TOCSYID 技术在三七人参皂苷 - Rd 结构解析中的应用

钟世舟 关山越

(中山大学测试中心 广州 510275)

摘要用DEPT、CCOSY、C-HCOSY、GHMQC、GHMBC、特别是TOCSY1D等NMR技术,对从三七中提取的人参皂甙-Rd的¹H、¹³CNMR谱的化学位移进行全归属。TOC-SY1D技术对糖环质子峰归属有效、简单、快速、准确。

关键词 人参皂甙 - Rd 三七 TOCSY1D

三七 (Panax notoginseng (Burk.) F. H. Chen) 是 著名的传统中药,具有止痛、止血、消肿、散瘀等功 效。研究表明三七中的主要生理活性物质是达玛烷型 三萜皂甙,可以分成原人参二醇型和原人参三醇型两 种。20世纪80年代末期已有核磁共振研究它们碳-13 谱归属的报道^{1~2}, 而氢谱和全归属方面的研究到 2000年前后才出现^{3~6},通常用 HMQC、HMBC 谱结合 HMQC - TOCSY^{4,5}或 ROESY⁶ 谱来解决氢谱谱峰重叠而 造成氢谱解析和全归属时的困难。本文用¹H、¹³C、 DEPT、CCOSY(梯度场COSY)、CH - COSY、CH-MQC、GHMBC NMR 谱,特别运用 TOCSYID 技术来研 究从三七提取的人参皂甙 - Rd 的 NMR 谱全归属,满 意地克服了氢谱糖环质子峰重叠而造成的解析困难。 研究结果表明 TOCSYID 这种二维谱(TOCSY)一维化 的技术,在用 NMR 方法研究含有多个糖环的糖甙等 化合物的化学结构时,可将氢谱中谱峰严重重叠的多 个糖环逐个分辨出来。

1 实验

1.1 仪器和试剂

仪器: Varian 公司^{UNITY} INOVA 500 超导脉冲傅 立叶变换核磁共振谱仪,使用探头为 5 mm BB (宽 带) 探头和 5 mm 梯度场 ID (反式) 探头。C₃D₅N (99.5%D,瑞士 Armar 公司) 做溶剂和碳谱内标, IMS 做氢谱内标,实验温度 30 。人参皂苷 - Rd 由中山大学医学院从三七中提取。

1.2 **实验条件**

氢谱谱宽 5037.5 Hz (10 ppm); 谱宽 21786.5 Hz (166 ppm); GCOSY谱谱宽 5006.3 Hz,采样点 1024 ×512, FT 2048 ×2048。

TOCSYID 谱谱宽 5497.5 Hz,软脉冲加梯度场, 软脉冲分别加在各个糖环的 1 位质子,设定 mixing time 阵列数为 11,每次间隔 15 ms,即由 0 ms 到 150ms。TOCSYID 谱的脉冲程序由 Varian INOVA 500 核磁共振谱仪 VNMR 6.1B 版软件自动提供。

C-HCOSY 谱宽 21786.5 × 5182.7 Hz, 1024 ×512, FT 2048 × 2048; GHMQC、GHMBC 谱谱宽 5006.3 × 21786.5 Hz, 1024 × 512, FT 2048 × 2048。

2 结果和讨论

人参皂甙 - Rd 的 125 MHz ¹³C NMR 和 DEPT 谱 显示它有 46 有效碳峰,其中甙元 30 个 (甲基碳峰 8 个,亚甲基碳峰 9 个,次甲基碳峰 7 个,季碳峰 6 个),三个糖环 18 个碳 16 个峰 (亚甲基碳峰 2 个,有一个重叠峰;次甲基碳峰 14 个,有一个重 叠峰)。符合人参皂甙 - Rd 化学结构的碳数和碳 型。它的氢谱 (在氘代吡啶溶剂中),12 位羟基及 三个葡萄糖羟基与样品中痕量水集成宽峰 (5.6~ 7.0)。除溶剂、羟基峰外,谱峰含 70 个质子,其 中甙元 49 个,3 个葡萄糖 21 个,与人参皂甙 - Rd 结构式相符 (见图 1)。

图 1 人参皂甙 - Rd 的结构

本研究做了碳 - 氢相关谱 (C - H COSY) 和梯 度场异核多量子相关谱 (GHMQC) 两种异核相关 谱。碳 - 氢相关谱的相关峰点窄小、重合程度小而 更有利于碳 - 氢归属关系的确定。碳 - 氢相关谱表 明,虽然甙元部分 C2 (26.72) 与 C16 (26.61)、 Cl1 (30.75) 与 Cl5 (30.87) 的谱峰靠得很近, 但是与 Cl1、Cl5 相关的两对质子峰却十分容易区 分,Hl1—1.48,1.96,Hl5—1.00,1.58。与 C2、 Cl6 相关的两对质子峰,尽管有两个质子峰重叠, 也不难区分,H2—1.82,2.18,Hl6—1.36,1.82。 在氢谱最高场处与 C5、Cl 相关两个峰 0.63 (1H, d,11.5)、0.73 (1H,dd,11.5)分别为 H5 和 H1 之一,低场处与 C24 (125.91)、Cl2 (70.17)、 C3 (88.95) 相关的峰 5.29 (1H,d)、4.12 (m)、 3.24 (1H,dd,8,3.5)分别为 H24、H12、H3,其中 H12 与多个糖环的质子重叠。氢谱中 0.96 (6H, s)、 1.60 (6H, s) 两对甲基重叠,从碳 - 氢相关谱很容 易确定它们是和 C18 (15.95)、C30 (17.35) 和 C26 (25.72)、C27 (17.74) 相关的 H18、H30 和 H26、 H27。其他甲基碳 C19 (16.24)、C29 (16.57)、C28 (28.07)、C21 (22..36) 对应的质子峰分别为 H19 0.82、H29 0.96、H28 1.28、H21 1.62。甙元的其它质子 峰,即使是重叠严重,也可通过碳 - 氢相关谱一一归 属 (见表 1)。

结构编号	С	Н	COSY相关	HMBC碳对氢
1	39.18	0.73 (d, 11.5), 1.58 (m)	H1, H2	H19
2	26.72	1.82 (m, 10.5), 2.18 (d, 12.5)	H1, H3	
3	88.95	3.24 (dd, 8, 3.5)	H2	H1, H2, H5, H28, H29, gH1
4	39.66			H5, H28, H29
5	56.38	0.65 (d, 11.5)	H6, H7	H7, H19, H28, H29
6	18.41	1.36 (m), 1.50 (m)	H6, H7	H7
7	35.12	1.20 (dd, 7.5), 1.50 (m)	H6	H5, H18
8	40.02			H7, H11, H13, H18H, 30
9	50.17	1.36 (m)	H11	H7, H18, H19
10	36.88			H5, H9, H11, H19
11	30.75	1.50 (m) 1.96 (dd, 12.5)	9H, 11H, 12H	H9, H13, H18
12	70.17	4.12 (m)	H11, H13	H9, H13, H17
13	49.44	1.96 (dd, 10)	H12, H17	H15, H16, H17
14	51.41			H13, H15, H18, H30
15	30.75	1.00 (dd, 12), 1.58 (m)	H15, H16	H16, H30
16	26.61	1.36 (m), 1.82 (m)	H15, H16, H17	H17
17	51.63	2.55 (m, 9)	H13, H16	H15 H21
18	15.95	0.96 (3H, s)		
19	16.24	0.82 (3H, s)		H5
20	83.30			H13, H16, H17, H21, H23, gH1"
21	22.36	1.62 (3H, s)		H17
22	36.10	1.82 (m) , 2.37 (dd , 11)	H22, H23	H21, H23
23	23.18	2.23 (m), 2.48 (m)	H22, H23, H24	22H, 24H
24	125.91	5.29 (dd ,)	H23, H26, H27	H26, H27, H23
25	130.89			H26, H27, H23
26	25.72	1.60 (3H, s)	H24	H24, H27
27	17.74	1.60 (3H, s)	H24	H24, H26
28	28.07	1.28 (3H, s)		H5, H3, H29
29	16.57	1.10 (3H, s)		H3
30	17.35	0.96 (3H, s)		H13
3-0-glc-1	105.03	4.89 (d, 7.5)	gH2	H3, gH3
2	83.41	4. 19 (dd , 8. 5)	gH1	gH1 ', gH3
3	78.28	4.28 (d, 8.5)		
4	71.62/71.66	4. 10 (dd , 9. 5)	gH5	gH3, gH6
5	77.99/78.14/78.17	3.90 (m)	gH4,gH6	gH6
6	62.84	4.52 (d, 11.5)	gH5	gH5
		4.29 (d, 11.5)		git
92-0-1 ' 91c-1 '	105.97	5.32 (d. 7.5)	øH2 '	σH2 ' σH2
2'	77.02	4.08 (dd. 8)	σH1 '	σH3 '
<u>,</u>	77.89	4.21 (dd. 8.5)	Bill	oH2, ' oH4 '
4 '	71.62/71.65	4.28 (dd. 9)	oH5 '	gH3 ', gH6 '
· · · · · · · · · · · · · · · · · · ·	77, 99/ 78, 14/ 78, 17	3.89 (m)	σH4 ² , σH6 ²	oH4 '
6'	62.7	4.43 (2H, dd, 10, 115)	gH5 '	gH5 '
20-0-g1c-1"	98.22	5.15 (d. 7.5)	gH2 "	gH2 "
2."	75.07	3.96 (dd . 8.5)	gH1 ". gH3 "	gH3 "
3 "	79.17	4.20 (dd. 9)	gH2 "	gH2 ", gH4 "
4 "	71.62/71.65	4. 13 (dd. 9.5)	gH5 "	gH5 "
5 "	77.99/78.14/78.17	3.89 (m)	gH4", gH6"	gH6 "
6 "	62.84	4.28 (d, 8), 4.44 (d, 11)	gH5 "	gH5 "

表 1 人参皂甙 - Rd 2D NMR 图谱相关数据

糖环1(C3-O-glc)糖环碳:Cglc1—105.03、 Cglc2—83.41、Cglc3—78.28、Cglc4—71.62/71.65、 Cglc5—77.99/78.14/78.17、Cglc6—62.84;糖环2 (C3-O-glcC2 C1'glc)糖环碳:Cglc1'—105.97、 Cglc2'—77.02、Cglc3'—77.89、Cglc4'—71.62/ 71.65、Cglc5'—77.99/78.14/78.17、Cglc6'—62.7; 糖环3(C20-O-glc)糖环碳:Cglc1"—98.22、 Cglc2"—75.07、Cglc3"—79.17、Cglc4"—71.62/ 71.65、Cglc5 "—77.99/78.14/78.17、Cglc6 "— 62.84。实验结果表明,仅只依靠碳-氢相关谱来归属 3.8~4.6之间重叠严重的糖环质子峰十分困难。3个 糖环上的5位碳峰,虽然还能读出3个峰值,数值却 非常接近,3个4位碳峰和3个6位碳峰也很接近。

从人参皂甙 - Rd GCOSY 谱糖环部分 (见图 2)

图 2 人参皂甙-Rd GCOSY谱糖环部分

可以看到.3个糖环 H2、H3、H4 之间的相关峰重 叠严重,而3个糖环1位的质子峰和碳谱碳峰都分 开得相对较远,一些研究用 TOCSY (二维质子全相 关谱) 或 HMQC - TOCSY (反式检测异核多量子相 关一质子全相关谱) 谱结合 GHMBC (梯度场反式 检测异核多键相关谱) 谱来进行这类化合物归属解 析^{3~4}。本文采用 TOCSYID 技术(一维质子全相关 谱)来精确找出各个糖环的质子峰。TOCSYID 脉 冲程序要用软脉冲和梯度场,软脉冲加在糖环1位 质子,分别是糖环1: H 4.89;糖环2: H [,] 5.32; 糖环 3: HI " 5.15。TOCSYID 谱谱图给出各个糖环 上没有季碳或杂原子隔开的碳链上全相关的质子 峰, 谱图干净清楚(见图3)。实验结果找到糖环1 上的 7 个质子峰为: H1 — 4.89, H2 — 4.19, H3 — 4. 26, H4 - 4. 10, H5 - 3. 90, H 6 - 4. 30 4. 52 糖环 2 上的 7 个质子峰为: H1'-5.32, H2'-4.08, H 3' - 4.21, H 4' - 4.28, H 5' - 3.89,

图 3 人参皂甙 - Rd 三个糖环的 TOCSYID 谱 A. 糖环1, B. 糖环2, C. 糖环3

H6'-4.43 (2H)。糖环 3 上的 7 个质子峰为: H 1 "-5.15, H 2"-3.96, H 3"-4.20, H 4"-4.13, H 5"-3.89, H 6"-4.28 4.44。 如果将 TOCSYID 程序中的混合时间 (mixing time) 选作变数,做阵列谱,可以按出峰快慢准确确定本 文所研究的糖环 1 到 6 位的质子 (见图 4),图 4 中 从左到右分别为糖环 1、糖环 2、糖环 3 的三个 TOCSYID 阵列谱,每个阵列谱由下到上每一列谱 中新增加的峰就是位数按序递增的糖环氢峰。

图 4 人参皂甙-Rd 三个糖环的 TOCSYID 阵列谱

确定 3 个糖环上的质子峰的归属,就容易归属 氢谱中其它的峰。 3.90 (3H,m) 峰组为 3 个葡萄 糖各自 5 位的 3 个质子峰, 3.96 (1H,dd,8.5) 峰为 glc2"质子峰, 4.12 (4H,m) 峰含 glc2'、 glc4、glc4"三个质子。 4.18 (3H,m) 峰组为 glc2、glc3'、glc3"三个质子峰, 4.29 (4H,m) 峰 组为 glc3、glc6、glc4'、glc6"四个质子峰。 4.44 (3H,m) 峰组为 glc6"一个和 glc6'两个质子峰, 4.52 (1H,dd,11.5)为 glc6 另一个质子峰。 4.89 (1H,d,7.5)、 5.32 (1H,d,7.5)、 5.16 (1H,d,7.5) ppm 峰分别为三个葡萄糖 glc1、 glc1'、glc1"位质子峰。各组峰的归属和人参皂甙 - Rd 甙元骨架上质子的相关关系(见表1)。

GHMBC 谱给出与质子相隔 2~3 键的碳相关信息,通过解析 GHMBC 谱的相关关系,可以把化合物的骨架组接起来,数据(见表 1)。

C4 (39.66) 与 H5 (0.63)、H28 (1.28)、 H29 (1.10) 相关, C5 (56.38) 与 H7 (1.20, 1.50)、H19 (0.82)、H28、H29 相关, C10 (36.88) 与 H5、H9 (1.36)、H11 (1.50)、H19 (0.82) 相关, C8 (40.02) 与 H7、H11、H13 (1.96)、H18 (0.96)、H30 (0.96) 相关, C9 (50.17) 与 H7、H18、H19 相关, C13 (49.44) 与 H15 (1.00)、H16 (1.82)、H17 (2.55) 相 关, C14 (51.41) 与 H13 (1.96)、H15、H18、 H30 相关,表明人参皂甙 - Rd 甙元的 A 环和 B 环 在 5、10 位相连, B 环和 C 环在 8、9 位相连, C 环 和 D 环在 13、14 位相连。C4 连 28、29 两个甲基, C10、C8、C14 分别连 19、18、30 甲基。C17 (51.63) 与 H21 (1.62)、H15 (1.58) 相关, C20 (83.30) 与 H13、H16、H17、H21 (1.63)、 glcH1"(3.96)相关,表明C17连有1-甲基-5 甲基-4-己烯支链,C20通过氧与一个葡萄糖1 位碳(glcC1")相连。C3(88.95)与glcH1 (4.89)相关,glcC2(83.41)与glcH1'(5.30) 相关,glcC1'(105.97)与glcH2(4.19)相关, 表明C3通过氧也与一个葡萄糖1位碳(glcC1)相 连,此葡萄糖2位碳(glcC2)再与另一葡萄糖1位 碳(glcC1')通过氧相连。

参考文献

- 魏君娴,徐榕雪,黄菊芬.三七绒根化学成分的研究—
 三七皂甙-C₃、-D₂、-D₃及-E₂的鉴定,昆明医学院学报,1988,9 (2):6~11
- 2 Osamu Tanaka, Toshinobu Morita, Ryoji Kasal et al. Study on Saponins of Rhizomes of Panax pseudo - ginseng subsp. Himalaicus Collected at Tzatogang and Pari - la, Bhutan - Himalata, Chem. Pharm. Bull. 1985, 33 (6): 2323 ~ 2330
- 3 Masayuka Yoshikawa, Toshiyuki Murakami, Takahiro Ueno et al. Bioactive Saponins and Gycosides IX. Notoginseng (2): Structures of Five New Dammarane Type Triterpene Oligogly cosides, Notoginsenosides E, G, H, and -J, and a Novel Acetylylenic Fatty Acid Gycoside, Notoginsenic Acid Sophoroside, from the Dried Root of Panax notoginseng (Burk.) F. H. Chen, Chem. Pharm. Bull. 1997, 45 (6): 1056~1062
- 4 滕荣伟,李海舟,王德祖等.三个原人参二醇单糖链配
 糖体的 NMR 信号全指定,波谱学杂志,2000,17 (6):
 461~467
- 5 滕荣伟,李海舟,王德祖等.三七皂苷 NMR 研究 II 三个原人参二醇型双糖链配糖体的 NMR 信号全归属, 波谱学杂志,2002,19 (1):25~31
- 6 Wei Guang Ma, Masanori Mizutani, Karl Egil Malterud et al. Saponins from the roots of Panax notoginseng, Phytochemistry, 1999, 52: 1133 ~ 1139

The application of TOCSY1D to the NMR complete assignment of ginsenoside - Rd

Zhong Shizhou Guan Shanyue

(Instrumentation Analysis & Research Center of Sun Yat - Sen University, Guangzhou 510275)

Abstract The ginsenoside - Rd was separated from the roots of Panax notoginseng. The complete assignments of ¹ H and ¹³C NMR chemical shifts of the ginsenoside - Rd were obtained by means of DEPT, 2D NMR techniques such as GCOSY, C - H COSY, GHNQC, GHMBC, and TOCSYID technique especially. It is effective, fast, simple and accurance for the assignments of the proton signals of the sugar moieties by TOCSYID.

Key words Ginsenoside - Rd Panax notoginseng NMR complete assignment TOCSY1D