Θ -Type Derivation and Derivation Superalgebra of the Finite-Dimensional Modular Lie Superalgebra $W(m, n, l, \underline{t})$

FANG Xiao Chao¹, ZHANG Yong Zheng²

Department of Mathematics, Harbin College, Heilongjiang 150080, China;
 Department of Mathematics, Northeast Normal University, Jilin 130024, China)

(E-mail: fang_xiao_chao@163.com; zhyz@nenu.edu.cn)

Abstract In this paper F always denotes a field of characteristic p > 2. We construct the finitedimensional modular Lie superalgebra $W(m, n, l, \underline{t})$ over a field F, define Θ -type derivation and determine the derivation superalgebra of $W(m, n, l, \underline{t})$.

Keywords modular Lie superalgebra; generator; derivation.

Document code A MR(2000) Subject Classification 17B50 Chinese Library Classification 0152.5

1. Introduction and definition

Modular Lie superalgebra $W(m, n, \underline{t})$ was constructed in [1]. In this paper we construct modular Lie superalgebra $W(m, n, l, \underline{t})$ that extends $W(m, n, \underline{t})$, determine the derivation superalgebra of $W(m, n, l, \underline{t})$, and prove that $W(m, n, l, \underline{t})$ has a new type of derivation called Θ -type derivation. Consequently, $W(m, n, l, \underline{t})$ is not isomorphic to the known Cartan-type modular Lie superalgebras. In this paper F always denotes a field of characteristic p > 2 and Π is the prime field of F. Then $\Pi = \{0, 1, 2, \ldots, p-1\} \cong Z_p$, F is a linear space over Π . Set $z_1, \ldots, z_l \in F$ such that z_1, \cdots, z_l are linearly independent over Π . Put $G = \{\lambda_1 z_1 + \cdots + \lambda_l z_l | 0 \le \lambda_i < p, i = 1, \ldots, l\}$. Then G is additive subgroup of F. We define a truncated polynomial algebra $F[y_1, y_2, \ldots, y_l]$ such that $y_i^p = 1$ $(i = 1, \ldots, l)$. If $\lambda \in G$, then λ can be expressed as $\lambda = \lambda_1 z_1 + \cdots + \lambda_l z_l$. Let $y^{\lambda} = y_1^{\lambda_1} \cdots y_l^{\lambda_l}$. It is easy to see

$$y^{\lambda}y^{\eta} = y^{\lambda+\eta} \quad (\forall \lambda \ , \ \eta \in G).$$

$$(1.1)$$

Let Γ denote $F[y_1, y_2, \ldots, y_l]$ for short. Then $\Gamma = \operatorname{span}_F \{y^{\lambda} | \lambda \in G\}$. Let m and n be the positive integers. Set $\widetilde{\Lambda} = \Lambda(m, n, \underline{t}) \otimes \Gamma$, where $\Lambda(m, n, \underline{t})$ is defined in $[1, P_{21}]$. Let $Z_2 = \{\overline{0}, \overline{1}\}$ be the residue ring of integers modulo 2. Then $\widetilde{\Lambda}$ is an associative superalgebra with a Z_2 -gradation induced by the trivial Z_2 -gradation of Γ and the Z_2 -gradation of $\Lambda(m, n, \underline{t})$:

$$\widetilde{\Lambda}_{\overline{0}} = \Lambda(m, n, \underline{t})_{\overline{0}} \otimes \Gamma, \quad \widetilde{\Lambda}_{\overline{1}} = \Lambda(m, n, \underline{t})_{\overline{1}} \otimes \Gamma.$$

Received date: 2006-03-21; Accepted date: 2007-07-13

Foundation item: the National Natural Science Foundation of China (No. 10271076); the Educational Commission of Heilongjiang Province (No. 11523065); the Science Foundation for the Youth of Harbin College (No. HXKQ200704).

For $f \in \Lambda(m, n, t)$, $y^{\lambda} \in \Gamma$, we denote $f \otimes y^{\lambda}$ which is the element of $\widetilde{\Lambda}$ as fy^{λ} for short. In $\widetilde{\Lambda}$, besides Equation (1.1), the following statements hold:

$$\begin{aligned} x^{(\alpha)}y^{\lambda} &= y^{\lambda}x^{(\alpha)} \quad (\forall \ \alpha \in N_0^m, \ \forall \ \lambda \in G), \\ y^{\lambda}x_j &= x_jy^{\lambda} \qquad (\forall \ \lambda \in G, \ j = m+1, \dots, s) \end{aligned}$$

Then $\{x^{(\alpha)}x^uy^{\lambda} \mid \alpha \in A(m,\underline{t}), u \in B(n), \lambda \in G\}$ is an *F*-basic of $\widetilde{\Lambda}$. Let $\widetilde{\Lambda}_i = \operatorname{span}_{F}\{x^{(\alpha)}x^uy^{\lambda} \mid \alpha \in A(m,\underline{t}), u \in B(n), \lambda \in G\}$ $A(m,\underline{t}), u \in B(n), \lambda \in G, |\alpha| + |u| = i$, where $A(m,\underline{t})$ is defined in [1, p21]. Obviously, $\widetilde{\Lambda} = \bigoplus_{i=0}^{\xi} \widetilde{\Lambda}_i$, where $\xi = \sum_{i=1}^{n} \pi_i + n$, $\pi_i = p^{t_i} - 1$, $(1 \le i \le m)$. Put $Y_0 = \{1, 2, \dots, m\}$, $Y_1 = \{m + 1, m + 2, \dots, s\}, Y = Y_0 \bigcup Y_1, J = Y \setminus \{m\}.$

2. Theorem and proof

Lemma 2.1 Let D_1, D_2, \ldots, D_s be the linear transformations of Λ such that

$$D_i(x^{(\alpha)}x^u y^{\lambda}) = \begin{cases} x^{(\alpha-\varepsilon_i)}x^u y^{\lambda}, & \forall i \in Y_0, \\ x^{(\alpha)}\partial_i(x^u)y^{\lambda}, & \forall i \in Y_1, \end{cases}$$

where $\partial_i = \frac{\partial}{\partial x_i}$ are the partial derivations of $\Lambda(n)$, $\forall i \in Y_1$. Then $D_i \in \text{Der}_{\overline{0}}(\widetilde{\Lambda}), \forall i \in Y_0$; $D_i \in \operatorname{Der}_{\overline{1}}(\Lambda), \forall i \in Y_1.$

Proof This proof is similar to the one in [1, Lemma 2.4, p11].

 D_1, D_2, \ldots, D_s are called the partial derivations of Λ . Let $A = A_{\overline{0}} \oplus A_{\overline{1}}$ be the superalgebra. If $x \in A_{\theta}$, where $\theta \in Z_2$, then we call x the Z₂-homogeneous element and call θ the Z₂-degree of x, denoted by deg(x) = θ and written simply as $d(x) = \theta$. By the Lemma 2.1, it is easy to see $d(D_i) = \tau(i)$, where $\tau(i)$ is defined in [1, p12]. If $f \in \Lambda_{\theta}$, $D \in \text{Der}_{\mu}(\Lambda)$, where $\theta, \mu \in \mathbb{Z}_2$, let $(fD)(g) := fD(g), \forall g \in \widetilde{\Lambda}$. It is easy to see $fD \in \text{Der}_{\theta+\mu}(\widetilde{\Lambda})$ by the direct verification.

Lemma 2.2 Let $\sum_{i=1}^{s} f_i D_i \in \text{Der}_{\theta}(\widetilde{\Lambda}), \sum_{j=1}^{s} g_j D_j \in \text{Der}_{\mu}(\widetilde{\Lambda}), \text{ where } \theta, \mu \in \mathbb{Z}_2.$ Then

$$\left[\sum_{i=1}^{s} f_i D_i, \sum_{j=1}^{s} g_j D_j\right] = \sum_{i,j=1}^{s} f_i D_i(g_j) D_j - (-1)^{\theta \mu} \sum_{i,j=1}^{s} g_j D_j(f_i) D_i.$$

Proof This proof is similar to the one in [1, Lemma 2.5, p13].

Put $W(m, n, l, \underline{t}) = \{\sum_{i=1}^{s} f_i D_i | f_i \in \widetilde{\Lambda}, \forall i \in Y\}.$

Proposition 2.3 $W(m, n, l, \underline{t})$ is a subalgebra of $Der(\widetilde{\Lambda})$. In particular, it is a Lie superalgebra.

Proof This proof is similar to the one in [1, Lemma 2.6, p13].

We denote Lie superalgebra $W(m, n, l, \underline{t})$ by W. It is easy to see that $W = \bigoplus_{i=-1}^{\xi-1} W_i$ is a Z-graded Lie superalgebra, where $\xi := \sum_{i=1}^{m} \pi_i + n$,

$$W_i = \operatorname{span}_F \{ x^{(\alpha)} x^u y^{\lambda} D_j \mid |\alpha| + |u| = i + 1, \ j \in Y \}.$$

Proposition 2.4 Let $\phi \in \text{Der}_t(W)$, $t \ge 0$. Then there is $z \in \text{Nor}_W(W) := \{x \in W | [x, W] \subseteq W\}$ such that $\phi(D_i) = \operatorname{adz}(D_i), i = 1, 2, \dots, s$.

Proof Since factor y^{λ} has no effect on the verification of this Proposition. By virtue of [1,

Π

Proposition 2.6, p33], the Proposition holds.

Lemma 2.5 Let $\phi \in \text{Der}_t(W)$ and $t \in Z$. If $\phi(L_j) = 0$ for $j = -1, 0, \ldots, k$, where $k \ge -1$ and $k + t \ge -1$, then $\phi = 0$.

Proof This proof is similar to the one in [1, Lemma 2.8, p34].

Theorem 2.6 Let $\Theta = \{h := (h_1(y), h_2(y), \dots, h_l(y)) | h_j(y) \in \Gamma, 1 \le j \le l\}$. For $\forall h \in \Theta$, we define a linear transformation of W

$$D_h(x^{(\alpha)}x^u y^{\lambda} D_i) = \sum_{j=1}^l \lambda_j h_j(y) x^{(\alpha)} x^u y^{\lambda} D_i.$$
(2.2)

Then $D_h \in \text{Der}_{\overline{0}}(W)$.

$\mathbf{Proof} \ \mathbf{From}$

$$\begin{split} & [x^{(\alpha)}x^{u}y^{\lambda}D_{i},x^{(\beta)}x^{v}y^{\eta}D_{k}] \\ &= x^{(\alpha)}x^{u}y^{\lambda}D_{i}(x^{(\beta)}x^{v}y^{\eta})D_{k} - (-1)^{d(x^{u}D_{i})d(x^{v}D_{k})}x^{(\beta)}x^{v}y^{\eta}D_{k}(x^{(\alpha)}x^{u}y^{\lambda})D_{i} \\ &= x^{(\alpha)}x^{u}y^{\lambda+\eta}D_{i}(x^{(\beta)}x^{v})D_{k} - (-1)^{d(x^{u}D_{i})d(x^{v}D_{k})}x^{(\beta)}x^{v}y^{\lambda+\eta}D_{k}(x^{(\alpha)}x^{u})D_{i} \\ &= y^{\lambda+\eta}[x^{(\alpha)}x^{u}D_{i} \ , \ x^{(\beta)}x^{v}y^{\eta}D_{k}], \\ D_{h}([x^{(\alpha)}x^{u}y^{\lambda}D_{i} \ , \ x^{(\beta)}x^{v}y^{\eta}D_{k}]) &= \sum_{j=1}^{l}(\lambda+\eta)_{j}h_{j}(y)[x^{(\alpha)}x^{u}D_{i} \ , \ x^{(\beta)}x^{v}D_{k}]y^{\lambda+\eta} \\ & [D_{h}(x^{(\alpha)}x^{u}y^{\lambda}D_{i} \ , \ x^{(\beta)}x^{v}y^{\eta}D_{k}] = [\sum_{j=1}^{l}\lambda_{j}h_{j}(y)x^{(\alpha)}x^{u}y^{\lambda}D_{i} \ , \ x^{(\beta)}x^{v}y^{\eta}D_{k}] \\ &= \sum_{j=1}^{l}\lambda_{j}h_{j}(y)y^{\lambda+\eta}[x^{(\alpha)}x^{u}D_{i} \ , \ x^{(\beta)}x^{v}y^{\eta}D_{k}] \\ & [x^{(\alpha)}x^{u}y^{\lambda}D_{i} \ , \ D_{h}(x^{(\beta)}x^{v}y^{\eta}D_{k})] = [x^{(\alpha)}x^{u}y^{\lambda}D_{i} \ , \ \sum_{j=1}^{l}\eta_{j}h_{j}(y)x^{(\beta)}x^{v}y^{\eta}D_{k}] \\ &= \sum_{j=1}^{l}\eta_{j}h_{j}(y)y^{\lambda+\eta}[x^{(\alpha)}x^{u}D_{i} \ , \ x^{(\beta)}x^{v}D_{k}], \end{split}$$

and $\lambda_j + \eta_j = (\lambda + \eta)_j$, it follows

$$\begin{split} D_h([x^{(\alpha)}x^u y^{\lambda} D_i , x^{(\beta)}x^v y^{\eta} D_k]) \\ &= [D_h(x^{(\alpha)}x^u y^{\lambda} D_i) , x^{(\beta)}x^v y^{\eta} D_k] + [x^{(\alpha)}x^u y^{\lambda} D_i , D_h(x^{(\beta)}x^v y^{\eta} D_k)]. \end{split}$$

That is, $D_h \in \operatorname{Der}_{\overline{0}}(W)$.

Let $h = (h_1(y), h_2(y), \dots, h_l(y)) \in \Theta$. Then D_h is called Θ -type derivation.

Lemma 2.7 Let $D \in Der(W)$. If $D(D_i) = 0, \forall i \in Y$. Then there is $(h_1(y), h_2(y), \ldots, h_l(y)) \in \Theta$ such that

$$D(y^{\lambda}D_i) = \sum_{j=1}^{l} \lambda_j h_j(y) y^{\lambda} D_i, \forall \lambda \in G.$$

Proof For $\forall i, j \in Y$, applying D to $[y^{\lambda}D_i, D_j] = 0$ gives

$$[D(y^{\lambda}D_i), D_j] = 0. (2.3)$$

Since $D(y^{\lambda}D_i) \in W$, we can suppose that

$$D(y^{\lambda}D_i) = \sum_{k=1}^{s} g_{ki\lambda}D_k.$$
(2.4)

Applying Equation (2.4) to the Equation (2.3) yields

$$0 = [D(y^{\lambda}D_i), D_j] = \sum_{k=1}^{s} [g_{ki\lambda}D_k, D_j] = -\sum_{k=1}^{s} (-1)^{d(g_{ki\lambda}D_k)\tau(j)} D_j(g_{ki\lambda}) D_k.$$

Hence $D_j(g_{ki\lambda}) = 0, \forall j, k \in Y$. Consequently, $g_{ki\lambda} \in \Gamma$. We may assume that $g_{ki\lambda} = g(y)_{ki\lambda}$, which yields $D(y^{\lambda}D_i) = \sum_{k=1}^{s} g(y)_{ki\lambda}D_k$. Let $D(x_iD_i) = \sum_{j=1}^{s} g_jD_j, g_j \in \widetilde{\Lambda}$. Since $[D_i, x_iD_i] = D_i$, it follows that $[D_i, D(x_iD_i)] = 0$, thus $[D_i, \sum_{j=1}^{s} g_jD_j] = 0$.

According to the above equation, we have $\sum_{j=1}^{s} D_i(g_j)D_j = 0$, therefore $D_i(g_j) = 0$, $j = 1, 2, \ldots, s$. For $[y^{\lambda}D_i, x_iD_i] = y^{\lambda}D_i$, applying D to the above equation, we have

$$[D(y^{\lambda}D_{i}), x_{i}D_{i}] + [y^{\lambda}D_{i}, D(x_{i}D_{i})] = D(y^{\lambda}D_{i}),$$
$$[\sum_{k=1}^{s} g(y)_{ki\lambda}D_{k}, x_{i}D_{i}] + [y^{\lambda}D_{i}, \sum_{j=1}^{s} g_{j}D_{j}] = \sum_{k=1}^{s} g(y)_{ki\lambda}D_{k}$$

and

$$g(y)_{ii\lambda}D_i = \sum_{k=1}^{s} g(y)_{ki\lambda}D_k$$

Therefore, if $k \neq i$, then $g(y)_{ki\lambda} = 0$, that is, $D(y^{\lambda}D_i) = g(y)_{ii\lambda}D_i$. We write $g(y)_{ii\lambda}$ as $g(y)_{i\lambda}$ for short. Then

$$D(y^{\lambda}D_i) = g(y)_{i\lambda}D_i.$$

Let $h_{i\lambda}(y) = y^{-\lambda}g(y)_{i\lambda}$. Then $g(y)_{i\lambda} = y^{\lambda}h_{i\lambda}(y)$ and

$$D(y^{\lambda}D_i) = y^{\lambda}h_{i\lambda}(y)D_i.$$
(2.5)

Suppose that $D(x_i y^{\eta} D_j) = \sum_{k=1}^{s} b_k D_k, b_k \in \widetilde{\Lambda}$. Since

$$[D_i, x_i y^{\eta} D_j] = y^{\eta} D_j,$$

we obtain that

$$[D_i, D(x_i y^{\eta} D_j)] = D(y^{\eta} D_j), \quad [D_i, \sum_{k=1}^s b_k D_k] = y^{\eta} h_{j\eta}(y) D_j$$

and

$$\sum_{k=1}^{s} D_i(b_k) D_k = y^{\eta} h_{j\eta}(y) D_j.$$

Hence if $k \neq j$, we have $D_i(b_k) = 0$ and $D_i(b_j) = y^{\eta} h_{j\eta}(y)$, so $b_j = y^{\eta} h_{j\eta}(y) x_i$. From the above content, we get

$$D(x_{i}y^{\eta}D_{j}) = y^{\eta}h_{j\eta}(y)x_{i}D_{j} + \sum_{k \neq j} b_{k}D_{k}.$$
(2.6)

For $[y^{\lambda}D_i, x_iy^{\eta}D_j] = y^{\lambda+\eta}D_j$, we have

$$[D(y^{\lambda}D_i), x_i y^{\eta}D_j] + [y^{\lambda}D_i, D(x_i y^{\eta}D_j)] = D(y^{\lambda+\eta}D_j)$$

By virtue of Equations (2.5) and (2.6), we obtain that

$$[y^{\lambda}h_{i\lambda}(y)D_i, x_iy^{\eta}D_j] + [y^{\lambda}D_i, y^{\eta}h_{j\eta}(y)x_iD_j + \sum_{k\neq j} b_kD_k] = y^{\lambda+\eta}h_{j(\lambda+\eta)}(y)D_j,$$
$$y^{\lambda+\eta}h_{i\lambda}(y)D_j + y^{\lambda+\eta}h_{j\eta}(y)D_j = y^{\lambda+\eta}h_{j(\lambda+\eta)}(y)D_j$$

and

$$h_{i\lambda}(y) + h_{j\eta}(y) = h_{j(\lambda+\eta)}(y).$$

$$(2.7)$$

From the randomicity of λ, η, i, j , we have

$$h_{i\lambda}(y) + h_{j\lambda}(y) = h_{j2\lambda}(y) = h_{j\lambda}(y) + h_{j\lambda}(y)$$

Hence $h_{i\lambda}(y) = h_{j\lambda}(y)$, and (2.5) can be written as

$$D(y^{\lambda}D_i) = y^{\lambda}h_{\lambda}(y)D_i.$$

By virtue of Equation (2.7) we get

$$h_{\lambda}(y) + h_{\eta}(y) = h_{\lambda+\eta}(y), \quad \forall \lambda, \eta \in G.$$

$$(2.8)$$

For arbitrary k = 1, 2, ..., l, by definition of G, we obtain $z_k \in G$. According to (2.8), we have

$$h_{z_k}(y) + h_{z_k}(y) = h_{2z_k}(y) = 2h_{z_k}(y)$$

and

$$h_{2z_k}(y) + h_{z_k}(y) = h_{3z_k}(y) = 3h_{z_k}(y).$$

By induction we have

$$h_{cz_k}(y) = ch_{z_k}(y), \text{ where } c \in \{0, 1, \dots, p-1\} = Z_p$$

For arbitrary k, j = 1, 2, ..., l and arbitrary $a, b \in \mathbb{Z}_p$, we have

$$h_{az_k}(y) + h_{bz_j}(y) = h_{az_k + bz_j}(y) = ah_{z_k}(y) + bh_{z_j}(y).$$

For arbitrary $\lambda = \sum_{i=1}^{l} \lambda_i z_i \in G$, we obtain that

$$h_{\lambda}(y) = h_{\sum_{j=1}^{l} \lambda_j z_j}(y) = \sum_{j=1}^{l} \lambda_j h_{z_j}(y)$$

Let $h_j(y)$ denote $h_{z_j}(y)$ for short. Then the above equation can be written as $h_\lambda(y) = \sum_{j=1}^l \lambda_j h_j(y)$. Therefore,

$$D(y^{\lambda}D_i) = \sum_{j=1}^{l} \lambda_j h_j(y) y^{\lambda} D_i$$

Lemma 2.8 Let $\phi \in \text{Der}_t(W)$, where $t \ge 0$. Then there are $z \in \text{Nor}_W(W)$ and $h \in \Theta$ such that

$$(\phi - \mathrm{ad}z - D_h)(W_{-1}) = 0.$$

Proof By virtue of Proposition 2.4, there exists $z \in Nor_W(W)$ such that $\phi(D_i) = adz(D_i)$ for i = 1, 2, ..., s. Let $\phi_1 = \phi - adz$. Then $\phi_1(D_i) = \phi(D_i) - adz(D_i) = 0$. By virtue of Lemma 2.7, there is $(h_1(y), h_2(y), ..., h_l(y)) \in \Theta$ such that

$$\phi_1(y^{\lambda}D_i) = \sum_{j=1}^l \lambda_j h_j(y) y^{\lambda} D_i, \quad i \in Y, \lambda \in G.$$

Put $\phi_2 = \phi_1 - D_h$, then

$$\phi_2(y^{\lambda}D_i) = \phi_1(y^{\lambda}D_i) - D_h(y^{\lambda}D_i) = 0.$$

Therefore, $\phi_2(W_{-1}) = 0$, that is, $(\phi - adz - D_h)(W_{-1}) = 0$.

Proposition 2.9 Let $i \in Y_0$ and r be an arbitrary positive integer. Then $(adD_i)^{p^r} \in Der_{\bar{0}}(W)$. If $r \geq t_i$, then $(adD_i)^{p^r} = 0$.

Proof This proof is similar to the one in [1, Proposition 2.9, p35].

Proposition 2.10 Let $\phi \in \text{Der}_t(W)$, where $t \ge 0$. Then there are $f \in W$ and $h \in \Theta$ such that $\phi = \text{ad}f + D_h$.

Proof This is a direct consequence of Lemmas 2.5 and 2.8. \Box

Proposition 2.11 $Der_{-1}(W) = adW_{-1}$.

Proof This proof is similar to the one in [1, Proposition 3.2, p35].

Theorem 2.12 Let $T := \{x^{(k\epsilon_i)}D_j | 0 \le k \le \pi_i, i \in Y_0, j \in Y\}, G(y) := \{y^{\lambda}D_i | \lambda \in G, i \in Y\}, M := \{x_iD_j | i \in Y_1, j \in Y\}.$ Then W is generated by $T \cup M \cup G(y).$

Proof Form [1], the subalgebra generated by $T \cup M$ is

 $\{x^{(\alpha)}x^u D_i | \alpha \in A(m, \underline{t}), u \in B(n)\} \subseteq Q,$

where Q denotes the subalgebra of W generated by $T \cup M \cup G(y)$.

(1) If $\alpha \neq \pi$, we can suppose that $\alpha_1 < \pi_1$. Consequently, $x^{(\alpha+\epsilon_1)}x^u D_i \in Q, \forall u \in B(n)$, we have

$$[y^{\lambda}D_1, x^{(\alpha+\epsilon_1)}x^uD_i] = x^{(\alpha)}x^uy^{\lambda}D_i \in Q.$$

(2) If $\alpha = \pi, u \neq E$, then there exists $j \in Y_1$ such that $x_j x^u \neq 0$. Hence $x^{(\alpha)} x_j x^u D_i \in Q$, therefore,

$$[y^{\lambda}D_j, x^{(\alpha)}x_jx^uD_i] = x^{(\alpha)}x^uy^{\lambda}D_i \in Q.$$

(3) If $\alpha = \pi, u = E$, then

$$\begin{split} & [x^{(\pi)}y^{\lambda}D_1, x_1x^ED_j] = x^{(\pi)}x^Ey^{\lambda}D_j \in Q, \quad \forall j \in Y_1. \\ & [x^Ey^{\lambda}D_s, x_sx^{(\pi)}D_j] = x^{(\pi)}x^Ey^{\lambda}D_j \in Q, \quad \forall j \in Y_0. \end{split}$$

We conclude Q = W.

Lemma 2.13 Let $\phi \in \text{Der}_{-t}(W)$, where t > 1. If $\phi(x^{(t\epsilon_i)}D_j) = 0, \forall i \in Y_0, j \in Y$. Then $\phi = 0$.

Proof This proof is similar to the one in [1, Lemma 3.4, p36].

Proposition 2.14 Let t > 1. If there is not any positive integer k such that $t = p^k$. Then $\text{Der}_{-t}(W) = 0$.

Proof This proof is similar to the one of [1, Proposition 3.5, p36].

Proposition 2.15 Let $t = p^r, r > 0$. Then

$$\operatorname{Der}_{-t}(W) = \operatorname{span}_{F} \{ y^{\lambda_{i}} (\operatorname{ad} D_{i})^{t} | i \in Y_{0}, \lambda_{i} \in G \}$$

Proof Let $\phi \in \text{Der}_{-t}(W)$. Since $\text{zd}(\phi(x^{(t\epsilon_i)}D_i)) = (-t) + (t-1) = -1$, we may suppose

$$\phi(x^{(t\epsilon_i)}D_i) = \sum_{k=1}^s a_{ik}y^{\lambda_k}D_k, \quad i \in Y_0, \lambda_k \in G.$$

For $j \in Y \setminus \{i\}$, applying ϕ to the following equation

$$[x^{(t\epsilon_i)}D_i, x_jD_j] = 0$$

gives $a_{ij} = 0$. Consequently, $\phi(x^{(t\epsilon_i)}D_i) = a_{ii}y^{\lambda_i}D_i, \forall i \in Y_0$. Direct verification by using the equation

$$y^{\lambda_i}(\mathrm{ad}D_i)^t(x^{(\alpha)}x^uy^{\lambda}D_j) = y^{\lambda_i}((\mathrm{ad}D_i)^t(x^{(\alpha)}x^uy^{\lambda}D_j))$$

shows that $y^{\lambda_i}(\mathrm{ad}D_i)^t$ is the derivation. Put $\varphi = \phi - \sum_{i=1}^m a_{ii}y^{\lambda_i}(\mathrm{ad}D_i)^t$, for arbitrary $j \in Y_0$, we have

$$\varphi(x^{(t\epsilon_j)}D_j) = \phi(x^{(t\epsilon_j)}D_j) - \sum_{i=1}^m a_{ii}y^{\lambda_i}(\mathrm{ad}D_i)^t(x^{(t\epsilon_j)}D_j)$$
$$= a_{jj}y^{\lambda_j}D_j - a_{jj}y^{\lambda_j}D_j = 0.$$

Applying ϕ to the equation $x^{(t\epsilon_i)}D_j = [x^{(t\epsilon_i)}D_i, x_iD_j]$ results in $\varphi(x^{(t\epsilon_i)}D_j) = 0$ for $j \in Y, j \neq i$. By virtue of Lemma 2.13, we have $\varphi = 0$. Consequently,

$$\phi = \sum_{i=1}^{m} a_{ii} y^{\lambda_i} (\mathrm{ad}D_i)^t \in \mathrm{span}_F \{ y^{\lambda_i} (\mathrm{ad}D_i)^t | i \in Y_0, \lambda_i \in G \}.$$

Lemma 2.6 Let $\Delta = \{D_h | h \in \Theta\}$ and $\Omega = \operatorname{span}_F \{y^{\lambda_i} (\operatorname{ad} D_i)^{p^{k_i}} | i \in Y_0, 1 \le k_i \le t_i, \lambda_i \in G\}$. Then

- (1) $\Delta \cap \Omega = \{0\}.$
- (2) $(\Delta \oplus \Omega) \cap \mathrm{ad}W = \{0\}.$

Proof (1) is obvious.

(2) Suppose that $\operatorname{ad} f = D_h + \sum_{i=1}^m \sum_{j=1}^{t_i-1} a_{ij} y^{\lambda_{ij}} (\operatorname{ad} D_i)^{p^j}$. Then $\operatorname{ad} f(D_i) = 0, \forall i \in Y$. Noting that $f \in W$, we may suppose that $f = \sum x^{(\alpha)} x^u y^{\lambda} D_j$. Since

$$\begin{split} [f,D_i] &= [\sum x^{(\alpha)} x^u y^{\lambda} D_j, D_i] \\ &= \sum -(-1)^{\tau(i)d(x^{(\alpha)} x^u y^{\lambda} D_j)} D_i(x^{(\alpha)} x^u y^{\lambda}) D_j, \end{split}$$

	-	-	-	•

we obtain that $D_i(x^{(\alpha)}x^uy^{\lambda}) = 0$. Consequently, $f = \sum_{j=1}^s g_j(y)D_j$. Since

$$\operatorname{ad} f(x_v^p D_k) = g_v(y) x_v^{p-1} D_k, \quad 1 \le v \le s,$$
$$(D_h + \sum_{i=1}^m \sum_{j=1}^{t_i - 1} a_{ij} y^{\lambda_{ij}} (\operatorname{ad} D_i)^{p^j}) (x_v^p D_k) = a_{v1} y^{\lambda_{v1}} D_k,$$

and

$$adf = D_h + \sum_{i=1}^{m} \sum_{j=1}^{t_i-1} a_{ij} y^{\lambda_{ij}} (adD_i)^{p^j}.$$

We obtain $g_v(y) = 0$, namely, $(\Delta \oplus \Omega) \cap \mathrm{ad}W = \{0\}$.

By Propositions 2.10, 2.11, 2.14, 2.15 and 2.9 we obtain the following Theorem.

Theorem 2.17 $Der(W) = adW \oplus \Delta \oplus \Omega$.

Theorem 2.18 $W(m, n, l, \underline{t})$ is not isomorphic to Cartan-type modular Lie superalgebras W, S, H, HO, K.

Proof Since

$$W(m, n, l, \underline{t}) = \operatorname{span}_{F} \{ x^{(\alpha)} x^{u} y^{\lambda} D_{i} | \alpha \in A(m, \underline{t}), u \in B(n), \lambda \in G, i \in Y \},\$$

we have $\dim(W(m, n, l, \underline{t})) = 2^n sp^q$, where $q = \sum_{i=1}^m t_i + l$. From [1,2], we know that the dimensions of modular Lie superalgeras S, H, HO are not divided by p. Therefore, $W(m, n, l, \underline{t})$ is not isomorphic to S, H, HO. From [3,4], we know that any outer derivation in W, K is nilpotent linear transformation. But there is the Θ -type outer derivation D_h , which is not nilpotent linear transformation in $W(m, n, l, \underline{t})$, where $h = (y_1, 0, \ldots, 0), y_1 \neq 0$. Therefore, $W(m, n, l, \underline{t})$ is not isomorphic to W, K.

By Theorem 2.17, $W(m, n, l, \underline{t})$ is not isomorphic to the known Cartan-type modular Lie superalgebras.

References

- [1] ZHANG Yongzheng, LIU Wende. Modular Lie Superalgebras [M]. Beijing: Science Press, 2004.
- [2] LIU Wende, ZHANG Yongzheng. Finite-dimensional simple Cartan-type modular Lie superalgebras HO [J]. Acta Math. Sinica (Chin. Ser.), 2005, 48(2): 319–330. (in Chinese)
- [3] ZHANG Qingcheng, ZHANG Yongzheng. Derivation algebras of the modular Lie superalgebras W and S of Cartan-type [J]. Acta Math. Sci. Ser. B Engl. Ed., 2000, 20(1): 137–144.
- [4] MA Fengmin, ZHANG Qingcheng. Derivation algebras for K-type modular Lie superalgebras [J]. J. Math. (Wuhan), 2000, 20(4): 431–435. (in Chinese)
- [5] SHEN Guangyu. New simple Lie algebras of characteristic p [J]. Chinese Ann. Math. Ser. B, 1983, 4(3): 329–346.
- [6] STRADE H, FARNSTEINER R. Modular Lie algebras and Their Representations [M]. Marcel Dekker, Inc., New York, 1988.
- [7] LIU Wende, ZHANG Yongzheng. Infinite-dimensional modular odd Hamiltonian superalgebras [J]. Comm. Algebra, 2004, 32(6): 2341–2357.
- [8] KAC V G. Lie superalgebras [J]. Advances in Math., 1977, 26(1): 8-96.

304