, then $g(y)_{k i \lambda}=0$, that is, $D\left(y^{\lambda} D_{i}\right)=g(y)_{i i \lambda} D_{i}$. We write $g(y)_{i i \lambda}$ as $g(y)_{i \lambda}$ for short. Then

$$
D\left(y^{\lambda} D_{i}\right)=g(y)_{i \lambda} D_{i}
$$

Let $h_{i \lambda}(y)=y^{-\lambda} g(y)_{i \lambda}$. Then $g(y)_{i \lambda}=y^{\lambda} h_{i \lambda}(y)$ and

$$
\begin{equation*}
D\left(y^{\lambda} D_{i}\right)=y^{\lambda} h_{i \lambda}(y) D_{i} \tag{2.5}
\end{equation*}
$$

Suppose that $D\left(x_{i} y^{\eta} D_{j}\right)=\sum_{k=1}^{s} b_{k} D_{k}, b_{k} \in \widetilde{\Lambda}$. Since

$$
\left[D_{i}, x_{i} y^{\eta} D_{j}\right]=y^{\eta} D_{j}
$$

we obtain that

$$
\left[D_{i}, D\left(x_{i} y^{\eta} D_{j}\right)\right]=D\left(y^{\eta} D_{j}\right), \quad\left[D_{i}, \sum_{k=1}^{s} b_{k} D_{k}\right]=y^{\eta} h_{j \eta}(y) D_{j}
$$

and

$$
\sum_{k=1}^{s} D_{i}\left(b_{k}\right) D_{k}=y^{\eta} h_{j \eta}(y) D_{j}
$$

Hence if $k \neq j$, we have $D_{i}\left(b_{k}\right)=0$ and $D_{i}\left(b_{j}\right)=y^{\eta} h_{j \eta}(y)$, so $b_{j}=y^{\eta} h_{j \eta}(y) x_{i}$. From the above content, we get

$$
\begin{equation*}
D\left(x_{i} y^{\eta} D_{j}\right)=y^{\eta} h_{j \eta}(y) x_{i} D_{j}+\sum_{k \neq j} b_{k} D_{k} \tag{2.6}
\end{equation*}
$$

For $\left[y^{\lambda} D_{i}, x_{i} y^{\eta} D_{j}\right]=y^{\lambda+\eta} D_{j}$, we have

$$
\left[D\left(y^{\lambda} D_{i}\right), x_{i} y^{\eta} D_{j}\right]+\left[y^{\lambda} D_{i}, D\left(x_{i} y^{\eta} D_{j}\right)\right]=D\left(y^{\lambda+\eta} D_{j}\right)
$$

By virtue of Equations (2.5) and (2.6), we obtain that

$$
\begin{gathered}
{\left[y^{\lambda} h_{i \lambda}(y) D_{i}, x_{i} y^{\eta} D_{j}\right]+\left[y^{\lambda} D_{i}, y^{\eta} h_{j \eta}(y) x_{i} D_{j}+\sum_{k \neq j} b_{k} D_{k}\right]=y^{\lambda+\eta} h_{j(\lambda+\eta)}(y) D_{j}} \\
y^{\lambda+\eta} h_{i \lambda}(y) D_{j}+y^{\lambda+\eta} h_{j \eta}(y) D_{j}=y^{\lambda+\eta} h_{j(\lambda+\eta)}(y) D_{j}
\end{gathered}
$$

and

$$
\begin{equation*}
h_{i \lambda}(y)+h_{j \eta}(y)=h_{j(\lambda+\eta)}(y) \tag{2.7}
\end{equation*}
$$

From the randomicity of λ, η, i, j, we have

$$
h_{i \lambda}(y)+h_{j \lambda}(y)=h_{j 2 \lambda}(y)=h_{j \lambda}(y)+h_{j \lambda}(y)
$$

Hence $h_{i \lambda}(y)=h_{j \lambda}(y)$, and (2.5) can be written as

$$
D\left(y^{\lambda} D_{i}\right)=y^{\lambda} h_{\lambda}(y) D_{i}
$$

By virtue of Equation (2.7) we get

$$
\begin{equation*}
h_{\lambda}(y)+h_{\eta}(y)=h_{\lambda+\eta}(y), \quad \forall \lambda, \eta \in G \tag{2.8}
\end{equation*}
$$

For arbitrary $k=1,2, \ldots, l$, by definition of G, we obtain $z_{k} \in G$. According to (2.8), we have

$$
h_{z_{k}}(y)+h_{z_{k}}(y)=h_{2 z_{k}}(y)=2 h_{z_{k}}(y)
$$

and

$$
h_{2 z_{k}}(y)+h_{z_{k}}(y)=h_{3 z_{k}}(y)=3 h_{z_{k}}(y)
$$

By induction we have

$$
h_{c z_{k}}(y)=c h_{z_{k}}(y), \quad \text { where } c \in\{0,1, \ldots, p-1\}=Z_{p} .
$$

For arbitrary $k, j=1,2, \ldots, l$ and arbitrary $a, b \in Z_{p}$, we have

$$
h_{a z_{k}}(y)+h_{b z_{j}}(y)=h_{a z_{k}+b z_{j}}(y)=a h_{z_{k}}(y)+b h_{z_{j}}(y) .
$$

For arbitrary $\lambda=\sum_{i=1}^{l} \lambda_{i} z_{i} \in G$, we obtain that

$$
h_{\lambda}(y)=h_{\sum_{j=1}^{l} \lambda_{j} z_{j}}(y)=\sum_{j=1}^{l} \lambda_{j} h_{z_{j}}(y)
$$

Let $h_{j}(y)$ denote $h_{z_{j}}(y)$ for short. Then the above equation can be written as $h_{\lambda}(y)=\sum_{j=1}^{l} \lambda_{j} h_{j}(y)$. Therefore,

$$
D\left(y^{\lambda} D_{i}\right)=\sum_{j=1}^{l} \lambda_{j} h_{j}(y) y^{\lambda} D_{i}
$$

Lemma 2.8 Let $\phi \in \operatorname{Der}_{t}(W)$, where $t \geq 0$. Then there are $z \in \operatorname{Nor}_{W}(W)$ and $h \in \Theta$ such that

$$
\left(\phi-\operatorname{ad} z-D_{h}\right)\left(W_{-1}\right)=0
$$

Proof By virtue of Proposition 2.4, there exists $z \in \operatorname{Nor}_{W}(W)$ such that $\phi\left(D_{i}\right)=\operatorname{adz}\left(D_{i}\right)$ for $i=1,2, \ldots, s$. Let $\phi_{1}=\phi-\operatorname{adz}$. Then $\phi_{1}\left(D_{i}\right)=\phi\left(D_{i}\right)-\operatorname{adz}\left(D_{i}\right)=0$. By virtue of Lemma 2.7, there is $\left(h_{1}(y), h_{2}(y), \ldots, h_{l}(y)\right) \in \Theta$ such that

$$
\phi_{1}\left(y^{\lambda} D_{i}\right)=\sum_{j=1}^{l} \lambda_{j} h_{j}(y) y^{\lambda} D_{i}, \quad i \in Y, \lambda \in G
$$

Put $\phi_{2}=\phi_{1}-D_{h}$, then

$$
\phi_{2}\left(y^{\lambda} D_{i}\right)=\phi_{1}\left(y^{\lambda} D_{i}\right)-D_{h}\left(y^{\lambda} D_{i}\right)=0
$$

Therefore, $\phi_{2}\left(W_{-1}\right)=0$, that is, $\left(\phi-\operatorname{ad} z-D_{h}\right)\left(W_{-1}\right)=0$.
Proposition 2.9 Let $i \in Y_{0}$ and r be an arbitrary positive integer. Then $\left(\operatorname{adD}_{i}\right)^{p^{r}} \in \operatorname{Der}_{\overline{0}}(W)$. If $r \geq t_{i}$, then $\left(\mathrm{adD}_{i}\right)^{p^{r}}=0$.

Proof This proof is similar to the one in [1, Proposition 2.9, p35].
Proposition 2.10 Let $\phi \in \operatorname{Der}_{t}(W)$, where $t \geq 0$. Then there are $f \in W$ and $h \in \Theta$ such that $\phi=\operatorname{ad} f+D_{h}$.

Proof This is a direct consequence of Lemmas 2.5 and 2.8.
Proposition 2.11 $\operatorname{Der}_{-1}(W)=\operatorname{ad} W_{-1}$.
Proof This proof is similar to the one in [1, Proposition 3.2, p35].
Theorem 2.12 Let $T:=\left\{x^{\left(k \epsilon_{i}\right)} D_{j} \mid 0 \leq k \leq \pi_{i}, i \in Y_{0}, j \in Y\right\}, G(y):=\left\{y^{\lambda} D_{i} \mid \lambda \in G, i \in Y\right\}$, $M:=\left\{x_{i} D_{j} \mid i \in Y_{1}, j \in Y\right\}$. Then W is generated by $T \cup M \cup G(y)$.

Proof Form [1], the subalgebra generated by $T \cup M$ is

$$
\left\{x^{(\alpha)} x^{u} D_{i} \mid \alpha \in A(m, \underline{t}), u \in B(n)\right\} \subseteq Q
$$

where Q denotes the subalgebra of W generated by $T \cup M \cup G(y)$.
(1) If $\alpha \neq \pi$, we can suppose that $\alpha_{1}<\pi_{1}$. Consequently, $x^{\left(\alpha+\epsilon_{1}\right)} x^{u} D_{i} \in Q, \forall u \in B(n)$, we have

$$
\left[y^{\lambda} D_{1}, x^{\left(\alpha+\epsilon_{1}\right)} x^{u} D_{i}\right]=x^{(\alpha)} x^{u} y^{\lambda} D_{i} \in Q
$$

(2) If $\alpha=\pi, u \neq E$, then there exists $j \in Y_{1}$ such that $x_{j} x^{u} \neq 0$. Hence $x^{(\alpha)} x_{j} x^{u} D_{i} \in Q$, therefore,

$$
\left[y^{\lambda} D_{j}, x^{(\alpha)} x_{j} x^{u} D_{i}\right]=x^{(\alpha)} x^{u} y^{\lambda} D_{i} \in Q
$$

(3) If $\alpha=\pi, u=E$, then

$$
\begin{array}{ll}
{\left[x^{(\pi)} y^{\lambda} D_{1}, x_{1} x^{E} D_{j}\right]=x^{(\pi)} x^{E} y^{\lambda} D_{j} \in Q, \quad \forall j \in Y_{1}} \\
{\left[x^{E} y^{\lambda} D_{s}, x_{s} x^{(\pi)} D_{j}\right]=x^{(\pi)} x^{E} y^{\lambda} D_{j} \in Q, \quad \forall j \in Y_{0}}
\end{array}
$$

We conclude $Q=W$.

Lemma 2.13 Let $\phi \in \operatorname{Der}_{-t}(W)$, where $t>1$. If $\phi\left(x^{\left(t \epsilon_{i}\right)} D_{j}\right)=0, \forall i \in Y_{0}, j \in Y$. Then $\phi=0$.
Proof This proof is similar to the one in [1, Lemma 3.4, p36].
Proposition 2.14 Let $t>1$. If there is not any positive integer k such that $t=p^{k}$. Then $\operatorname{Der}_{-t}(W)=0$.

Proof This proof is similar to the one of [1, Proposition 3.5, p36].
Proposition 2.15 Let $t=p^{r}, r>0$. Then

$$
\operatorname{Der}_{-t}(W)=\operatorname{span}_{F}\left\{y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t} \mid i \in Y_{0}, \lambda_{i} \in G\right\}
$$

Proof Let $\phi \in \operatorname{Der}_{-t}(W)$. Since $\operatorname{zd}\left(\phi\left(x^{\left(t \epsilon_{i}\right)} D_{i}\right)\right)=(-t)+(t-1)=-1$, we may suppose

$$
\phi\left(x^{\left(t \epsilon_{i}\right)} D_{i}\right)=\sum_{k=1}^{s} a_{i k} y^{\lambda_{k}} D_{k}, \quad i \in Y_{0}, \lambda_{k} \in G
$$

For $j \in Y \backslash\{i\}$, applying ϕ to the following equation

$$
\left[x^{\left(t \epsilon_{i}\right)} D_{i}, x_{j} D_{j}\right]=0
$$

gives $a_{i j}=0$. Consequently, $\phi\left(x^{\left(t \epsilon_{i}\right)} D_{i}\right)=a_{i i} y^{\lambda_{i}} D_{i}, \forall i \in Y_{0}$. Direct verification by using the equation

$$
y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t}\left(x^{(\alpha)} x^{u} y^{\lambda} D_{j}\right)=y^{\lambda_{i}}\left(\left(\operatorname{ad} D_{i}\right)^{t}\left(x^{(\alpha)} x^{u} y^{\lambda} D_{j}\right)\right)
$$

shows that $y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t}$ is the derivation. Put $\varphi=\phi-\sum_{i=1}^{m} a_{i i} y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t}$, for arbitrary $j \in Y_{0}$, we have

$$
\begin{aligned}
\varphi\left(x^{\left(t \epsilon_{j}\right)} D_{j}\right) & =\phi\left(x^{\left(t \epsilon_{j}\right)} D_{j}\right)-\sum_{i=1}^{m} a_{i i} y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t}\left(x^{\left(t \epsilon_{j}\right)} D_{j}\right) \\
& =a_{j j} y^{\lambda_{j}} D_{j}-a_{j j} y^{\lambda_{j}} D_{j}=0
\end{aligned}
$$

Applying ϕ to the equation $x^{\left(t \epsilon_{i}\right)} D_{j}=\left[x^{\left(t \epsilon_{i}\right)} D_{i}, x_{i} D_{j}\right]$ results in $\varphi\left(x^{\left(t \epsilon_{i}\right)} D_{j}\right)=0$ for $j \in Y, j \neq i$. By virtue of Lemma 2.13, we have $\varphi=0$. Consequently,

$$
\phi=\sum_{i=1}^{m} a_{i i} y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t} \in \operatorname{span}_{F}\left\{y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{t} \mid i \in Y_{0}, \lambda_{i} \in G\right\}
$$

Lemma 2.6 Let $\Delta=\left\{D_{h} \mid h \in \Theta\right\}$ and $\Omega=\operatorname{span}_{F}\left\{y^{\lambda_{i}}\left(\operatorname{ad} D_{i}\right)^{p_{i}} \mid i \in Y_{0}, 1 \leq k_{i} \leq t_{i}, \lambda_{i} \in G\right\}$. Then
(1) $\Delta \cap \Omega=\{0\}$.
(2) $(\Delta \oplus \Omega) \cap \operatorname{ad} W=\{0\}$.

Proof (1) is obvious.
(2) Suppose that $\operatorname{ad} f=D_{h}+\sum_{i=1}^{m} \sum_{j=1}^{t_{i}-1} a_{i j} y^{\lambda_{i j}}\left(\operatorname{ad} D_{i}\right)^{p^{j}}$. Then $\operatorname{ad} f\left(D_{i}\right)=0, \forall i \in Y$. Noting that $f \in W$, we may suppose that $f=\sum x^{(\alpha)} x^{u} y^{\lambda} D_{j}$. Since

$$
\begin{aligned}
{\left[f, D_{i}\right] } & =\left[\sum x^{(\alpha)} x^{u} y^{\lambda} D_{j}, D_{i}\right] \\
& =\sum-(-1)^{\tau(i) d\left(x^{(\alpha)} x^{u} y^{\lambda} D_{j}\right)} D_{i}\left(x^{(\alpha)} x^{u} y^{\lambda}\right) D_{j}
\end{aligned}
$$

we obtain that $D_{i}\left(x^{(\alpha)} x^{u} y^{\lambda}\right)=0$. Consequently, $f=\sum_{j=1}^{s} g_{j}(y) D_{j}$. Since

$$
\begin{gathered}
\operatorname{ad} f\left(x_{v}^{p} D_{k}\right)=g_{v}(y) x_{v}^{p-1} D_{k}, \quad 1 \leq v \leq s \\
\left(D_{h}+\sum_{i=1}^{m} \sum_{j=1}^{t_{i}-1} a_{i j} y^{\lambda_{i j}}\left(\operatorname{ad} D_{i}\right)^{p^{j}}\right)\left(x_{v}^{p} D_{k}\right)=a_{v 1} y^{\lambda_{v 1}} D_{k}
\end{gathered}
$$

and

$$
\operatorname{ad} f=D_{h}+\sum_{i=1}^{m} \sum_{j=1}^{t_{i}-1} a_{i j} y^{\lambda_{i j}}\left(\operatorname{ad} D_{i}\right)^{p^{j}}
$$

We obtain $g_{v}(y)=0$, namely, $(\Delta \oplus \Omega) \cap \operatorname{ad} W=\{0\}$.
By Propositions 2.10, 2.11, 2.14, 2.15 and 2.9 we obtain the following Theorem.
Theorem 2.17 $\operatorname{Der}(W)=\operatorname{ad} W \oplus \Delta \oplus \Omega$.
Theorem $2.18 W(m, n, l, \underline{t})$ is not isomorphic to Cartan-type modular Lie superalgebras $W, S, H, H O, K$.

Proof Since

$$
W(m, n, l, \underline{t})=\operatorname{span}_{F}\left\{x^{(\alpha)} x^{u} y^{\lambda} D_{i} \mid \alpha \in A(m, \underline{t}), u \in B(n), \lambda \in G, i \in Y\right\},
$$

we have $\operatorname{dim}(W(m, n, l, \underline{t}))=2^{n} s p^{q}$, where $q=\sum_{i=1}^{m} t_{i}+l$. From [1,2], we know that the dimensions of modular Lie superalgeras $S, H, H O$ are not divided by p. Therefore, $W(m, n, l, \underline{t})$ is not isomorphic to $S, H, H O$. From [3,4], we know that any outer derivation in W, K is nilpotent linear transformation. But there is the Θ-type outer derivation D_{h}, which is not nilpotent linear transformation in $W(m, n, l, \underline{t})$, where $h=\left(y_{1}, 0, \ldots, 0\right), y_{1} \neq 0$. Therefore, $W(m, n, l, \underline{t})$ is not isomorphic to W, K.

By Theorem 2.17, $W(m, n, l, \underline{t})$ is not isomorphic to the known Cartan-type modular Lie superalgebras.

References

[1] ZHANG Yongzheng, LIU Wende. Modular Lie Superalgebras [M]. Beijing: Science Press, 2004.
[2] LIU Wende, ZHANG Yongzheng. Finite-dimensional simple Cartan-type modular Lie superalgebras HO [J]. Acta Math. Sinica (Chin. Ser.), 2005, 48(2): 319-330. (in Chinese)
[3] ZHANG Qingcheng, ZHANG Yongzheng. Derivation algebras of the modular Lie superalgebras W and S of Cartan-type [J]. Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(1): 137-144.
[4] MA Fengmin, ZHANG Qingcheng. Derivation algebras for K-type modular Lie superalgebras [J]. J. Math. (Wuhan), 2000, 20(4): 431-435. (in Chinese)
[5] SHEN Guangyu. New simple Lie algebras of characteristic p [J]. Chinese Ann. Math. Ser. B, 1983, 4(3): 329-346.
[6] STRADE H, FARNSTEINER R. Modular Lie algebras and Their Representations [M]. Marcel Dekker, Inc., New York, 1988.
[7] LIU Wende, ZHANG Yongzheng. Infinite-dimensional modular odd Hamiltonian superalgebras [J]. Comm. Algebra, 2004, 32(6): 2341-2357.
[8] KAC V G. Lie superalgebras [J]. Advances in Math., 1977, 26(1): 8-96.

