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ABSTRACT. We establish several convexity results for Hermitian matrices. For instance: Let
A, B be Hermitian and lef be a convex function. I andY stand forf({A + B}/2) and
{f(A) + f(B)}/2 respectively, then there exist unitari&s V" such that
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Consequently, A2;_1(X) < X;(Y), where);(-) are the eigenvalues arranged in decreasing
order.
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1. INTRODUCTION

The main aim of this paper is to give a matrix version of the scalar inequality

w ; ( + b) L fla) + /)
2 2
for convex functionsf on the real line.

Capital lettersA, B, ..., Z meann-by-n complex matrices, or operators on a finite dimen-
sional Hilbert spacét; I stands for the identity. Whea is positive semidefinite, resp. positive
definite, we writeA > 0, resp.A > 0.

A classical matrix version of (1.1) is von Neuman’s Trace Inequality: For Hermitiqris,

(1.2) Tr f (MTB) <Tr w
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2 JEAN-CHRISTOPHEBOURIN

When f is convex and monotone, we showéd [2] tHat](1.2) can be extended to an operator
inequality: There exists a unitaty such that

w F(A5E) <u SLIB)

We also established similar inequalities involving more general convex combinations. These
inequalities are equivalent to an inequality for compressions. Recall that given an opgerator
and a subspacg with corresponding orthoprojectiafi, the compression of onto&, denoted

by Z¢, is the restriction of£Z to £. Inequality [1.B) can be derived from: For every Hermitian

A, subspac& and monotone convex functiofy there exists a unitary operatbron £ such

that

(1.4) f(Ag) SUf(A)eU™

Inequalities[(1.8) and (1.4) are equivalent to inequalities for eigenvalues. For ingtance (1.4) can
be rephrased as

where)\;(-), 7 = 1, 2,... are the eigenvalues arranged in decreasing order and counted with
their multiplicities. Having proved an inequality such gs(1.3) for monotone convex functions,
it remains to search counterparts for general convex functions. We derived frgm (1.3) the fol-
lowing result for even convex functions: Given HermitiansA, B, there exist unitarie§/, V

such that

(1.5)

; (AJ;B) L Ui ; ViB)V

This generalizes a wellknown inequality for the absolute value,
|A+ B| < UJA|U* + V|B|V*.

We do not know whethef (1].5) is valid for all convex functions.

In Sectior] 2 we present a counterpart/of(1.4) for all convex functions. This will enable us to
give, in Sectior [3, a quite natural counterpart[of](1.3) for all convex functions. Althgugh (1.3)
can be proven independently pf ([L.4) (and the same for the counterparts), we have a feeling that
in the case of general convex functions, the approach via compressions is more illuminating.

2. COMPRESSIONS

Our substitute tq (1]4) for general convex functions (on the real line) is:
Theorem 2.1. Let A be Hermitian, let€ be a subspace and I¢tbe a convex function. Then,
there exist unitarie$/, VV on £ such that

Uf(A)eU™ +V f(A)eV"
5 :

f(Ae) <
Consequently, fof =1, 2,...,
Aaj-1(f(Ae)) < A (f(A)e).
Proof. We may find spectral subspac@sand&” for Az and a reat such that
iyeE=&8dé&,

(i) the spectrum ofd¢: lies on(—oo, r] and the spectrum od¢~ lies on|r, co),
(iii) f is monotone both ofroco, r] and|r, co).
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Let k£ be an integer] < k£ < dim &'. There exists a spectral subsp&e- £’ for Ag (hence
for f(Ag)), dim F = k, such that

Mlf(Ae)] = _min (. f(Ar)h)

= min{f(M(Ax)); f(M(Ax))}

= he}?ﬁﬁzl f((h, AFh))

= emin _ f((h, Ah)),

where at the second and third steps we use the monotonicjtyof(—oco, r] and the fact that
Az's spectrum lies ofi—oo, r]. The convexity off implies

f((h, Ah)) < (h, fF(A)R)
for all normalized vectoré. Therefore, by the minmax principle,

M) < min (b F(A)R)

< Me[f(A)er].
This statement is equivalent to the existence of a unitary opdrgton £’ such that
f(Ag) < Uof(A)eUs-
Similarly we get a unitary;, on £” such that
f(Agn) < Vof(A)enVy.

a0 = (T 0) U9 side) (5 )

Also, we note that, still in respect with the decompositioa: £’ @ £”,

(4 18)-HE o )6 rns )

Thus we have

So, letting
(U, O (U, O
U—(O Vo) and V—(O —Vo)
we get
Uf(A)eU*+V f(A)V*

2
It remains to check thaft (2.1) entails
Aoj-1(f(Ae)) < A (f(A)e).
This follows from the forthcoming elementary observation. O

Proposition 2.2. Let X, Y be Hermitians such that

uyu +vyvr
2

(2.2) X<
for some unitarieg¢’/, V. Then, forj; =1, 2,...,
Aoj—1(X) < X(Y).
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Proof. By adding ar/ term, for a suitable scalat both to.X andY’, it suffices to show that
(2.3) Aj—1(X) >0 = \(Y)>0.
We need the following obvious fact: Given HermitiaasB,

rank(A + B), < rankA, + rankB,

where the subscript + stands for positive parts. Applying thidte UYU* andB = VY V*
we infer that the negation df (2.3), thatis;_,(A + B) > 0 and\;(4) (= A;(B)) < 0, cannot
hold. Indeed, the relation

2j—=1>0G -+ -1
would contradict the previous rank inequality. O

Remark 2.3. From inequality[(2.R) one also derives, as a straightforward consequence of Fan’s
Maximum Principle[[1, Chapter 4],

k

SN0 <3 )

J=1

fork=1,2,....
Inequality [2.2) also implies

1
Aijr1(X) = S (Y) + A (Y)}
fori, =0, 1, .... Itis a special case of Weyl's inequalities [1, Chapter 3].

Remark 2.4. For operators acting on an infinite dimensional (separable) space, the main in-
equality of Theorerp 2]1 is still valid at the cost of an additionalerm in the RHS, with- > 0
arbitrarily small. See [3, Chapter 1] for the analogous resul{for (1.4).

Obviously, for a concave functiofy the main inequality of Theoren 2.1 is reversed. But the
following is open:

Problem 1. Let g be a concave function, let be Hermitian and lef be a subspace. Can we
find unitaries/, V on £ such that

g(A)s < Ug(Ag)U* + Vg(Ag)V*

?
2

3. CONVEX COMBINATIONS

The next two theorems can be regarded as matrix versions of Jensen’s inequality. The first
one is also a matrix version of the elementary scalar inequality

f(za) < zf(a)
for convex functiongf with f(0) < 0 and scalarg andz with 0 < z < 1.

Theorem 3.1.Let f be a convex function, led be Hermitian, letZ be a contraction and set
X = f(Z*AZ)andY = Z*f(A)Z. Then, there exist unitarids, V' such that

X < uyu 42—VYV ‘

A family {Z,;}, is an isometric column i} " | Z*Z; = I.
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Theorem 3.2.Let f be a convex function, I€t4;}!" , be Hermitians, le{Z;}, be an isometric
columnand sek = f (> ZrA;Z;) andY = > Z*f(A;)Z;. Then, there exist unitarids, V/
such that

uoyus+vyve

2

Corollary 3.3. Let f be a convex function, let, B be Hermitians and seX = f({A+ B}/2)
andY = {f(A) + f(B)}/2. Then, there exist unitaridsg, V' such that

uyuvs+vyvr
5 .
Recall that the above inequality entails that for 1, 2,. ..,

Agj—1(X) < A(Y).
We turn to the proof of Theorems 3.1 gnd]3.2.

Proof. Theoreni 3]l and Theorgm 2.1 are equivalent. Indeed, to prove Thgorem 2.1, we may
assume thaf(0) = 0. Then, Theorem 2]1 follows from Theorgm [3.1 by takifigas the
projection ontct.

Theoreni 2.]1 entails Theorgm B.1: to see that, we introduce the partial iso/natrg the
operatorA on’H @ H defined by

J:(u—émw 8)’ ;‘:(? 8)'

Denoting byH the first summand of the direct sum® H, we observe that
f(Z*AZ) = f(T*AT):H = T f(Asm) T H,

where X : H means the restriction of an operatrto the first summand ok & H. Applying
Theorenj 2.1 witt€ = J(H), we get unitarie$, V, on J(H) such that

Uof(A)so0Us + Vof (A) 100 Ve
2
Equivalently, there exist unitariés, I on’H such that

f(Z*AZ) < UJ*f(A)J(H)(J:H)U* + VJ*f(A)J(H)(J:H)V*
- 2

_%{UJ* (f(OA> f?o)) (J:H)U* + VI (f((f) f(oo)) (J:H)V*}

= %U{Z*f(A)Z+ ([ _ |Z’2)1/2f(0)(1 _ |Z|2)1/2}U*

X <

X <

J:H.

f(Z7AZ)y < T

VI HAVZ + (T~ |ZP) 2 FO) ~ |21V

Using f(0) < 0 we obtain the first claim of Theorem B.2.
Similarly, Theorenj 2]1 implies Theordm B.2 (we may asstfitie = 0) by considering the
partial isometry and the operator exf*H,

(Z1 0o --- 0) (A1 )
Zym 0 - 0 A,
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We note that our theorems contain two well-known trace inequalities 4], [5]:

3.4. Brown-Kosaki: Let f be convex withf(0) < 0 and letA be Hermitian. Then, for all
contractionsZ,

Tr f(Z*AZ) < Tr Z* f(A) Z.

3.5. Hansen-PedersenLet f be convex and lefA;}™, be Hermitians. Then, for all isometric

column{Z;}™,,
Tr f (Z Z;Aizi> <Tr Y Z f(A)Z:
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