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Abstract In this article, we discuss the relationship between pointwise pseudo-orbit tracing

property and chaotic properties such as topological mixing. When f has pointwise pseudo-orbit

tracing property, we give some equal conditions of uniform positive entropy and completely

positive entropy.
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1. Introduction

Pseudo-orbit and its tracing skills are powerful tools in discussing dynamic systems. Pseudo-

orbit tracing property has close relations with chaotic properties of system. T.Shirnomura[1]

discussed the relationship between pseudo-orbit tracing property and chain transitivity and

Yang[2−6] discussed the relationship between pseudo-orbit tracing property and chaotic prop-

erties. In [7], the pointwise pseudo-orbit tracing property (PPOTP for short) was defined, and

it is a generalization of pseudo-orbit tracing property. As applications, the following results were

proved:

Theorem A If f has PPOTP, and for any k ∈ N, fk is chain transitive, then fk is topological

transitive.

Theorem B If f has PPOTP, and for any n ∈ N, fn is chain transitive, then f has sensitive

dependence on initial conditions.

Theorem C If f is topological mixing, and f has PPOTP, then f has property P.

Theorem D Let f : (X, d) → (X, d) be a homeomorphism. Then f has PPOTP if and only if

σf has PPOTP.
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In this paper, for a continuous map f on a metric space X having more than one point, we

go a step further in discussing the relationship between PPOTP and chaotic properties such as

topological mixing. As applications, we prove the following results:

Theorem 1 If f has PPOTP, and for any k ∈ N, fk is chain mixing, then fk is topological

mixing.

Theorem 2 If X is a locally connected compact metric space, and f is a minimal map with

PPOTP, then f is chaotic in the sense of Ruelle-Takens.

Theorem 3 If X is a compact metric space, f : X → X has PPOTP and Λ(f), the limit set of

f , is connected, then f is chaotic in the sense of Ruelle-Takens.

Theorem 4 If X is a connected compact metric space, f : X → X is a chain transitive map

with PPOTP, then we have the following results: (1) f is chaotic in the sense of Ruelle-Takens;

(2) f is topological mixing; (3) f has property P.

Theorem 5 If X is a connected compact metric space, f : X → X has PPOTP and the periodic

points of f is dense in X , then (1) f is chaotic in the sense of Ruelle-Takens; (2) f is topological

mixing; (3) f has property P.

Theorem 6 Let X be a compact metric space, and f be a continuous surjective map on X .

If f has PPOTP, then the following conditions are equivalent: (1) f has completely positive

entropy (c.p.e.); (2) f has uniform positive entropy (u.p.e.); (3) f is chaotic in the sense of

Ruelle-Takens-Kato; (4) f is chain transitive and accessible; (5) f is chain mixing; (6) f is

topological weakly mixing; (7) f is topological mixing; (8) f has property P; (9) f is chain

transitive and for any δ > 0, there are two periodic δ-pseudo-orbits whose periods are co-prime.

Corollary If X is a connected compact metric space, f : X → X has PPOTP and f is positively

expansive, then f is topological mixing if and only if f is topological transitive and there are two

periodic points whose periods are co-prime.

Theorem 7 Let X be a chain connected metric space and f be a surjective map on X . If

f has PPOTP, then the following conditions are equivalent: (1) f is topological mixing; (2) f

is weakly mixing; (3) f is chain mixing; (4) f has property P; (5) f is chaotic in the sense of

Ruelle-Takens-Kato; (6) f is chaotic in the sense of Ruelle-Takens; (7) f is chain transitive and

accessible; (8) f is topological transitive; (9) f is chain transitive; (10) CR(f) = X ; (11) f is

chain transitive and for any δ > 0, there are two periodic δ-pseudo-orbits whose periods are

co-prime.

Corollary Let X be a chain connected compact metric space, and f be a continuous surjective

map on X . If f has PPOTP, then the condition that f has completely positive entropy is

equivalent to the conditions listed in Theorem 7 and the following: (1) f has uniform positive

entropy; (2) there is an invariant probability measure µ of f , such that suppµ = X ; (3) f has
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full measure center, that is, M(f) = X .

2. The Preliminaries

If δ > 0, and for any i ∈ N, 0 ≤ n1 < i < n2 ≤ +∞, d(f(xi−1), xi) < δ, then the sequence

{xn1
, . . . , xn2

} is called a δ pseudo-orbit of f (or δ-chain). If for any x, y ∈ X, ε > 0, there is

a finite ε-pseudo-orbit {x0, x1, . . . , xn} of X , such that x0 = x, xn = y, then {x0, x1, . . . , xn} is

called a ε-chain from x to y, and n+1 is called the length of the ε-chain. If for any ε > 0, x, y ∈ X ,

there is a ε-chain from x to y, then f is called chain transitive. If for any ε > 0, x, y ∈ X , there

is a positive integer N , such that when n ≥ N , there is a ε-chain with length n from x to y, then

f is called chain mixing.

For any nonempty open sets U and V , if there is n > 0, such that fn(U) ∩ V 6= ∅, then f

is called topological transitive. If for any nonempty open sets U and V , there is N > 0, such

that for any n > N, fn(U) ∩ V 6= ∅, then f is called topological mixing. Obviously, topological

transitive (mixing) map is chain transitive (mixing).

Denote by P (f) the set of all periodic points of f , by W (f) the set of all weakly almost

periodic points of f [8], by AP (f) the set of all almost periodic points of f , by CR(f) the set of

all chain recurrent points of f and by Ω(f) the set of all non-wandering points of f . A subset of

X is called the measure center of f , if it is the minimal compact absolute measure 1 set invariant

of f , we denote it by M(f), and we have M(f) = W (f)
[8]

. Obviously: P (f) ⊂ W (f) ⊂ M(f) ⊂

CR(f).

Let x ∈ X . If for any ε > 0, there is δ > 0, such that when d(x, y) < δ, d(fn(x), fn(y)) < ε

for each n ∈ N, then x is called an equicontinuous point of f . If any point in X is equicontinuous

point, then f is called equicontinuous. If every point in X is not equicontinuous, then we say f

has sensitive dependence on initial conditions (We call f sensitive for short). If f : X → X is

topological transitive and sensitive, then f is called chaotic in the sense of Ruelle-Takens. We

call f accessible, if for any nonempty open sets U, V of X and any ε > 0, there are x ∈ U, y ∈ V

and n ∈ N ∪ {0}, such that d(fn(x), fn(y)) ≤ ε. f is called chaotic everywhere, if f is sensitive

and accessible. If f is chaotic in the sense of Ruelle-Takens and chaotic everywhere, then f is

called chaotic in the sense of Ruelle-Takens-Kato.

We say that f has property P, if for any nonempty open sets U0, U1 of X , there is a number

N , such that for any number k ≥ 2 and any S = {s(1), s(2), . . . , s(k)} ∈ {0, 1}k, there is x ∈ X ,

such that x ∈ Us(1), f
N (x) ∈ Us(2), . . . , f

(k−1)N (x) ∈ Us(k). f is said to have uniform positive

entropy (u.p.e), if any cover composed of two non-dense open sets has positive entropy. f is

said to have completely positive entropy (c.p.e), if any non trivial factor of (X, T ) has positive

entropy.

Let x, y ∈ X, ε > 0, and {x0, x1, . . . , xn} be a sequence composed of finite points in X , n ∈ N.

If x0 = x, xn = y, and d(xi, xi+1) < ε for 0 ≤ i ≤ n− 1, then {x0, x1, . . . , xn} is called an ε-chain

from x to y in X . Metric space X is called chain connected, if for any x, y ∈ X and ε > 0, there

is an ε chain from x to y. It is easy to see that connected metric space is chain connected, but

the converse is not true. However, for compact metric space, chain connectedness is equivalent
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to connectedness.

Let ε > 0, {xn1
, xn1+1, . . . , xn2

} be a δ-pseudo-orbit of f . If x ∈ X , and for any i, 0 ≤ i ≤

n2 − n1, d(f i(x), xn+i) < ε, then the δ-pseudo-orbit {xn1
, xn1+1, . . . , xn2

} is said to be ε traced

by the orbit of f on x. If for any ε > 0, there is δ > 0, such that any δ-pseudo-orbit of f

is ε traced by the orbit of f on some point in X , then f is said to have pseudo-orbit tracing

property. In [7], generalizing the definition of pseudo orbit tracing property, Li Mingjun gives

the definition of PPOTP. f is said to have PPOTP, if for any ε > 0, there is δ > 0, such that for

any δ pseudo-orbit {x0, x1, . . .} of f , there is nonnegative integer N , such that {xN , xN+1, . . .}

can be ε traced by the orbit of f on some point in X . Obviously, if f is a continuous map, then

f has PPOTP if and only if for any ε > 0, there is δ > 0, such that for any δ pseudo orbit

{x0, x1, . . .}, there is a nonnegative integer N and x ∈ X such that d(fn(x), xn) ≤ ε, n ≥ N .

By definition, f has pseudo orbit tracing property ⇒f has asymptotic pseudo orbit tracing

property[9]⇒f has PPOTP, but the converse is false. So PPOTP is a generalization of pseudo

orbit tracing property strictly.

3. Proof

Lemma 1[7] If f has PPOTP, then for any k ∈ Z+, fk also has PPOTP.

Proof of Theorem 1 Let x, y ∈ X , B(x, ε1) = {z ∈ X |d(x, z) < ε1}, B(y, ε2) = {z ∈

X |d(y, z) < ε2}. Suppose f has PPOTP, then for any k ∈ Z+, fk also has PPOTP. So for

any 0 < ε < min{ε1, ε2}, there is δ > 0, such that for any δ pseudo-orbit {x0, x1, . . .} of fk,

there is nonnegative integer N and z ∈ X , such that {xN , xN+1, . . .} is ε traced by the orbit

of fk on z. As fk is chain mixing, there is an integer M > 0, such that when n ≥ M , there

are δ chain αn = {y
(n)
0 = x, y

(n)
1 , . . . , y

(n)
n−1 = y} of fk from x to y with length n and δ chain

βn = {z
(n)
0 = y, z

(n)
1 , . . . , z

(n)
n−1 = x} of fk from y to x with length n. Let

αn = {y
(n)
0 = x, y

(n)
1 , . . . , y

(n)
n−2}, βn = {z

(n)
0 = y, z

(n)
1 , . . . , z

(n)
n−2},

A = {αM , βM , αM+1, βM+1, . . .} = {p0, p1, . . .}.

Then A is a δ pseudo-orbit of fk, so there is nonnegative integer N , such that {pN , pN+1, . . .} is

ε traced by some point p ∈ X for fk.

Take nonnegative integer i0, such that pN+i0 is the first element of some αl. Then pN+i0 =

x, pN+i0+(l−1) = y. By the construction of A,

pN+i0+2(l−1) = x, pN+i0+2(l−1)+l = y;

pN+i0+2(l−1)+2l = x, pN+i0+2(l−1)+2l+(l+1) = y, . . .

by and by, for i = i0 + 2[(l − 1) + l + · · · + (l + h)], −1 ≤ h ∈ Z, pN+i = x, pN+i+(l+h+1) = y.

Let j = i + (l + h + 1). By PPOTP, d(fki(p), x) = d(fki(p), pN+i) < ε, and d(fkj(p), y) =

d(fkj(p), pN+j) < ε. So fk(j−i)(B(x, ε1)) ∩ B(y, ε2) 6= ∅. Also as j − i = l + h + 1,−1 ≤ h ∈ Z,

there is l ∈ N, such that when m ≥ l, fkm(B(x, ε1))∩B(y, ε2) 6= ∅, that is to say, fk is topological

mixing. 2
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Lemma 2 Let f : X → X be a surjective continuous map on compact metric space X . If

f has PPOTP, then for any ε > 0, x ∈ Ω(f), there is y ∈ X and k = k(x, ε) > 0, such that

Ofk(y) ⊂ Uε(x).

Proof Let ε > 0. As f has PPOTP, there is 0 < δ < ε
3 , for any δ pseudo-orbit {x0, x1, . . .} of

f , there is N > 0, such that {xN , xN+1, . . .} is ε
3 traced for f .

Since x ∈ Ω(f), there is k > 0, such that fk(U δ

2

(x)) ∩ U δ

2

(x) 6= ∅. So there is z ∈ X ,

such that z, fk(z) ∈ U δ

2

(x). Let znk+i = f i(z), n ∈ Z+, 0 ≤ i < k. Then {zi|i ∈ Z+} =

{z, f(z), . . . , fk−1(z), z, . . .} is a periodic δ chain. So there is N > 0, y′ ∈ X , such that

d(f i(y′), zN+i) < ε
3 , i ∈ Z+. Suppose i0 is the minimal positive integer such that ki0 − N > 0.

Put y = fki0−N (y′). Then d(fki(y), z) = d(fki(fki0−N (y′)), z) = d(fk(i+i0)−N (y′), zk(i+i0)) =

d(fk(i+i0)−N (y′), zN+(k(i+i0)−N)) < ε
3 , i ∈ Z+. So d(fki(y), x) ≤ d(fki(y), z) + d(z, fk(z)) +

d(fk(z), x) < ε
3 + δ + δ

2 < 5ε
6 , ∀i ∈ Z+. So Ofk(y) ⊂ Uε(x). 2

Lemma 3 Let X be a connected compact metric space with more than one point, and f be a

surjective continuous map on X . If f is minimal,then f doesn’t have PPOTP.

Proof Let l > 0 be the diameter of X , ε = l
3 . Suppose f has PPOTP. Since X is compact, Ω(f)

is not empty. Let x ∈ Ω(f), by Lemma 2, there is y ∈ X and k > 0 such that Ofk(y) ⊂ Uε(x),

obviously, X = Ofk(y) ∪ Ofk(f(y)) ∪ · · · ∪ Ofk(fk−1(y)). By connectedness and minimality, we

have Ofk(y) = X and therefore l ≤ 2ε. That is a contradiction. 2

Lemma 4[12] If n ≥ 2, f : X → X is topological transitive, but fn is not topological transitive,

then there is closed set K 6= X, Ko (the internal of K)6= ∅ and m > 1, the factor of n, such

that: (1) fm(K) = K; (2) K ∪ f(K) ∪ · · · ∪ fm−1(K) = X ; (3) [f i(K) ∩ f j(K)]o = ∅, 0 ≤ i, j ≤

m − 1, i 6= j.

Lemma 5[13] Let X be a compact metric space. If f : X → X is topological transitive and

equicontinuous, then f is a minimal homeomorphism.

Lemma 6 Let X be a local connected compact metric space with infinite points. If f : X → X

is chain transitive and equicontinuous, then f does not have PPOTP.

Proof (reduction to absurdity) Suppose f has PPOTP. Since f has equicontinuous point, by

Theorem B, there is n > 0, such that fn is not chain transitive. Suppose n = min{l|f l is not

chain transitive}. Since f is chain transitive, n ≥ 2. Also as topological transitive map is chain

transitive, by Theorem A, f is topological transitive, but fn is not topological transitive. By

Lemma 4, there is a proper closed subset K of X , Ko 6= ∅, and m > 1, the factor of n, such

that fm(K) = K, K ∪ f(K) ∪ · · · ∪ fm−1(K) = X , and when i 6= j, [f i(K) ∩ f j(K)]o = ∅. On

the other hand, as f is topological transitive and equicontinuous, by Lemma 5, f : X → X

is a minimal homeomorphism. So for any x ∈ K, ω(x, f) = X and ω(x, fm) ⊂ K. For

any i = 0, 1, . . . , m − 1, f i(x) ∈ AP (f) = AP (fm), ω(f i(x), fm) is minimal set of fm, and

ω(f i(x), fm) = f i(ω(x, fm)) ⊂ f i(K), X = ω(x, f) =
⋃m−1

i=0 ω(f i(x), fm) ⊂
⋃m−1

i=0 f i(K) = X .

As f is a homeomorphism, K is a nonempty proper closed subset of X . So f i(K) = (f−1)−i(K) is
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a nonempty closed subset of X . Also as fm(f i(K)) = f i(fm(K)) = f i(K), ω(f i(x), fm) is a min-

imal set contained in f i(K). So for any i = 0, 1, . . . , m−1, f i(ω(x, fm)) = ω(f i(x), fm) = f i(K).

When i 6= j, f i(K) ∩ f j(K) = ∅. Put g = fm. Then K = ω(x, g), g|K : K → K is a mini-

mal homeomorphism, K is an open and closed set of X . As a subset of X , K must be a local

connected compact metric space containing infinite points. Thus K has only finite connected

components, therefore, there is at least one connected component G(= Go) which has more than

one point. As g|K : K → K is minimal, there is l ∈ N, such that gl(G) ∩ G 6= ∅. So gl(G) ⊂ G.

As g is a homeomorphism, (gl)−1(G) is also connected, and (gl)−1(G)∩G 6= ∅. So (gl)−1(G) ⊂ G

and gl(G) = G, gl|G : G → G is a surjective equicontinuous homeomorphism. Since X is com-

pact and local connected, X has only finite connected components {G0, G1, . . . , Gh}. Because

when 0 ≤ i, j ≤ m − 1, i 6= j, f i(K) ∩ f j(K) = ∅, G is a component of X . Take G = G0 and

η = min{d(G, Gi)|i = 1, 2, . . . , h}. Since G0, G1, . . . , Gh are all closed sets, η > 0. By Lemma

1, gl = fml : X → X has PPOTP. For any 0 < ε < η, there exists δ > 0, such that for any

{x0, x1, . . .}, the δ pseudo-orbit of gl in G, there is N ∈ N and t ∈ X , such that {xN , xN+1, . . .}

is ε traced by t for gl. So there is k ∈ N such that y = gk(x) ∈ G and ω(y, gl) ⊂ G. Hence

K ⊃
⋃l−1

i=0 gi(G) ⊃
⋃l−1

i=0 gi(ω(y, gl)) = ω(y, g) = K. As g|K is homeomorphism, ω(y, gl) = G.

Also as y = gk(x) = fnk(x) ∈ AP (f) = AP (gl), gl|G : G → G is a minimal surjective homeo-

morphism, which is a contradiction with Lemma 3. 2

Proof of Theorem 2 Since f is a minimal homeomorphism, f is topological transitive. If f

is not chaotic in the sense of Ruelle-Takens, then there is at least an equicontinuous point. By

Corollary 2 in [13], a minimal map having equicontinuous point must be equicontinuous. By

Lemma 6, f does not have PPOTP, leading to a contradiction. 2

Lemma 7[2] If f : X → X is a surjective continuous map on compact metric space X and

Λ(f) =
⋃

x∈X ω(x, f) is connected, then for any n ∈ N, fn is chain transitive on X .

Proof of Theorem 3 The conclusion follows from Lemma 7, Theorem A and Theorem B.

Lemma 8[1] If X is connected, and f : X → X is chain transitive, then f is chain mixing.

Proof of Theorem 4 By Lemma 8, f is chain mixing, so for any n ∈ N, fn is chain transitive.

By Theorem B, if f has PPOTP, then f is sensitive. By Theorem A, f is chaotic in the sense of

Ruelle-Takens. By Theorem 1, f is topological mixing, and by Theorem C, f has Property P.2

Lemma 9 If f : X → X is a continuous map on compact metric space X and P (f) = X is

connected, then f is chain transitive on X .

Proof For any ε > 0, let Rε(x) = {y ∈ X | there is a ε chain from x to y}. Then for any

y ∈ Rε(x), there is a ε chain {x0 = x, x1, . . . , xn−1, xn = y} from x to y and d(f(xn−1), y) < ε.

So there exists a neighborhood Uy of y, such that Uy ⊂ B(f(xn−1), ε). Thus for any y′ ∈

Uy, {x0, x1, . . . , xn−1, y
′} is a ε chain from x to y′, Uy ⊂ Rε(x), that is, Rε(x) is open. Let

Rε(x) = {y ∈ X | there is a ε chain from y to x}. For any y ∈ Rε(x), there is a ε chain

{y0, y1, . . . , yn}, where y0 = y, yn = x, such that d(f(y0), y1) < ε. As f is continuous, there is
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an open neighborhood Uy0
of y0, such that f(Uy0

) ⊂ B(y, ε). So Uy0
⊂ Rε(x) and Rε(x) is also

an open set. For any x ∈ X = P (f), let E(x, ε) = Rε(x) ∩ Rε(x) ∩ P (f). Then x must be a

chain recurrent point of f (P (f) ⊂ CR(f), and CR(f) is closed), x ∈ Rε(x) ∩Rε(x). So E(x, ε)

must be a nonempty open set of X . If y /∈ E(x, ε), then E(x, ε) ∩ E(y, ε) = ∅. If y ∈ E(x, ε),

then E(x, ε) = E(y, ε) and E(x, ε) = X −
⋃

y∈X\E(x,ε) E(y, ε). It is obvious that E(x, ε) is also

a closed set in X . As X = P (f) is connected, P (f) = E(x, ε). Since ε is arbitrary, P (f) is

contained in a chain component of f , namely, f is chain transitive in X(= P (f)). 2

Lemma 10[11] If X is a compact metric space, then we have the following results: property P⇒

uniformly positive entropy ⇒ topological weakly mixing. Completely positive entropy⇒ there is

µ ∈ M(X, f) such that suppµ = X .

Thereinto, M(X, f) is the set of invariant possibility measures of f on X , suppµ is the support

of measure µ.

Proof of Theorem 5 By Lemma 9, P (f) is contained in a chain component of f , that is, f is

chain transitive on X(= P (f)). So by Theorem 4, Theorem 5 is proved. 2

Proof of Theorem 6

(5) ⇒ (7). By Theorem 1.

(7) ⇒ (6). Obviously.

(6) ⇒ (5). By Lemma 2.3 in [3].

So (5), (6) and (7) are equivalent.

(7) ⇒ (8). By Theorem C.

(8) ⇒ (2). By Lemma 10.

(2) ⇒ (6). By Lemma 10.

(6) ⇒ (7). Since (6) and (7) are equivalent,

(2),(6),(7) and (8) are equivalent.

By [3] Lemma 2.2, (5) and (9) are equivalent. So (2),(5),(6),(7),(8) and (9) are equivalent.

The equivalence of (1), (2), (3) and (4) is proved below.

(1) ⇒ (2). By Theorem 1 in [6] and the equivalence of (5) and (2).

(2) ⇒ (3). By the equivalence of (2) and (6) and Theorem 2 in [6].

(3) ⇒ (4). Obviously.

(4) ⇒ (1). By [6] Lemma 2, the equivalence of (5) and (2), and the fact that u.p.e. implies

c.p.e. 2

Proof of Corollary of Theorem 6 ⇒. It is easy to see that f is topological transitive. Let c

be the positively expansive constant of f . For any 0 < ε < c
2 , since f has PPOTP, there is δ > 0,

such that for any δ pseudo-orbit {x0, x1, . . .} of f , there is N > 0, such that {xN , xN+1, . . .} can

be ε traced by some point in X . By Lemma 2.2 in [3], there are periodic δ chain α = {xi}
+∞
0

with period m and periodic δ chain β = {yi}
+∞
0 with period n, where m and n are co-prime.

So there exist N > 0 and x ∈ X such that xε traces {xN , xN+1, . . .}, and there exist M > 0

and y ∈ X such that yε traces {yM , yM+1, . . .}. So for any i ∈ Z+, d(f i(x), xN+i) < ε and
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d(f i(fn(x)), f i(x)) ≤ d(f i+n(x), xN+i+n) + d(xN+i, f
i(x)) < 2ε < c. Therefore fn(x) = x.

Analogously, fm(y) = y and m, n are co-prime.

⇐. By Lemma 2.2 in [3], f is chain mixing and by Lemma 5, f is topological mixing.

Proof of Theorem 7 (1) ⇒ (2). Obviously;

(2) ⇒ (3). by Lemma 2.3 in [3];

(3) ⇒ (10). Obviously;

(10) ⇒ (1). By [6] Lemma 3, Lemma 4 and Theorem 1.

(3) ⇔ (11). By Lemma 2.2 in [3].

So (1),(2),(3),(10),(11) are equivalent.

(1) ⇒ (4). By Theorem C;

(4) ⇒ (5). By Lemma 5 and Theorem 2 in [6];

(5) ⇒ (6) ⇒ (8) ⇒ (9) ⇒ (10). Obviously;

(5) ⇒ (7) ⇒ (8). Obviously.

(10) ⇒ (1). By the equivalence of (1) and (10).

So (1), (4–10) are equivalent.

Therefore, the properties listed in Theorem 7 are equivalent. 2

Proof of Corollary of Theorem 7 The conclusion follows from Theorem 6, Theorem 7,

Lemma 10 and the fact that for any µ ∈ M(X, f), suppµ ⊂ M(f) ⊂ CR(f). 2
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