NO_2 分子的光学-光学双色双共振多光子离化谱*

张贵银† 靳一东

(华北电力大学数理系,保定 071003) (2007年3月20日收到2007年5月9日收到修改稿)

以 Nd :YAG 激光器的二倍频输出光为抽运光,其三倍频输出抽运的光学参量发生/放大器输出光为探测光,利 用光学-光学双色双共振多光子离化光谱技术(OODR-MPI)获得了 NO₂ 分子在 605—675 nm 探测光波长范围内的多 光子离化激发谱.通过对 NO₂ 分子离化机理的分析,确定了在此波长区间,NO₂ 分子经 1 + 3 + 1 双共振多光子过程 离化,离化通道为 NO₂(X² A₁) $\xrightarrow{h\nu_1}$ NO₂(A² B₂) $\xrightarrow{h\nu_2}$ NO₂(3p₀) $\xrightarrow{h\nu_2}$ NO₂⁺ + e. 谱线归属结果表明,所得 OODR-MPI 谱对 应于 NO₂ 分子 3p₀ 里德伯态的三光子共振吸收,获得了该态的对称伸缩振动频率 $\omega_1 = (1442.5 \pm 25.5) \text{ cm}^{-1}$,弯曲 振动频率 $\omega_2 = (590.5 \pm 4.9) \text{ cm}^{-1}$,其带源位于(58331 ± 71) cm⁻¹处, 量子亏损值为 0.69.

关键词:NO₂,光学-光学双共振多光子离化谱,里德伯态,分子常数 PACC:3300,3335,3380K,3380E

1.引 言

随着高功率激光器的诞生 ,共振增强多光子离 化光谱技术已成为研究多原子分子高位电子态的重 要方法^{1-3]}.NO,分子作为最简单的多原子分子之 - 具有多原子分子的一些典型特征 包含有丰富的 光谱信息 同时 NO, 分子又是大气污染物的主要成 分 因而引起人们极大的研究兴趣. 现已有多种方 法对 NO, 分子基电子态及激发价电子态的几何构 型和能级结构从理论和实验方面进行研究⁴⁻¹¹结 果表明 NO, 分子在可见光谱区存在三个激发态 A² B₂, B² B₁, C² A₂, 第一激发电子态 A² B₂ 和基电子态 X²A₁的高振动能级存在能级交叉现象,而第二激发 电子态 B^2B_1 和基电子态之间存在 Jahn-Teller 效应, 这些相互作用使 NO, 分子在可见区的吸收光谱结 构异常复杂 激发态具有很长的荧光寿命, 对其高 位电子态特性的研究报道中,Bell 小组采用共振增 强多光子离化光谱技术研究了 NO₂ 分子高位里德 伯态的能级结构,确定了其绝热离化势^[12]. Ritchie 小组采用传统的紫外吸收光谱技术研究了 NO2 分 子在 135—165 nm 波长区间的吸收特性^{13]},结果表

2. 实验装置

实验装置如图 1 所示. Nd:YAG 激光器(法国 Quantel 公司,YG900型)的二倍频输出(532.0 nm)激 光为抽运光,其三倍频输出(355.0 nm)抽运的光学 参量发生/放大器(Optical Parameter Generator/Optical Parameter Amplifier,OPG/OPA,立陶宛 EKSPLA 公司,

^{*} 国家自然科学基金(批准号:10647130)和华北电力大学博士科研基金(批准号:200612003)资助的课题.

[†] E-mail:gyzhang65@yahoo.com.cn

图1 实验装置示意图

PG401VIR型 输出光为探测光.激光脉宽 35 ps,重 复频率为 10 Hz,OPG/OPA 输出波长在 420.0—680.0 nm 范围内连续可调,线宽 6 cm⁻¹.两束激光准直 后,相向进入样品室.探测光经 f = 8 cm 的透镜聚焦 于样品室内一对相距 0.9 cm 的环板电极中间,焦点 和未聚焦的抽运光束中心重合.环板电极间加 150 V 的直流偏压,用于收集多光子离化产生的带电离 子,信号经放大倍率为 10 的放大器放大后输入 Boxcaf 美国 Stanford Research 公司,SRS280/255 型), 最后由计算机控制采集并进行数据处理.为便于同 步信号的观察,实验中用同步触发的数字示波器进 行实时监测.实验所用样品气压约 266 Pa.

在 OODR-MPI 实验中,输入样品室的激光强度 应适当减弱,以避免单束光激发产生的本底离化信 号^[16].因此,光束进入样品室前,用衰减片适当调节 激光强度,使任何一束激光单独作用时观察不到离 化信号.

3. 实验结果与讨论

3.1. 605.0—675.0 nm 波长范围内 NO₂ 分子的 OODR-MPI光谱

在 Nd:YAG 二倍频输出激光超前 OPG/OPA 输出激光 5 ns 的实验条件下 利用图 1 所示实验装置, OPG/OPA 在 605.0—675.0 nm 波长范围内扫描所获 得的 NO₂ 分子 OODR-MPI 光谱如图 2 所示,光谱由 规则分布的分离谱带组成,NO₂ 分子应以共振方式 离化.为了对谱线进行归属和标识,需要首先确定 NO₂ 分子多光子过程的跃迁通道.

3.2. 跃迁通道的确定

NO₂ 分子与 OODR-MPI 跃迁相关的能级如图 3

图 2 NO₂ 分子的 OODR-MPI 谱

图 3 NO₂ 分子 OODR-MPI 能级图

图 4 NO₂ 分子的激光诱导荧光光谱

所示. 抽运光在非聚焦的条件下,功率密度约 10⁸ W/cm², 较难激发分子实现多光子跃迁过程. 为了对 此进行验证,实验中用波长为 532.0 nm 的激光激发 样品气体,用单色仪接收荧光信号,扫描单色仪,探 测到 NO₂ 分子在可见区的荧光发射谱及其标识如

57 卷

图 4 所示 但未接收到紫外荧光辐射 故在抽运光作 用下 NO2 分子应经单光子过程由基电子态跃迁至 激发态.NO2 分子吸收单个波长为 532.0 nm 的光 子,从能级高度考虑,可被激发到 A²B, ,B²B₁和 C²A, 激发电子态. 根据多原子分子的跃迁选择定则,由 X²A₁ 基电子态向 C²A₂ 激发电子态的跃迁为光学禁 戒跃迁;对于 B²B, 作为电子激发态的情形,只有在 激发光波长小于 500 nm 时才有较大的吸收截面,当 激发波长大于 500 nm 时主要对应 A²B, 态的吸收跃 迁^{10,17]},所以经激光抽运过程,大部分受激分子跃迁 至第一激发电子态 A^2B_2 . (考虑到 A^2B_2 , B^2B_1 激发 电子态存在很强的相互作用 激发至 A² B, 态的部分 NO, 分子可通过内转换或淬灭过程, 快速弛豫到 B²B₁态,实现受激分子的再布居,图4中未归属的 谱线可能来自再布居分子的辐射). NO, 分子的绝 热离化势约为(77320 ± 20) cm^{-1[12]},在探测光的波 长扫描区间 605.0—675.0 nm, 单光子能量为 14815—16529 cm⁻¹ ,在此激发波长范围内 ,NO, 分子 必须吸收四个光子才能由第一激发电子态离化,为 了对此结论做进一步确认,固定探测光波长为 636.7 nm 在能够产生离化信号的前提下 改变激光 强度 测量了在 266 Pa 气压、150 V 收集电压的实验 条件下离化信号随激光强度的变化关系 测量结果 如图 5 所示, 对测量结果进行非线性拟合可得信号 强度随激光强度近似满足三次方变化关系(激光强 度相对较低,且变化范围不大).因此在该实验抽 运、探测光的波长区间 ,NO2 分子经第一共振过程 , 吸收单个抽运光子而共振跃迁至 A²B₂ 态,处于 A²B, 激发电子态的 NO, 分子在探测光的作用下, 吸 收四个探测光光子 经3+1共振过程而离化 与前 面分析结果一致.光谱图应反映第二共振态的能级 信息.

若第二共振过程为单光子过程,从能级位置考 虑 NO₂ 分子吸收波长为 605.0—675.0 nm 的光子, 应由 A²B₂ 电子态跃迁至 B²B₁ 或 C²A₂ 电子态的高 振动能级,但根据多原子分子跃迁选择定则,B²B₁ ← A²B₂ 跃迁是单光子禁戒跃迁.对 C²A₂ ← A²B₂ 跃迁, 由于 NO₂ 分子在 A²B₂,C²A₂ 态,对称性分别属于 C_{2V} , C_s 点群^[18],此跃迁概率很小,不能提供足够的 受激分子实现多光子离化,故可排除第二共振过程 为单光子过程的可能性;若第二共振过程为双光子 过程,则 NO₂ 分子吸收波长为 605.0—675.0 nm 的光

图 5 波长为 636.7 nm 时离化信号随激光强度的变化

子,应由 A²B₂ 电子态跃迁至能级高度为 50271— 53699 cm⁻¹的电子态,此区间的吸收谱呈现连续发 散谱带的特征,不会产生分离的谱带结构^[14];再考 虑谱线间隔及 NO₂ 分子的振动常数,可排除(1+1+ 3)及(1+2+2)离化机理,唯有(1+3+1)离化机理 可解释实验结果.

3.3. 谱线的归属

NO₂ 分子经(1+3+1)双共振多光子过程离化, 从图 3 能级高度考虑,NO₂ 分子吸收波长在 605.0— 675.0 nm 区间的三个探测光光子,应由第一共振激 发电子态跃迁至 3p₀ 里德伯态,已知 NO₂ 分子在基 电子态 X²A₁、第一激发电子态 A²B₂ 是非线型三原 子分子,对称性属 C_{2e} 群,包含有三个振动模式:对 称伸缩振动模式 ω_1 、弯曲振动模式 ω_2 和反对称伸 缩振动模式 ω_3 .基电子态三个振动模式频率分别 为 1320 cm⁻¹,750 cm⁻¹,1618 cm^{-1[19]};而在 3p₀ 里德 伯态,NO₂ 分子是线形结构,激发至此态的分子,其 电子能量 $T'_{e} = 58309$ cm⁻¹,三个振动模式频率分别 为 1420 cm⁻¹ *5*97 cm⁻¹,1680 cm^{-1[20]},根据分子电子 态振动能级跃迁公式,可得 NO₂ 分子由基电子态基 振动能级向 3p₀ 里德伯态振动能级跃迁吸收光子 的能量以波数表示为

 $v = T'_{e} + \sum_{i=1}^{3} \omega'_{i} \left(v'_{i} + \frac{1}{2} \right) - \frac{1}{2} \sum_{i=1}^{3} \omega''_{i}$, (1) 其中 ω'_{i} , v'_{i} 分别为 $3p\sigma_{u}$ 里德伯态振动频率、振动量

子数; ω_i^r 为基电子态振动频率.根据(1)式可对图 2 双共振多光子离化的分离谱带进行电子振动态归属结果如表 1 所示.将计算结果与实验结果比较, 图 2 中离化谱线应当归属于 NO₂ 分子由基电子态经过(1+3)多光子过程,至 3pg,里德伯态的 1+3 共振 跃迁谱线,由此共振态,NO₂分子再吸收一个探测光 光子而离化,离化通道可表示为

NO₂(X²A₁)
$$\xrightarrow{h\nu_1}$$
 NO₂(A²B₂) $\xrightarrow{3h\nu_2}$ NO₂(3p\sigma_u)
 $\xrightarrow{h\nu_2}$ NO₂⁺ + e.

对于图 2 中有些谱线存在的双峰结构,分析应产生 于 NO₂ 分子经 3_{pσ_π} 最终共振态的吸收跃迁,由于缺 少相应的光谱数据,具体确认仍需进一步的工作.

表1 谱线的归属

峰值位置/nm	(1+3) 光子能量/cm ⁻¹	3p _{σu} ←X ² A ₁ 跃迁 光子能量/cm ⁻¹ (理论)	归属
668.9	63647	63682	(090)
661.8	64128	64134	(250)
653.1	64732	64731	(260)
648.0	65093	65102	(190)
644.9	65316	65328	(2,7,0)
636.7	65915	65925	(280)
629.0	66492	66522	(290)
621.2	67091	67119	(0,01,2)
613.9	67665	67717	(2,11,0)
606.5	68261	68314	(0, 21, 2)

由表 1 实验结果 ,可得 NO₂ 分子 3p₃ 里德伯态 的对称伸缩振动频率 $\omega_1 = (1422.5 \pm 23.5) \text{ cm}^{-1}$ 、弯 曲振动频率 $\omega_2 = (590.5 \pm 4.9) \text{ cm}^{-1}$,与文献报道用 其他方法测量结果^[19:20]基本相符 ,产生误差的主要 原因是实验所用激光光源线宽较大(6 cm⁻¹),致使 谱线较宽 ,谱线峰值位置测量不准所至.若不考虑 模式间相互作用 ,振动非谐性系数为 $\chi_{11} = 24 \text{ cm}^{-1}$, $\chi_{22} = 2.5 \text{ cm}^{-1}$.迄今为止 ,还没有关于用多光子离 化的方法探测 NO₂ 分子 3p₃ 里德伯态振动非谐性 系数的实验及理论研究报道 ,所得结果中 χ_{22} 与紫 外单光子吸收方法结果符合得很好^[13].将 χ_{11} 与其 他电子态非谐性系数¹⁸³比较,我们认为实验结果在 合理的取值范围内.由于 NO_2 分子在基电子态 X^2A_1 是弯曲构型,键角为 134°;而在 $3p\sigma_u$ 里德伯态 为线形结构,极大的键角差别使得难以用光学激发 的方式确定其带源的位置,但由实验结果可推得 $3p\sigma_u$ 态的带源位置约在(58331 ± 71) cm⁻¹处.根据 里德伯公式

$$\nu_{00}(\text{ cm}^{-1}) = I.P. - \frac{R}{(n-\delta)^2},$$
 (2)

其中 ν_{00} 为里德伯态的带源,*I*.*P*.为绝热离化势,*n* 为主量子数, δ 为量子亏损值,可以估算出 $3p\sigma_{u}$ 里 德伯态的量子亏损值为 0.69.这和文献报道,以氮 原子为中心的分子,其量子亏损值对 np里德伯态 为 0. f^{20} 符合得较好.

4.结 论

本工作用近年来发展起来的 OODR-MPI 光谱技 术 获得了 605.0—675.0 nm 探测光波长范围内 NO₂ 分子的多光子离化激发谱.分析确定了在此波长区 间 ,NO₂ 分子经 1 + 3 + 1 双共振多光子过程离化 ,该 范围内有规则的振动序列对应于 NO₂ 分子由第一 共振激发态 ,到 3p₀ 里德伯态的三光子共振吸收跃 迁 ,获得了该态被激活的对称伸缩振动频率、弯曲振 动频率及振动非谐性系数分别为 $\omega_1 = (1422.5 \pm 23.5) \text{ cm}^{-1}$, $\omega_2 = (590.5 \pm 4.9) \text{ cm}^{-1}$, $\chi_{11} = 24 \text{ cm}^{-1}$, $\chi_{22} = 2.5 \text{ cm}^{-1}$,确定了其带源位置及量子亏损值. 结果可对 NO₂ 分子高激发态的研究和探测提供有 价值的参考.

作者感谢河北大学物理科学与技术学院张连水教授对 相关问题的悉心指导。

- [1] Yao G X, Wang X L, Du C M, Li H M, Zhang X Z, Xian F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese)[姚关 心、汪小丽、杜传梅、李慧敏、张先郑、贤 锋、季学韩、崔执凤 2006 物理学报 55 2210]
- [2] Ma X G, Sun W G, Cheng Y S 2005 Acta Phys. Sin. 54 1149 (in Chinese)[马晓光、孙卫国、程延松 2005 物理学报 54 1149]
- [3] Ma X G , Sun W G 2005 Chin . Phys . 14 1792

- [4] Delon A , Jost R 2001 J. Chem. Phys. 114 331
- [5] Delon A , Jost R 1999 J. Chem. Phys. 110 4300
- [6] Delon A , Jost R 1991 J. Chem. Phys. 95 5696
- [7] Kirmse B , Delon A , Jost R 1998 J. Chem. Phys. 108 6638
- [8] Santoro F 1998 J. Chem. Phys. 109 1824
- $\left[\begin{array}{c} 9 \end{array} \right] \quad Zhang \; G \; Y \; , Zhang \; L \; S \; , \; Han \; X \; F \; 2005 \; {\it Chin} \; . \; {\it Opt} \; . \; {\it Lett} \; . \; {\bf 3} \; 119$
- [10] Lievin J, Delon A, Jost R 1998 J. Chem. Phys. 108 8931

- [11] Sivakumaran V, Subramanian K P 2001 J. Quant. Spectro. & Radia. Transf. 69 525
- [12] Bell P , Aguirre F , Grant E R , Pratt S T 2003 J. Chem. Phys. 119 10146
- [13] Ritchie R K, Walsh A D 1962 Proc. Roy. Soc. London Ser. A 267 395
- [14] Morrison R J S , Grant E R 1982 J. Chem. Phys. 77 5994
- [15] Zhang G Y , Zhang L S , Sun B , Han X F , Yu W 2005 Chin. Phys. 14 524

- [16] Zhang L S , Liu N N , Li X W , Fu G S 1998 Chin . Phys. 7 333
- [17] Donnelly V M , Kaufman F 1977 J. Chem. Phys. 66 4100
- [18] Shibuya K , Terauchi C , Sugawara M 1997 J. Mol. Struct. 413 501
- [19] Herzberg G 1953 Molecular spectra and molecular structure. []]. Electronic spectra and electronic structure of polyatomic molecules (New York: Van Nostrand Reinhold Company) p602
- [20] Rockney E H , Hall G E , Grant E R 1983 J. Chem. Phys. 78 7124

Optical-optical double-color and double-resonance multiphoton ionization spectrum of NO₂ *

Zhang Gui-Yin[†] Jin Yi-Dong

(Department of Mathematics and Physics , North China Electric Power University , Baoding 071003 , China)
(Received 20 March 2007 ; revised manuscript received 9 May 2007)

Abstract

The optical-optical double resonance multiphoton ionization (OODR-MPI) technique has been applied to the study of the Rydberg states of nitrogen dioxide. The results show that NO₂ molecule is ionized though a 1 + 3 + 1 double resonance multiphoton ionization process in 605—675 nm probe wavelength region. The ionization pathway is : NO₂($X^2 A_1$) $\xrightarrow{h\nu_1}$ NO₂ ($A^2 B_2$) $\xrightarrow{3h\nu_2}$ NO₂($3p\sigma_u$) $\xrightarrow{h\nu_2}$ NO₂² + e. The OODR-MPI spectrum corresponds to the excitation of NO₂ $3p\sigma_u$ Rydberg state by a three photon process. The value $\omega_1 = (1422.5 \pm 23.5)$ cm⁻¹ and $\omega_2 = (590.5 \pm 4.9)$ cm⁻¹ of symmetric stretching and bending vibration frequencies of this Rydberg state are presented. The position of the band origin and the quantum defect of $3p\sigma_u$ Rydberg state are obtained to be (58331 ± 71) cm⁻¹ and 0.69, respectively.

Keywords : NO_2 , OODR-MPI spectrum , Rydberg state , molecular constant PACC : 3300 , 3335 , 3380K , 3380E

^{*} Project supported by the National Natural Science Foundation of China(Grant No. 10647130) and the Doctoral Science Research Foundation of North China Electric Power University(Grant No. 200612003).

[†] E-mail:gyzhang65@yahoo.com.cn