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Abstract In this article, we discuss the relationship between pointwise pseudo-orbit tracing
property and chaotic properties such as topological mixing. When f has pointwise pseudo-orbit
tracing property, we give some equal conditions of uniform positive entropy and completely
positive entropy.
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1. Introduction

Pseudo-orbit and its tracing skills are powerful tools in discussing dynamic systems. Pseudo-
orbit tracing property has close relations with chaotic properties of system. T.Shirnomurall
discussed the relationship between pseudo-orbit tracing property and chain transitivity and
Yang!?~9 discussed the relationship between pseudo-orbit tracing property and chaotic prop-
erties. In [7], the pointwise pseudo-orbit tracing property (PPOTP for short) was defined, and
it is a generalization of pseudo-orbit tracing property. As applications, the following results were

proved:

Theorem A If f has PPOTP, and for any k € N, f* is chain transitive, then f* is topological

transitive.

Theorem B If f has PPOTP, and for any n € N, f* is chain transitive, then f has sensitive

dependence on initial conditions.
Theorem C If f is topological mixing, and f has PPOTP, then f has property P.

Theorem D Let f: (X,d) — (X,d) be a homeomorphism. Then f has PPOTP if and only if
oy has PPOTP.
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In this paper, for a continuous map f on a metric space X having more than one point, we
go a step further in discussing the relationship between PPOTP and chaotic properties such as

topological mixing. As applications, we prove the following results:

Theorem 1 If f has PPOTP, and for any k € N, f* is chain mixing, then f* is topological

mixing.

Theorem 2 If X is a locally connected compact metric space, and f is a minimal map with
PPOTP, then f is chaotic in the sense of Ruelle-Takens.

Theorem 3 If X is a compact metric space, f : X — X has PPOTP and A(f), the limit set of

f, is connected, then f is chaotic in the sense of Ruelle-Takens.

Theorem 4 If X is a connected compact metric space, f : X — X is a chain transitive map
with PPOTP, then we have the following results: (1) f is chaotic in the sense of Ruelle-Takens;
(2) f is topological mixing; (3) f has property P.

Theorem 5 If X is a connected compact metric space, f : X — X has PPOTP and the periodic
points of f is dense in X, then (1) f is chaotic in the sense of Ruelle-Takens; (2) f is topological
mixing; (3) f has property P.

Theorem 6 Let X be a compact metric space, and f be a continuous surjective map on X.
If f has PPOTP, then the following conditions are equivalent: (1) f has completely positive
entropy (c.p.e.); (2) f has uniform positive entropy (u.p.e.); (3) f is chaotic in the sense of
Ruelle-Takens-Kato; (4) f is chain transitive and accessible; (5) f is chain mixing; (6) f is
topological weakly mixing; (7) f is topological mixing; (8) f has property P; (9) f is chain

transitive and for any § > 0, there are two periodic §-pseudo-orbits whose periods are co-prime.

Corollary If X is a connected compact metric space, f : X — X has PPOTP and f is positively
expansive, then f is topological mixing if and only if f is topological transitive and there are two

periodic points whose periods are co-prime.

Theorem 7 Let X be a chain connected metric space and f be a surjective map on X. If
f has PPOTP, then the following conditions are equivalent: (1) f is topological mixing; (2) f
is weakly mixing; (3) f is chain mixing; (4) f has property P; (5) f is chaotic in the sense of
Ruelle-Takens-Kato; (6) f is chaotic in the sense of Ruelle-Takens; (7) f is chain transitive and
accessible; (8) f is topological transitive; (9) f is chain transitive; (10) CR(f) = X; (11) f is
chain transitive and for any 6 > 0, there are two periodic d-pseudo-orbits whose periods are

co-prime.

Corollary Let X be a chain connected compact metric space, and f be a continuous surjective
map on X. If f has PPOTP, then the condition that f has completely positive entropy is
equivalent to the conditions listed in Theorem 7 and the following: (1) f has uniform positive

entropy; (2) there is an invariant probability measure p of f, such that suppu = X; (3) f has
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full measure center, that is, M(f) = X.

2. The Preliminaries

If § >0, and for any i € N, 0 < ny < i < ng < 400, d(f(x;-1),2;) < 9, then the sequence
{Znys-- - T, } is called a § pseudo-orbit of f (or d-chain). If for any z,y € X,e > 0, there is
a finite e-pseudo-orbit {zg,z1,...,2,} of X, such that zg = x,2,, = y, then {zg,x1,...,2,} is
called a e-chain from z to y, and n+1 is called the length of the e-chain. If for any e > 0,2,y € X,
there is a e-chain from z to y, then f is called chain transitive. If for any € > 0,z,y € X, there
is a positive integer N, such that when n > N, there is a e-chain with length n from x to y, then
f is called chain mixing.

For any nonempty open sets U and V, if there is n > 0, such that f™(U) NV # (), then f
is called topological transitive. If for any nonempty open sets U and V, there is N > 0, such
that for any n > N, f*(U) NV # ), then f is called topological mixing. Obviously, topological
transitive (mixing) map is chain transitive (mixing).

Denote by P(f) the set of all periodic points of f, by W(f) the set of all weakly almost
periodic points of fI8, by AP(f) the set of all almost periodic points of f, by CR(f) the set of
all chain recurrent points of f and by (f) the set of all non-wandering points of f. A subset of
X is called the measure center of f, if it is the minimal compact absolute measure 1 set invariant
of f, we denote it by M(f), and we have M (f) = W[S]. Obviously: P(f) c W(f) Cc M(f) C
CR(f).

Let x € X. If for any € > 0, there is § > 0, such that when d(z,y) < J, d(f"(x), f"(y)) < e
for each n € N, then x is called an equicontinuous point of f. If any point in X is equicontinuous
point, then f is called equicontinuous. If every point in X is not equicontinuous, then we say f
has sensitive dependence on initial conditions (We call f sensitive for short). If f : X — X is
topological transitive and sensitive, then f is called chaotic in the sense of Ruelle-Takens. We
call f accessible, if for any nonempty open sets U,V of X and any € > 0, there are z € U,y € V
and n € NU {0}, such that d(f™(z), f"(y)) <e. f is called chaotic everywhere, if f is sensitive
and accessible. If f is chaotic in the sense of Ruelle-Takens and chaotic everywhere, then f is
called chaotic in the sense of Ruelle-Takens-Kato.

We say that f has property P, if for any nonempty open sets Uy, U; of X, there is a number
N, such that for any number k > 2 and any S = {s(1),s(2),...,s(k)} € {0,1}*, there is x € X,
such that z € Uy, N(x) € U2y, - - L fEEDN () € Ugry- f is said to have uniform positive
entropy (u.p.e), if any cover composed of two non-dense open sets has positive entropy. f is

said to have completely positive entropy (c.p.e), if any non trivial factor of (X, T) has positive

entropy.
Let z,y € X,e > 0, and {xg,x1,...,x,} be a sequence composed of finite points in X, n € N.
If xo =z, =y, and d(x;, ;1) < € for 0 <i < n—1, then {zg,z1,...,2,} is called an e-chain

from x to y in X. Metric space X is called chain connected, if for any z,y € X and € > 0, there
is an € chain from x to y. It is easy to see that connected metric space is chain connected, but

the converse is not true. However, for compact metric space, chain connectedness is equivalent
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to connectedness.

Let € > 0,{Zn,,Tny4+1,---,Tn, } be a é-pseudo-orbit of f. If z € X, and for any ,0 < i <
ng —n1,d(f'(z), 2nt:) < €, then the §-pseudo-orbit {y,, Tn,+1,- -, Zn, } is said to be e traced
by the orbit of f on z. If for any ¢ > 0, there is § > 0, such that any d-pseudo-orbit of f
is € traced by the orbit of f on some point in X, then f is said to have pseudo-orbit tracing
property. In [7], generalizing the definition of pseudo orbit tracing property, Li Mingjun gives
the definition of PPOTP. f is said to have PPOTP, if for any € > 0, there is § > 0, such that for
any ¢ pseudo-orbit {zg,x1,...} of f, there is nonnegative integer N, such that {xn,xN+1,-..}
can be ¢ traced by the orbit of f on some point in X. Obviously, if f is a continuous map, then
f has PPOTP if and only if for any € > 0, there is § > 0, such that for any J pseudo orbit
{0, 21, ...}, there is a nonnegative integer N and x € X such that d(f"(z),z,) <e,n > N.

By definition, f has pseudo orbit tracing property = f has asymptotic pseudo orbit tracing
property!?)= f has PPOTP, but the converse is false. So PPOTP is a generalization of pseudo
orbit tracing property strictly.

3. Proof
Lemma 17 If f has PPOTP, then for any k € Z, , f* also has PPOTP.

Proof of Theorem 1 Let z,y € X, B(zr,e1) = {# € X|d(z,2) < e1},B(y,e2) = {2z €
X|d(y,z) < e2}. Suppose f has PPOTP, then for any k € Z,, f* also has PPOTP. So for
any 0 < ¢ < min{ey, ez}, there is § > 0, such that for any ¢ pseudo-orbit {zg,z1,...} of f¥,
there is nonnegative integer N and z € X, such that {zn,zn41,...} is € traced by the orbit
of f¥ on z. As f* is chain mixing, there is an integer M > 0, such that when n > M, there

are 0 chain a, = {y((J =z y(n) ...,yfln)l =y} of f* from x to y with length n and § chain

Bn = {z(() =y, z ("), 2= x} of f¥ from y to z with length n. Let

»n—1 T
a, = {y, (n) — 4 ygn),...,yn 2} ﬂn—{z(" —y,zin),...,zgi)z ,
A:{mvﬁ_MvaM+1aﬂM+la"'}:{pOapla"'}'

Then A is a § pseudo-orbit of f*, so there is nonnegative integer N, such that {pnx,pni1,...} is
¢ traced by some point p € X for f*.
Take nonnegative integer g, such that py4;, is the first element of some @;. Then py4i, =

T, PN+ig+(1—1) = Y- By the construction of A,
PN+tig4+2(1—1) = Ly PN+ig+2(1-1)+1 = Y
PN4ig+2(1—1)+21 = Ly PN +ig+2(1—1)+20+(1+1) = Y5 - - -

by and by, for i = iq +2[(l = 1)+ 1+ -+ ({(+h)], =1 <h€Z, pnti = T, PNtit(+h+1) = Y-
Let j =i+ (I +h+1). By PPOTP, d( Fi(p),z) = d(f*(p),pn+i) < €, and d(f* (p),y) =
d(f* (p), pn+s) < e. So fFU=D(B(z,e1)) N B(y,e2) #0. Alsoas j—i=1+h+1,-1<he7Z,
there is [ € N, such that when m > [, f*™(B(z,e1))NB(y,e2) # 0, that is to say, f* is topological

mixing. O
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Lemma 2 Let f : X — X be a surjective continuous map on compact metric space X. If
f has PPOTP, then for any ¢ > 0,z € Q(f), there is y € X and k = k(z,e) > 0, such that
Oy (y) C Us(x).

Proof Let e > 0. As f has PPOTP, there is 0 < ¢ < g, for any ¢ pseudo-orbit {z¢,1,...} of
[, there is N > 0, such that {xx,zN41,...} is § traced for f.

Since x € Q(f), there is k > 0, such that fk(U% (x)) N U%(x) # (. So there is z € X,
such that z, f*(z) € Us(z). Let zngpyi = fi(z),n € Z4,0 < i < k. Then {z]i € Z,} =
{2, f(2),..., f*1(2),2,...} is a periodic § chain. So there is N > 0,9’ € X, such that
d(f'(y'), 2n+i) < 5,1 € Zy. Suppose ig is the minimal positive integer such that kig — N > 0.
Put y = fHo-N(y). Then d(fYi(y), 2) = d(f¥(fHoN (), 2) = d(fFEHDN (), 2ia) =
d(fFHON(Y) 2N (kirio)-N) < 500 € Zg So d(f¥(y),x) < d(f¥(y),2) + d(z, [*(2)) +
d(f*(2),2) < §+6+ 3 < 3. Vie Zy. So Op(y) C Ue(z). O

Lemma 3 Let X be a connected compact metric space with more than one point, and f be a

surjective continuous map on X. If f is minimal,then f doesn’t have PPOTP.

Proof Let [ > 0 be the diameter of X, ¢ = % Suppose f has PPOTP. Since X is compact, Q(f)
is not empty. Let x € Q(f), by Lemma 2, there is y € X and k > 0 such that O (y) C U.(x),
obviously, X = O (y) UOs(f(y)) U---U O (f*1(y)). By connectedness and minimality, we
have Oy« (y) = X and therefore [ < 2¢. That is a contradiction. O

Lemma 41'2 Ifn > 2, f: X — X is topological transitive, but f" is not topological transitive,
then there is closed set K # X, K° (the internal of K)# () and m > 1, the factor of n, such
that: (1) f7(K) = K; (2) KU f(K) U+ U fmL(K) = X (3) [F(K) N f(K)) = 0,0 <, <
m—1,i#j.

Lemma 531 Let X be a compact metric space. If f : X — X is topological transitive and

equicontinuous, then f is a minimal homeomorphism.

Lemma 6 Let X be a local connected compact metric space with infinite points. If f : X — X

is chain transitive and equicontinuous, then f does not have PPOTP.

Proof (reduction to absurdity) Suppose f has PPOTP. Since f has equicontinuous point, by
Theorem B, there is n > 0, such that f™ is not chain transitive. Suppose n = min{l|f’ is not
chain transitive}. Since f is chain transitive, n > 2. Also as topological transitive map is chain
transitive, by Theorem A, f is topological transitive, but f™ is not topological transitive. By
Lemma 4, there is a proper closed subset K of X, K° # (), and m > 1, the factor of n, such
that f™(K) =K, KU f(K)U---U f™ 1(K) = X, and when i # j, [f{(K) N f/(K)]° = 0. On
the other hand, as f is topological transitive and equicontinuous, by Lemma 5, f : X — X
is a minimal homeomorphism. So for any z € K, w(z,f) = X and w(z, f™) C K. For
any i = 0,1,...,m — 1, fi(z) € AP(f) = AP(f™), w(f'(x), f™) is minimal set of f™, and
w(fi(@), f) = filw(z, ™) C FIK), X = w(z, f) = Ul w(fi(@), fm) € Ul Fi(K) = X
As f is a homeomorphism, K is a nonempty proper closed subset of X. So f{(K) = (f~1)7%(K) is
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a nonempty closed subset of X. Also as f™(f{(K)) = f/(f™(K)) = f{(K),w(f'(z), f™) is a min-
imal set contained in f(K). So for any i = 0,1,...,m—1, fi(w(x, f™)) = w(fi(z), f™) = f{(K).
When i # j, f{(K)N f/(K) = 0. Put g = f™. Then K = w(z,9),9|x : K — K is a mini-
mal homeomorphism, K is an open and closed set of X. As a subset of X, K must be a local
connected compact metric space containing infinite points. Thus K has only finite connected
components, therefore, there is at least one connected component G(= G°) which has more than
one point. As g|x : K — K is minimal, there is [ € N, such that ¢'(G) NG # 0. So ¢'(G) C G.
As g is a homeomorphism, (g')~1(G) is also connected, and (¢') "1 (G)NG # 0. So (¢")~1(G) C G
and ¢!(G) = G,¢'l¢ : G — G is a surjective equicontinuous homeomorphism. Since X is com-
pact and local connected, X has only finite connected components {Go, G1,...,Gp}. Because
when 0 < 4,5 <m—1,i # j, fi(K)N fI(K) = 0, G is a component of X. Take G = Gy and
n = min{d(G, G;)|i = 1,2,...,h}. Since Go,G1,...,G} are all closed sets, n > 0. By Lemma
1, ¢ = f™: X — X has PPOTP. For any 0 < € < 5, there exists § > 0, such that for any
{x0,71,...}, the § pseudo-orbit of ¢' in G, there is N € N and t € X, such that {zy,zn11,...}
is £ traced by t for ¢'. So there is k € N such that y = g*(z) € G and w(y,g') C G. Hence
K> Ui;é g'(G) D Ui;é g (w(y,g")) = w(y,g) = K. As g|k is homeomorphism, w(y, ¢') = G.
Also as y = ¢gF(x) = fk(x) € AP(f) = AP(g¢"), ¢'lc : G — G is a minimal surjective homeo-

morphism, which is a contradiction with Lemma 3. O

Proof of Theorem 2 Since f is a minimal homeomorphism, f is topological transitive. If f
is not chaotic in the sense of Ruelle-Takens, then there is at least an equicontinuous point. By
Corollary 2 in [13], a minimal map having equicontinuous point must be equicontinuous. By
Lemma 6, f does not have PPOTP, leading to a contradiction. O

Lemma 70 If f : X — X is a surjective continuous map on compact metric space X and

A(f) = Uyex w(z, f) is connected, then for any n € N, f™ is chain transitive on X.
Proof of Theorem 3 The conclusion follows from Lemma 7, Theorem A and Theorem B.
Lemma 8! If X is connected, and f : X — X is chain transitive, then f is chain mixing.

Proof of Theorem 4 By Lemma 8, f is chain mixing, so for any n € N, f™ is chain transitive.
By Theorem B, if f has PPOTP, then f is sensitive. By Theorem A, f is chaotic in the sense of
Ruelle-Takens. By Theorem 1, f is topological mixing, and by Theorem C, f has Property P.O

Lemma 9 If f: X — X is a continuous map on compact metric space X and P(f) = X is

connected, then f is chain transitive on X.

Proof For any € > 0, let R.(z) = {y € X| there is a & chain from z to y}. Then for any
y € R.(x), there is a ¢ chain {z¢ = z,21,...,Tn_1,2, = y} from z to y and d(f(zn_1),y) < €.
So there exists a neighborhood U, of y, such that U, C B(f(zn-1),e). Thus for any ¢’ €
Uy, {z0,2%1,...,Zn-1,y’} is a € chain from z to 3, U, C R.(x), that is, R.(z) is open. Let
Re(z) = {y € X]| there is a ¢ chain from y to z}. For any y € R®(z), there is a ¢ chain
{Y0,Y1,---,Yn}, Wwhere yo = y,y, = x, such that d(f(yo),y1) < . As f is continuous, there is
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an open neighborhood Uy, of yo, such that f(U,,) C B(y,¢). So Uy, C R°(z) and R*(z) is also
an open set. For any x € X = P(f), let E(x,e) = R.(z) N R*(z) N P(f). Then x must be a
chain recurrent point of f (P(f) C CR(f), and CR(f) is closed), x € R.(z) N R*(x). So E(z,¢)
must be a nonempty open set of X. If y ¢ E(z,¢), then E(z,e) N E(y,e) = 0. If y € E(x,¢),
then E(z,e) = E(y,¢) and E(z,¢) = X — U cx\ p(s.e) E(y;€)- It is obvious that E(z, ) is also
a closed set in X. As X = P(f) is connected, P(f) = E(x,¢). Since ¢ is arbitrary, P(f) is

contained in a chain component of f, namely, f is chain transitive in X (= P(f)). O

Lemma 10" If X is a compact metric space, then we have the following results: property P=
uniformly positive entropy = topological weakly mixing. Completely positive entropy=- there is
w € M(X, f) such that suppu = X.

Thereinto, M (X, f) is the set of invariant possibility measures of f on X, suppu is the support

of measure u.

Proof of Theorem 5 By Lemma 9, P(f) is contained in a chain component of f, that is, f is
chain transitive on X (= P(f)). So by Theorem 4, Theorem 5 is proved. O

Proof of Theorem 6
(5) = (7). By Theorem 1.
(7) = (6). Obviously.
(6) = (5). By Lemma 2.3 in [3].
So (5), (6) and (7) are equivalent.

(7) = (8). By Theorem C.

(8) = (2). By Lemma 10

(2) = (6). By Lemma 10

(6) = (7). Since (6) and (7) are equivalent
(2),(6),(7) and (8) are equivalent

By [3] Lemma 2.2, (5) and (9) are equivalent. So (2),(5),(6),(7),(8) and (9) are equivalent.
The equivalence of (1), (2), (3) and (4) is proved below.
(1) = (2). By Theorem 1 in [6] and the equivalence of (5) and (2).

(2) = (3). By the equivalence of (2) and (6) and Theorem 2 in [6].

(3) = (4). Obviously.

(4) = (1). By [6] Lemma 2, the equivalence of (5) and (2), and the fact that u.p.e. implies
c.p.e. a

Proof of Corollary of Theorem 6 =-. It is easy to see that f is topological transitive. Let ¢
be the positively expansive constant of f. For any 0 < e < §, since f has PPOTP, there is § > 0,
such that for any 0 pseudo-orbit {xo,z1,...} of f, there is N > 0, such that {zn,zn11,...} can

be e traced by some point in X. By Lemma 2.2 in [3], there are periodic § chain a = {z;}¢ >

“+oo

with period m and periodic § chain 8 = {y;},
So there exist N > 0 and z € X such that xze traces {an,Tn41,...}, and there exist M > 0

with period n, where m and n are co-prime.

and y € X such that ye traces {ya,yrrs1,...}. So for any i € Z,, d(fi(r),zn4i) < € and
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d(f1(f"(@)), f{(z)) < d(f™"(2), eN+i4n) + d@N+i, f1(2)) < 26 < c. Therefore f*(z) = 2.
Analogously, f™(y) = y and m,n are co-prime.

<. By Lemma 2.2 in [3], f is chain mixing and by Lemma 5, f is topological mixing.

Proof of Theorem 7 (1) = (2). Obviously;

2) = (3). by Lemma 2.3 in [3];

3) = (10). Obviously;

10) = (1). By [6] Lemma 3, Lemma 4 and Theorem 1.
11). By Lemma 2.2 in [3].

),(3),(10),(11) are equivalent.

~ ~ —~

. By Lemma 5 and Theorem 2 in [6];
(8) = (9) = (10). Obviously;

(8). Obviously.

10) = (1). By the equivalence of (1) and (10).
So (1), (4-10) are equivalent.

Therefore, the properties listed in Theorem 7 are equivalent. O

Proof of Corollary of Theorem 7 The conclusion follows from Theorem 6, Theorem 7,
Lemma 10 and the fact that for any u € M (X, f), suppu C M(f) C CR(f). a
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