Frobenius Property of a Cosemisimple Hopf Algebra

DONG Jing－cheng ${ }^{1}$ ，DAI Li ${ }^{1}$ ，LI Li－bin ${ }^{2}$
（1．Engineering College，Nanjing Agricultural University，Jiangsu 210031，China；
2．School of Math．，Yangzhou University，Jiangsu 225002，China ）
（E－mail：djcdl＠yahoo．com．cn）

Abstract

Let H be a cosemisimple Hopf algebra over an algebraically closed field k of characteristic zero．We show that if H is of type $l: 1+m: p+1: q$ with $p^{2}<q$ ，or of type $1: 1+1: m+1: n$ in the sense of Larson and Radford，then H has the Frobenius property， that is，Kaplansky conjecture is true for these Hopf algebras．

Key words：Hopf algebra；type；Frobenius property．
MSC（2000）：16W30；57T05
CLC number：O153

1．Introduction

In recent years，the theory of cosemisimple Hopf algebras over an algebraically closed field k of characteristic zero has been studied considerably．Many results have been found．For example， it was showed in［1，2］that H is cosemisimple if H is semisimple and $S^{2}=i d$ ．Recall that a cosemsimple Hopf algebra H is said to have the Frobenius property if the dimensions of simple H－comodules divide the dimension of H ．

It was conjectured by Kaplansky in［3］that every cosemisimple Hopf algebra had the Frobe－ nius property．This is still an open problem，although it has been shown in［4］that any coqua－ sitriangular cosemisimple Hopf algebra H has the Frobenius property．In several recent papers， Natale in［5］has shown that every cosemisimple Hopf algebra of dimension less than 60 is semi－ solvable，and hence has the Frobenius property ${ }^{[6,7]}$ ．

In this paper，we shall show that if a cosemisimple Hopf algebra H has the type $l: 1+m$ ： $p+1: q$ with $p^{2}<q$ ，or the type $1: 1+1: m+1: n$ in the sense of Larson and Radford ${ }^{[8]}$ ， then H has the Frobenius property．In particular，the cosemisimple Hopf algebras of dimension 60 have the Frobenius property．Our results follow from the theory of the Grothendieck algebras of a Hopf algebra，introduced by Nichols and Richmond in $[9,10]$（see Section 2）．

Throughout，k will denote an algebraically closed field of characteristic zero．All vector spaces and tensor product will be over k ．Our references for the theory of Hopf algebras are［11］

[^0]or [12]. The notation for Hopf algebras is standard.

2. The Grothendieck algebra of a Hopf algebra

Let H be a Hopf algebra over a field k, and let \mathcal{U}^{H} be the category of finite dimensional right H-comodules. Let \mathcal{F} be the free abelian group on the symbols (M), where (M) denotes the isomorphism class of the object M in \mathcal{U}^{H}. Denote by $\mathcal{G}(H)=\mathcal{F} / \mathcal{F}_{0}$ the Grothendieck group, where \mathcal{F}_{0} is the subgroup of \mathcal{F} generated by all expressions $(M)-(L)-(N)$, where $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is a short exact sequence of finite dimensional right H-comodules. The image of the symbol corresponding to the class of $M \in \mathcal{U}^{H}$ in $\mathcal{G}(H)$ is denoted [M]. Then by Proposition 1 of [9], the group $\mathcal{G}(H)$ is a free abelian group, with standard basis \mathcal{X} consisting of the images of the classes of the simple right H-comodules.

The basic elements of degree 1 of $\mathcal{G}(H)$ are of the form $[k g]$, where $g \in G(H)$, the set of group-like elements of H. Simply, we shall write $[k g]$ as g in $\mathcal{G}(H)$.

Let M and N be right H-comodules. Then $M \otimes N$ is a right H-comodule via $\rho(m \otimes n)=$ $\sum m_{0} \otimes n_{0} \otimes m_{1} n_{1}$, for all $m \in M, n \in N$.

Thus, the Grothendieck group $\mathcal{G}(H)$ is a ring with multiplication given by $[M][N]=[M \otimes N]$ for each $M, N \in \mathcal{U}^{H}$. Let R be any subfield of the complex numbers field \mathbf{C}, and let $\mathcal{G}(H)^{R}=$ $\mathcal{G}(H) \otimes_{\mathbf{z}} R$ be the R-module obtained by extending the scalars. Then $\mathcal{G}(H)^{R}$ is naturally an algebra over R with the basis \mathcal{X}.

By Proposition 8 of [9], the map $*: \mathcal{G}(H) \rightarrow \mathcal{G}(H)$ given by $[M]^{*}=\left[M^{*}\right]$ is a group homorphism and a ring anti-homomorphism. If H is cosemisimple, then "*" is an involution.

For any $z \in \mathcal{G}(H)$, we write $z=\sum_{x \in \mathcal{X}} m(x, z) x$, and refer to the integer $m(x, z)$ as the multiplicity of x in z. If $m(x, z) \neq 0$, we say that x is a basic component of z. Extending m to a biadditive function, we define $m\left(z, z^{\prime}\right)=\sum_{x \in \mathcal{X}} m(x, z) m\left(x, z^{\prime}\right)$ for all $z, z^{\prime} \in \mathcal{G}(H)$. In particular, for $x, y \in \mathcal{X}, g \in G(H)$

$$
m(g, x y)= \begin{cases}1, & \text { if } y=x^{*} g \\ 0, & \text { otherwise }\end{cases}
$$

There is a unique ring homomorphism $d: \mathcal{G}(H)^{R} \rightarrow R$ such that $d([M])=\operatorname{dim}_{k} M$ for all $M \in \mathcal{U}^{H}$.

Recall that a standard subring of $\mathcal{G}(H)$ is a subring of $\mathcal{G}(H)$ which is spanned as an abelian group by a subset of the standard basis \mathcal{X}. Then by Theorem 6 of [9], there is a $1-1$ correspondence between standard subrings of $\mathcal{G}(H)$ and subbialgebras of H generated as algebras by their simple subcoalgebras, given by: the subbialgebra algebra B generated by its simple subcoalgebras corresponds to the standard subring spanned by $\left\{x_{C} \mid C\right.$ is a simple subcoalgebra of $B\}$, where x_{C} denotes the basis element corresponding to the simple coalgebra C.

3. Main results

Let H be a finite dimensional cosemisimple Hopf algebra over the algebraically closed field k of characteristic zero. Let $d_{1}, d_{2}, \ldots, d_{s}, n_{1}, n_{2}, \ldots, n_{s}$ be positive integers, with $d_{1}<d_{2}<$
$\cdots<d_{s}$. Recall that H is said to have type ${ }^{[8]}: n_{1}: d_{1}+n_{2}: d_{2}+\cdots+n_{s}: d_{s}$ if $d_{1}, d_{2}, \ldots, d_{s}$ are the dimensions of the simple H-comodules and that n_{i} is the number of the simple H-comodules of dimension d_{i}.

Let x, y be basic elements in \mathcal{X}. We shall denote by $G[x, y]$ the subset of $G(H)$ consisting of those elements g for which $g x=y$. In particular, by Theorem 10 of $[9], G[x]=G[x, x]=$ $\left\{g \mid m\left(g, x x^{*}\right)=1\right\}$.

We need the following lemma, due to the dual version ${ }^{[5,13]}$.
Lemma 3.1 Let x be a basic element in \mathcal{X}. Then we have:
(1) The order of $G[x]$ divides $(d(x))^{2}$.
(2) The order of $G(H)$ divides $n(d(x))^{2}$, where n is the number of the simple H-comodule of degree $d(x)$.

Proof It follows from Nichols and Zoeller Theorem ${ }^{[14]}$ (see also Lemma 2.2.2 of Ref. [5]).
Theorem 3.2 Let H be finite dimensional cosemisimple Hopf algebra over an algebraically closed field k of characteristic 0 . Suppose that H is of type $l: 1+m: p+1: q$ and $p^{2}<q$, then $p||G(H)|, q| \operatorname{dim}_{k} H$.

Proof Let $x_{1}, x_{2}, \ldots, x_{m}$ be distinct basis elements of degree p, and let y be the unique basic element of degree q. Notice that the standard subring B generated by $\left\{x_{i}, g \mid i=1,2, \ldots, m, g \in\right.$ $G(H)\}$ is exactly $\sum_{g \in G(H)} \mathbf{Z} g+\sum_{i=1}^{m} \mathbf{Z} x_{i}$, since $p^{2}<q$. For any i, we have $x_{i} x_{i}^{*}=\sum_{g \in G\left[x_{i}\right]} g+$ $\sum_{z \in \mathcal{X}, m\left(z, x_{i} x_{i}^{*}\right)>0} z$. Again since $p^{2}<q$, if $m\left(z, x_{i} x_{i}^{*}\right)>0$ and $z \in \mathcal{X}$, then $z \in\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. By applying d, we have $p\left|\left|G\left[x_{i}\right]\right|\right.$, hence $\left.p\right||G(H)|$.

Now for any $i, 1 \leq i \leq m$, we claim that $x_{i} y=p y$ and $y x_{i}=p y$. In fact, if for any j, $m\left(x_{j}, x_{i} y\right)>0$, then by Theorem 8 of [10], we have $m\left(y, x_{i}^{*} x_{j}\right)>0$, which contradicts the fact that $p^{2}<q$. Similarly, we have $y x_{i}=p y$.

Note that $y^{*}=y$, so $m\left(x_{i}, y^{2}\right)=p$. Thus, there is an integer s such that

$$
y^{2}=\bigoplus_{g \in G(H)} g+p\left(x_{1}+x_{2}+\cdots+x_{m}\right)+s y
$$

Applying d yields $q^{2}=l+m p^{2}+s q$. Using the fact $\operatorname{dim}_{k} H=l+m p^{2}+q^{2}$, we obtain $\operatorname{dim}_{k} H=$ $2 q^{2}-s q$. This gives $q \mid \operatorname{dim}_{k} H$.

Corollary 3.3 Let p, q be two distinct prime numbers and let H be a cosemisimple Hopf algebra with dimension $p q^{2}, p^{2}<q$, and let H be not-cocommutative. If H has Frobenius property, then H is of type $q^{2}: 1+(p-1): q$. In particular, if H is a coquasitriangular Hopf algebra then $G(H)$ is non-trivial.

Proof Let x be any basic element of $\mathcal{G}(H)$. By assumption, we have $d(x)=1, p$ or q since $(d(x))^{2}<p q^{2}$. Let m and n be the numbers of the simple comodules of dimension p and q, respectively. We claim that $m=0$. In fact, by the proof of Theorem 3.2, we have $p||G(H)|$. This means that $|G(H)|=p$ or $|G(H)|=p q$ since H is not cocommutative. But by Lemma 3.1
$|G(H)| \mid n q^{2}$, which is impossible since $n<p$.
Now H is of type $l: 1+n: q$ where $|G(H)|=l$ and $n \neq 0$ since H is not cocomutative. By the proof of Theorem 3.2 (or see Ref.[8, Corollary 3.6]) we know $q \mid l$. It follows that $l=p q, q$ or q^{2}. We shall rule out $p q$ and q.

Suppose that $l=p q$. Then $p q^{2}=p q+n q^{2}$. Therefore, $q \mid p$, a contradiction.
Suppose that $l=q$. Then $p q^{2}=q+n q^{2}$, which is also impossible. All together, we have $|G(H)|=q^{2}$.

In particular, if H is coquasitriangular, then by [4], H has the Frobenius property, and the assertion follows.

Theorem 3.4 Let H be a cosemisimple Hopf algebra over k of type $1: 1+1: n+1: m$. Then H has the Frobenius property.

Proof Let x and y be the unique basic element of degree n and m, respectively. Noticing that $x=x^{*}$ and $d(x) \neq 1$, we obtain that $x^{2}=1+a x+b y$, for nonnegative integers a, b with $b \neq 0$. Applying d, we get $(d(x), d(y))=1$, i.e., there exists $s, t \in \mathbf{Z}$, such that $s d(x)+t d(y)=1$. It follows that the standard subring generated by $\{x\}$ is $\mathcal{G}(H)$. This gives that $\{1, x, y\}$ and $\{1, x,[H]\}$ are both bases of $\mathcal{G}(H)^{\mathbf{Q}}$, where \mathbf{Q} is the rational numbers field. Set $x^{2}=\alpha 1+\beta x+$ $\gamma[H]$ for some $\alpha, \beta, \gamma \in \mathbf{Q}$ and $\gamma \neq 0$. Notice that the matrix of the left multiplication by x on $\mathcal{G}(H)^{\mathbf{Q}}$ with the basis $\{1, x, y\}$ is a matrix with integer coefficients. Using the basis $\{1, x,[H]\}$ and the fact that $x[H]=d(x)[H]$, we obtain that $\beta+d(x)$ is an integer. Hence β is an integer. Noticing that $x^{2}=(\alpha+\gamma) 1+(\gamma d(x)+\beta) x+\gamma d(y) y$, we have $\gamma d(x)+\beta=a, \gamma d(y)=b \in \mathbf{N}$. It follows that $\gamma d(x) \in \mathbf{Z}$. Thus, we obtain $\gamma=\gamma s d(x)+\gamma t d(y) \in \mathbf{Z}$.

Now since $0<\gamma d(y)=b=\left(x^{2}, y\right)=(x, x y) \leq d(y)$, we have $\gamma=1$. Therefore, $\alpha=0$ and $x^{2}=1+(\beta+d(x)) x+d(y) y$. It follows that $\operatorname{dim}_{k} H=1+d^{2}(x)+d^{2}(y)=(d(x))^{2}-\beta d(x)$. This means $n=d(x) \mid \operatorname{dim}_{k} H$. Similarly, we have $m \mid \operatorname{dim}_{k} H$.

Theorem 3.5 Let H be a cosemisimple Hopf algebra over k of dimension 60. Then H has Frobenius property.

Proof If H has a simple comodule with dimension 7 , then the type of H must be one of: $2: 1+1: 3+1: 7 ; 3: 1+2: 2+1: 7 ; 7: 1+1: 2+1: 7 ; 11: 1+1: 7$. But it is impossible from the Lemma 3.1 and Theorem 3.2. So the dimensions of all simple comodules of H should be $1,2,3,4,5$ or 6 , which can divide 60 .

References:

[1] LARSON R G, RADFORD D E. Finite dimensional cosemisimple Hopf algebras in characteristic zero are semisimple [J]. J. Algebra, 1988, 117: 267-289.
[2] LARSON R G, RADFORD D E. Semisimple cosemisimple Hopf algebras [J]. Amer. J. Math., 1988, 110: 187-195.
[3] KAPLANSKY I. Bialgebra [M]. Univ. Chicago Press, Chicago, 1975.
[4] ETINGOF P, GELAKI S. Some properties of finite dimensional semisimple Hopf algebras [J]. Math. Res. Lett., 1998, 5: 191-197.
［5］NATALE S．On semisimple Hopf algebras of dimension $p q^{2}$［J］．J．Algebra，1999，221：242－278．
［6］ZHU Sheng－lin．On finite－dimensional semisimple Hopf algebras［J］．Comm．Algebra，1993，21：3871－3885．
［7］MONTGOMERY S，WITHERSPOON S．Irreducible representations of crossed products［J］．J．Pure Appl． Algebra，1998，129：315－326．
［8］LARSON R G，RADFORD D E．Semisimpple Hopf algebras［J］．J．Algebra，1995，171：5－35．
［9］NICHOLS W D，RICHMOND M B．The Grothendieck group of a Hopf algebra［J］．J．Pure Appl．Algebra， 1996，106：297－306．
［10］NICHOLS W D，RICHMOND M B．The Grothendieck algebra of a Hopf algebra I［J］．Comm．Algebra，1998， 26（4）：1081－1095．
［11］MONTGOMERY S．Hopf Algebras and Their Actions on Rings［M］．CBMS，Regional Conf．Series in Math． No．82，Amer．Math．Soc．，Providence，RI， 1993.
［12］SWEEDLER M E．Hopf Algebra［M］．Benjamin，New York， 1969.
［13］MASUOKA A．Some further classification results on semisimple Hopf algebras［J］．Comm．Algebra，1996，21： 307－329．
［14］NICHOLS W D，ZOELLER B．A Hopf algebra freeness theorem［J］．Amer．J．Math．，1989，111：381－385．

余半单 Hopf 代数的 Frobenius 性质

董井成 ${ }^{1}$ ，戴 丽 ${ }^{1}$ ，李立斌 ${ }^{2}$

（1．南京农业大学工学院基础课部，江苏 南京 210031；2．扬州大学数学科学学院，江苏 扬州 225002）
摘要：设 k 是特征为 0 的代数闭域，H 为其上的余半单 Hopf 代数．本文证明了当 H 有型：
$l: 1+m: p+1: q$（其中 $p^{2}<q$ ）或 $1: 1+1: m+1: n$ 时，它具有 Frobenius 性质．即对此类 Hopf 代数，Kaplansky 猜想是正确的．

关键词：Hopf 代数；型；Frobenius 性质．

[^0]: Received date：2004－11－22；Accepted date：2005－05－10
 Foundation item：the National Natural Science Foundation（10241002；10271113）．

