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ABSTRACT. An identity for the Chebychev functional is presented in which a Riemann-Stieltjes
integral is involved. This allows bounds for the functional to be obtained for functions that are
of bounded variation, Lipschitzian and monotone. Some applications are presented to produce
bounds for moments of functions about a general ppiand for moment generating functions.
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1. INTRODUCTION

For two measurable functionsg : [a,b] — R, define the functional, which is known in the
literature as Chebychev’s functional, by

(1.1) T(f,g):==M(fg) = M(f)Mg),
where the integral mean is given by

(1.2) M) = [ f@)d.

The integrals in[(1]1) are assumed to exist.
Further, the weighted Chebychev functional is defined by

(1.3) T(f,9:0) =M (f,9:0) —M(f;p) M (g;p),
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2 P. GERONE

where the weighted integral mean is given by

Jup (@) f (x)do
1.4 M (f;p) = Loy .
(1.4) (f;p) (o) do

We note that,
(1) =T(f.9)
and
M(f;1) = M(f).
It is the aim of this article to obtain bounds on the functionfals| (1.1) (1.3) in terms of one
of the functions, say, being of bounded variation, Lipschitzian or monotonic nondecreasing.
This is accomplished by developing identities involving a Riemann-Stieltjes integral. These
identities seem to be new. The main results are obtained in Sg¢tion 2, while in $éction 3 bounds
for moments about a general pomtare obtained for functions of bounded variation, Lips-
chitzian and monotonic. In a previous article, Cerone and Dragomir [2] obtained bounds in
terms of the|| /||, p > 1 where it necessitated the differentiability of the functipnThere
is no need for such assumptions in the work covered by the current development. A further
application is given in Sectidrj 4 in which the moment generating function is approximated.

2. AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL

It is worthwhile noting that a number of identities relating to the Chebychev functional al-
ready exist. The reader is referred[to [7] Chapters IX and X. Korkine’s identity is well known,
seel7, p. 296] and is given by

(2.1) T(f,g):ﬂb;_a)g / / (f (@) — F () (9 2) — g () ddy.

It is identity (2.1) that is often used to prove an inequality of Griss for functions bounded above
and below,[7].
The Griss inequality is given by

(2.2) 1T (f,9) <

whereg; < f (z) < &y forz € [a, b].
If we let S (f) be an operator defined by

(q)f - ¢f) ((I)g - ¢g)

| =

(2.3) S(f) () = f(z) = M(f),

which shifts a function by its integral mean, then the following identity holds. Namely,
(2.4) T(f,9)=T(S(f),9)=T(f,5(9)=T(5(f),5(9),

and so

(2.5) T(f,9)=M(S(f)g)=M(fS5(g)) =M(S(f)S(9))

sinceM (S (f)) = M (S (g)) =0.

For the last term i (2]4) of (3.5) only one of the functions needs to be shifted by its integral
mean. If the other were to be shifted by any other quantity, the identities would still hold. A
weighted version of (2]5) related ®©( f, g) = M ((f (z) — ) S (g)) for « arbitrary was given
by Sonin [8] (see |7, p. 246]).

The interested reader is also referred to Dragomiir [5] and Fink [6] for extensive treatments
of the Griiss and related inequalities.

J. Inequal. Pure and Appl. Math3(1) Art. 4, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL 3

The following lemma presents an identity for the Chebychev functional that involves a Riemann-
Stieltjes integral.

Lemma 2.1. Let f,g : [a,b] — R, wheref is of bounded variation ang is continuous on
la, b], then

1 b
(2.6) T(9) = G [ PO,
where
2.7) b (1) = (t—a) A(t,b) — (b—t) Ala,t)
with
b
(2.8) A(a,b):/ g (x)dx.

Proof. From [2.6) integrating the Riemann-Stieltjes integral by parts produces

b b b
—(b_la)z/@b(t)df(t) = ﬁ{w(t)f(t)} _/ f(t)d¢(t)}

1 b ,
- a{rere-vero- [ rovonf
sincey (t) is differentiable. Thus, fronj (2.7); (a) = ¢ (b) = 0 and so
1 b 1 b
T ROl NGO HUR OO ROL
- 52 [ b -M@Ir 0
= M(f5(9))
from which the resulf(2]6) is obtained on noting identjty [2.5). O

The following well known lemmas will prove useful and are stated here for lucidity.
Lemma 2.2. Letg, v : [a,b] — R be such thay is continuous and is of bounded variation on
la, b]. Then the Riemann-Stieltjes integ@g (t) dv (t) exists and is such that

b

/ g<t>dv<t>] < sup lg 1\ ().

t€la,b]

(2.9)

where\/’ (v) is the total variation ofy on [a, b].

Lemma 2.3. Letg,v : [a,b] — R be such thaty is Riemann-integrable ofu,b] and v is
L—Lipschitzian orfa, b]. Then

b b
(2.10) [ o <t>\ <z [ ol
with v is L—Lipschitzian if it satisfies
lv(z) —v(y)| < Llz—yl

forall z,y € [a,b].
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Lemma 2.4. Letg,v : [a,b] — R be such thay is continuous orja, b| and v is monotonic

nondecreasing ofu, b|. Then
b b
[swo|< [wlwo

It should be noted that if is nonincreasing therv is nondecreasing.

(2.11)

Theorem 2.5.Let f,g : [a,b] — R, wheref is of bounded variation and is continuous on
[a, b]. Then

(

s 6 0]V (7).

te[a,b]
2.12 b—a)’|T <
(212)  (b-afIT (/) = Lf [ (t)] dt, for f L — Lipschitzian,
f [ (t)|df (t) for f monotonic nondecreasing,

b
where\/ (f) is the total variation off on|a, b].

a

Proof. Follows directly from Lemmap 2.1 - 2.4. That is, from the identity|(2.6) &nd (2 9) —
@.11).

The following lemma gives an identity for the weighted Chebychev functional that involves
a Riemann-Stieltjes integral.

Lemma 2.6. Let f,g,p : [a,b] — R, wheref is of bounded variation ang, p are continuous
on[a, b]. Further, letP (b) = fabp (x)dx > 0, then

213) T(.00) = gy | VO 0.

whereT (f, g; p) is as given in[(1]3),

(2.14) U(t)=P@#)G({t)—P((t)G (1)
with
{ P(t)= [Ip(z)da, P(t)=P(b)— P (t)
(2.15) and
t)=[Ip(x)g(x)ds, G(t)=G(b) —G(t).

Proof. The proof follows closely that of Lemnja 2.1.
We first note thatl (¢) may be represented in terms of orffy(-) andG (-). Namely,

(2.16) V() =P ) Gb) — PGt
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It may further be noticed thalt (a) = ¥ (b) = 0. Thus, integrating fronj (2.13) and using either
(2.14) or [2.1P) gives

1 b b
2 | VOUO = g [ 10av ()

= (f,gm),

Theorem 2.7. Let the conditions of Lemnia 2.6 ¢gng andp continue to hold. Then

sup [ (1) V/ (£).

t€[a,b]
2.17 P*(b)|% p)| <
(2.17) OYE S gip)l Lf |U (t)] dt, for f L — Lipschitzian,
f W (¢)] df (t for f monotonic nondecreasing.

where ¥ (f, g; p) is as given by-3) and’ (¢ ) = P(t)G(b) — P(b)G (t), with P(t) =
Jop (@) dz, G (1) = [;p(x
Proof. The proof uses Lemm@.E}ZA and follows closely that of Theprgm 2.5. O

Remark 2.8. If we takep (x) = 1 in the above results involving the weighted Chebychev func-
tional, then the results obtained earlier for the unweighted Chebychev functional are recaptured.

Gruss type inequalities obtained from bounds on the Chebychev functional have been applied
in a variety of areas including in obtaining perturbed rules in numerical integration, see for
examplel[4]. In the following section the above work will be applied to the approximation of
moments. For other related results see also [1]land [3].

Remark 2.9. If f is differentiable then the |dentltﬂ2 6) would become

(2.18) T(f.9)

and so

||1/}||1Hf,’|ooa fleLOO [Cb,b],

b—a)|T(f,9) << Wl M, f € Lyla,b],
p>1 4+ =1

Hw“oonlula f/ELl [CL?b];
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where the Lebesgue norrjs| are defined in the usual way as

1
b =
Hng = (/ |g(t)|Pdt) , for gGLp[a,b], p>1, ]_)+§: 1
and

lgll, :==ess sup |g(t)], for g€ Ly a,b].

t€(a,b]

The identity for the weighted integral meafps (2.13) and the corresponding bounds (2.17) will
not be examined further here.

Theorem 2.10.Letg : [a,b] — R be absolutely continuous da, b] then for

(2.19) D (g;a,t,b) :== M (g;t,b) — M (g;a,t),
( [b—a
(55 1. g€ Lulab:
(t—a)+ -7
|: q+1 ||g||p7 gELp[aub]7
(220)  |D(gia,t.b) < p>1 o+, =1
T Al g € Ly[a,b];
VZ (9), g of bounded variation;
b—a . . .
( 5 ) L, g is L — Lipschitzian.
\
Proof. Let the kernel- (¢, u) be defined by
u—a
, € [a,t],
t—a
(2.21) ot u) =
b—u
3_¢ Y€ (t, 0]

then a straight forward integration by parts argument of the Riemann-Stieltjes integral over each
of the intervalga, t| and(¢, b] gives the identity

(2.22) /br (t,u)dg (u) = D (g;a,t,b).
Now for g absolutely contin(lljous then
(2.23) D (g;a,t,b) = /br (t,u) g (u)du
and so a
|D (g;a,t,b)| <ess sup 7 (¢, u)| /b lg’ (u)| du, for ¢' € Ly[a,b],
where from|(2.2]1) e a
(2.24) ess sup |r(t,u)| =1

u€la,b
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and so the third inequality iff (2.R0) results. Further, using the Holder inequality gives

b : b :
(2.25) D(gatb) < ( / |r<t,u>|qdu) ( / |g'<t>|pdt)
1 1
forp > 1, —+-=1,
p q

where explicitly from|[(2.2]1)

e ([rra) = [ (=) e [ (52) ]

Also

b
(2.27) D (gsa.t.0) < ess sup o' ()] [ I t.0)] du
u€(a,b] a
and so from([(2.26) witly = 1 gives the first inequality irf (2.20).
Now, for g (u) of bounded variation ofx, b] then from Lemma 2]2, equatidn (R.9) and identity

(2:22) gives

b
D (g;a.t,0)| < ess sup |r(t,u)|\/ (9)

u€(a,b]

producing the fourth inequality i (2.20) on using (2.24). From (2.10) gnd](2.22) we have, by
associating with v andr (t, -) with g (-),

b
D(gat| <L [ Ir(tw)]du
and so from|[(2.26) witly = 1 gives the final inequality irf (2.20). O

Remark 2.11. The results of Theorefn 2.10 may be used to obtain bounds(ensince from
(2.7) and[(2.19)

U (t) = (t—a)(b—1t)D(g;a,t,0b).
Hence, upper bounds on the Chebychev functional may be obtained[from (2.12) and (2.18)
for general functiong. The following two sections investigate the exact evaluafion [2.12) for
specific functions foy (-).

3. RESULTS INVOLVING MOMENTS

In this section bounds on thé" moment about a point are investigated. Define for a
nonnegative integer,

(3.2) M, (v) = / (x —)"h(z)dz, ve€R.

If v = 0 then ), (0) are the moments about the origin while taking= M, (0) gives the
central moments. Further the expectation of a continuous random variable is given by

(3.2) E(X):/ h(x)dzx,
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where h (z) is the probability density function of the random variableand soF (X) =
M, (0). Also, the variance of the random variable o2 (X) is given by

(3.3) o (X) = E[(X — E(X))?] = / (z— B (X))’ h (2) da,

which may be seen to be the second moment about the mean, namely
o (X) = My (M, (0)).
The following corollary is valid.

Corollary 3.1. Let f : [a,b] — R be integrable orja, b], then

Bn+1 _ An+1
n+1

(

(3.4) |M,(v) - M(f)

b
sup ¢ ()| - =7 V (f), for f of bounded variation ora, b] ,
tela,b] a

IN

1 f o (t)] dt, for f L — Lipschitzian,

f | ()] df (¢ for f monotonic nondecreasing.
\ n+1

wherel, (v) is as given by (3|1)M (f) is the integral mean of as defined in(1]2),
B=b—7v, A=a—v

and

@5 o=~ | (=) 6= (=) -
Proof. From 2.12) taking (¢) = (t — )" then using[(1]1) and (1.2) gives

N Bn+1 _ An-i—l
0= [T (=) = i () - E .
The right hand side is obtained on noting thatddt) = (t — )", ¢ (t) = —%. O

Remark 3.2. It should be noted here that Cerone and Dragamir [2] obtained bounds on the left
hand expression fof’ € L,[a,b], p > 1. They obtained the following Lemmas which will
prove useful in procuring expressions for the bound§ irj (3.4) in a more explicit form.

Lemma 3.3. Let¢ (¢) be as defined by (3.5), then

(

nodd, anyyandt € (a,b)
<0 v < a, t € (a,b)

neven { a<~vy<b, telcb)

(3.6) ¢ (t)

v > b, t € (a,b)
a<~vy<b, te(a,c)

>0, n even{

\
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where¢ (¢) = 0,a < ¢ < band

+b

> 1< 5

b

cg =7, y=19
+b

<7, 7>45S

Lemma 3.4. For ¢ (t) as given by[(3]5) then

b
(3.7) /hwmw

Bn+2_An+2

B—A n+1
2 [B n+2 )

_ AnJrl] _

Cn+2 Bn+2 An+2

nodd and anyy
nevenandy <a ’

{

{ [(b — a) —2(c— a)z} Bl

nevenand < vy < b;

n even andy > b,

= n+2 + (
+[200-¢) - (b—a)}}AnH
k Bn+T2LJ_rIQ4n+2 i B;A [Bn-i-l _ An-i—l] ’
where
B:b—’Y,A:CL—’Y,C:C—’Y,
(3.8) = f C dt Cy = f C

with C (t) = (&=2) Bmt! + (&) An+!
and¢ (¢) = 0witha < ¢ < b.
Lemma 3.5. For ¢ () as defined by (3]5), then

[ C(t) - 25455, nodd,n even andy < a;
(3.9) t?ﬁ] )925 ‘ % — C(t*) nevenandy > b;

| mgme 4 jmomzl g evenand: <y < b,
where
(3 10) Bn+1 _ An+1

=) = e m- Ay
C (t) is as defined in (3|8)yn1 = ¢ (7),

my = —¢ (t3) andt*, 7, t; satisfy (3.10) witht < 3.

The following lemma is required to determine the bound in|(3.4) wh&monotonic non-
decreasing. This was not covered in Cerone and Dragomir [2] since they obtained bounds

assuming thaf were differentiable.

Lemma 3.6. The following result holds fop (¢) as defined by} (3]5),

Xn (a,0),
—Xn (Cl, b) ’

Xn (€, b) -

1 b
@1y — [l

Xn (a,c),

J. Inequal. Pure and Appl. Math3(1) Art. 4, 2002
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10 P. GERONE

and for f : [a,b] — R, monotonic nondecreasing

b
@12) oy [ lotldf
( B(B"—1)— A(A" — 1)

b—a (b=c) n+1
_,_[(B —A)(C_a>_(0n+1_An+1):| f(a) a<7<b,

), n odd orn even
n+1
andy < a;
A(A"-1)-B(B _1>f(b), n even andy > b;
< n+1
|:Bn+1 _ O+l M f(0) n even and

b—a n+1’
where
b n __ An
(313) wiat) = [ ey - o a
A = a—~ B=b—vy, C=c—r.
Proof. Let o, 5 € [a, b] and
g
w@d) = — [ ool
@ f@=eB) B [ n (BT AY)
N n—+1 _/a [(t—v) _(n+1)(b—a)]f(t)dt

andy,, (a,b) is as given by[(3.13) sinag(a) = ¢ (b) = 0.
Further, using the results of Lemina|3.3 as representéd in (3.6), and, the fact that

1/ﬁ¢(t)df{x(a,ﬁ), ¢ (t) <0, t € o, f]
ntl/a —x(a,8), ¢(t)>0,tea,p]

gives the results as stated.
We now use the fact thgtis monotonic nondecreasing so that frgm (8.13)

wh < | [(t - - fnl)‘(;“i |
Further, )
wle) < 10 [ e -
- Br = v (B — A (b= o)
- 10|55 g
and

Xn (a,0) > f(a)/ac [(t_V)n_(an)_(;ja)}dt

o [emtt At (B = AY) (c—a)
= [ o ) (b—a) ]““)

so that the proof of the lemma is now complete.
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The following corollary gives bounds for the expectation.

Corollary 3.7. Let f : [a,b] — R, be a probability density function associated with a random
variable X. Then the expectatiof (X) satisfies the inequalities

[ (b—a)’
6

(3.14) 'E(X)— a;b‘ < (b‘a>2.

b
V(f), f of bounded variation,

f L — Lipschitzian,

[a+b—1] f(b), f monotonic nondecreasing.

(2

Proof. Takingn = 1 in Corollary[3.] and using Lemmas B.3 —[3.6 gives the results after some
straightforward algebra. In particular,

-t (i) ()

andt* the one solution of' () = 0is¢* = %£2. O

The following corollary gives bounds for the variance.

We shall assume that< v = F [ X] < b.
Corollary 3.8. Let f : [a,b] — R, be a p.d.f. associated with a random variabfe The
variances? (X) is such that

(3.15) |o?(X) -S|

( b
[my 4+ mg + [me — my] Vaﬁ(f), f of bounded variation,

(@ L lle—a) B~ (b — ) A]

4 b—a

= + (B% + A?) (”*Ta)2 — @} L fis L — Lipschitzian,
(B3 — % — (a+b) (b—c)] L
fla . .
+[(a+b)(c—a)—(C*— A% L2 f monotonic nondecreasing.
where
g - (- E(X))+(E(X)—a)

3(b—a)
my = ¢(E(X)—s%), m2:¢<E(X)+S%),

o) = =+ (1=0) -0 (j=2) 6",

a
A = a—7 B=b—7vy, C=c—7, ¢(c)=0,a<c<b
andy = E (X).
Proof. Takingn = 2 in Corollary[3.] gives from(3]5)

o0 ==+ (=) 4= (=) 5°
wherea < v = E(X) < b.
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From Lemma 3J5 and the third inequality jn (3.9) with= 2 gives
tr=E[X]-S3, t;=E[X]+S?,

and hence the first inequality is shown from the first inequality in (3.4).
Now, if f is Lipschitzian, then from the second inequality in {3.4) and simce 2 and
a <y = E(X) < b, the second identity irj (3.7) produces the reported result given in|(3.15)
after some simplification.
The last inequality is obtained frorn (3]12) of Lemma 3.6 with- 2 and hence the corollary
is proved. O

4. APPROXIMATIONS FOR THE M OMENT GENERATING FUNCTION

Let X be a random variable dn, b] with probability density functiork (x) then the moment
generating functiod/y (p) is given by

(4.1) My (p) = E [e"] = / eP*h (x) dx.

The following lemma will prove useful, in the proof of the subsequent corollary, as it exam-
ines the behaviour of the functiah(t)

(4.2) (b—a) 0 (t) = tA, (a,b) — [ad, (t,b) + bA, (a,1)]
where

ebr — eap
(4.3) A, (a,b) = p

Lemma 4.1. Let 6 (t) be as defined by (4.2) and (4.3) then for any € R, 6 (t) has the
following characteristics:
(i) 6 (a) =6(b) =0,
(i) 6 (t) is convex fop < 0 and concave fop > 0,
Ap(a

(iii) there is one turning point at' = %ln (Tj)) anda < t* <b.

Proof. The result (i) is trivial from[(4.2) using standard properties of the definite integral to give

6 (a) =0 (b) = 0.
Now,
(4.4) ' (t) = —AZ gl’ab) —et 0" (t) = —pe*

giving 0” (t) > 0 for p < 0 and#” (¢t) < 0 for p > 0 and (ii) holds.
Further, from|[(4.4Y’ (t*) = 0 where

ﬁzgm(@wwv.

P b—a
To show that: < ¢* < b it suffices to show that
' (a)0' (b) <0
since the exponential is continuous. Héféa) is the right derivative at andé’ (b) is the left

derivative ab.
, v [ Ap(a,b) e A, (a,b) o
9(@)9(b)-<—b_a e 5 ¢

Now,
J. Inequal. Pure and Appl. Math3(1) Art. 4, 2002 http://jipam.vu.edu.au/
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but

A, (a,b) 1 b o
= dt
b—a b—a/ae ’

the integral mean over, b] so thatd’ (a) > 0, andé’ (b) < 0 for p > 0 and#’ (a) < 0 and
0’ (b) > 0for p < 0, giving that there is a point' € [a, b] whered (t*) = 0.
Thus the lemma is now completely proved. O

Corollary 4.2. Let f : [a,b] — R be of bounded variation ofa, b] then

b
@s) | [ enrwar-a,@nmin)
( be — ac\ V2 (/)
(m(ln(m)—l)—l— — ) ol
<93 (b—a)m Kb ; a) p— 1] % for f L — Lipschitzian on[a, b] ,
‘% (b—a)m|[f(b) — f(a)], f monotonic nondecreasing,
where
(4.6) o Ay (a,b) e —ew

b—a  pl—a)
Proof. From [2.12) takingy (t) = ¢ and using[(1]1) and (1.2) gives
@7 (b—a)|T(f.e")]
[ s wana,@nm
a sup |0 (t)| V2 (f), for f of bounded variation ofia, ] ,

tela, b]
<< L[M6()dt, for f L — Lipschitzian on[a, b]
f 10 (t)| df (t) f monotonic nondecreasing dn, b| ,

where the bounds are obtained frgm (2.12) on noting thaj for = e?*, 0 (t) = ( ) IS as given

by (4.2) - [4.3).
Now, using the properties @f(¢) as expounded in Lemnfia 4.1 will aid in obtaining explicit
bounds from[(4]7).

Firstly, from (4.2), [(4.B) and (4]6)

sup |0 (t)] = [0(t7)]
te(a,b]
s [ A D) A ()
b—a b—a
B m1 ( )_a e —m _b m—e
o p A p\ b—a p\ b—a
m be® — qebP
= |—(In(m)—-1)+
p M=
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In the above we have used the fact that> 0 and thaipt* = In (m). Using from Lemma 4]1
the result that (¢) is positive or negative for € [a, b] depending on whether > 0 orp < 0
respectively, the first inequality if (4.5) results.

For the second inequality we have that frgm|4,2),|(4.3) and Lemma 4.1,

/b\e(t)\dt: ’/[pmt— (e - 2_+2< ap)]dt

= — |pm — (ae’® — be™ —/ eptdt}
o [ (75) )=,

- b (5) oo

[ b

= 7l (b—a)m(a;_ p—l)—(aebp—beap)]
1 et — e b

= T () - e

I (b—a_l)
B Ipl(e N7 p)’

Using (4.6) gives the second resultfin (4.5) as stated.

For the final inequality i 5) we need to determﬁe}@ )| df (t) for f monotonic nonde-
creasing. Now, fron (4]2) anfl (4.3)

/ab|9(t)!df(t) / [mt—bp(b;_)—?] i (t)

where we have used the fact th@h( (t )) = sgn (p).
Integration by parts of the Riemann-Stieltjes integral gives

b
4.8) / 0.(8) df (1)

=il / " = m) f (1) dt.

Now,
b b ebp _ pap
[ers@ar<so) [ = =g ) = 0= aymi 0)
and
b
—m [ FOdt<-mb-a)f (@
so that combining witH (4]8) gives the inequalities fomonotonic nondecreasing. O

Remark 4.3. If f is a probability density function thei (f) = ﬁ andf is non-negative.
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