Constructing Common Quadratic Lyapunov Functions for a Class of Stable Matrices

ZHU Ya-Hong ${ }^{1}$ CHENG Dai-Zhan ${ }^{1}$ QIN Hua-Shu ${ }^{1}$

Abstract Narendra and Balakrishnan proposed a way to construct a common quadratic Lyapunov function (CQLF) ${ }^{[1]}$, when a set of stable matrices are commutative. The purpose of this paper is to generalize the method to non-commutative and nonsolvable case. A modified constructing algorithm is proposed and certain conditions are provided to assure the resulting matrix being a CQLF. Next, the problem discussed is when a stable matrix can be added to a set of matrices with CQLF to construct a new CQLF for the enlarged set.
Key words Switched system, common quadratic Lyapunov function, Lie algebra.

1 Introduction

Consider a switched linear system:

$$
\begin{equation*}
\dot{x}=A_{\sigma(t)} x \tag{1}
\end{equation*}
$$

where $\sigma(t):[0,+\infty) \rightarrow \Lambda$ is an right continuous function, $\Lambda=\{1,2, \cdots, N\}$.

To assure the stability of switched system (1) under arbitrary switching, a common Lyapunov function is sufficient. A quadratic Lyapunov function, $x^{\mathrm{T}} P x$, with positive definite matrix $P>0$ (or briefly, P) is called a CQLF of $\left\{A_{\lambda} \mid \lambda \in \Lambda\right\}$ if

$$
\begin{equation*}
P A_{\lambda}+A_{\lambda}^{\mathrm{T}} P<0, \quad \forall \lambda \in \Lambda \tag{2}
\end{equation*}
$$

[1] considerd a set of commutative stable matrices $\left\{A_{1}, \cdots, A_{N}\right\}$ and proposed a method to construct CQLF, which is described in the following: Choose a positive definite matrix P_{0} and define $P_{i}>0, i=1, \cdots, N$, recursively by

$$
\begin{equation*}
P_{i} A_{i}+A_{i}^{\mathrm{T}} P_{i}=-P_{i-1}, \quad i=1, \cdots, N \tag{3}
\end{equation*}
$$

Then P_{N} is a CQLF. Moreover, P_{N} has an analytic expression as

$$
\begin{align*}
P_{N}= & \int_{0}^{\infty} \mathrm{e}^{A_{N}^{\mathrm{T}} t_{N}} \int_{0}^{\infty} \mathrm{e}^{A_{N-1}^{\mathrm{T}} t_{N-1}} \cdots \int_{0}^{\infty} \mathrm{e}^{A_{1}^{\mathrm{T}} t_{1}} \times \tag{4}\\
& P_{0} \mathrm{e}^{A_{1} t_{1}} \mathrm{~d} t_{1} \cdots \mathrm{e}^{A_{N-1} t_{N-1}} \mathrm{~d} t_{N-1} \mathrm{e}^{A_{N} t_{N}} \mathrm{~d} t_{N}
\end{align*}
$$

For ease of statement, (4) is called the N-B type CQLF with initial matrix P_{0}. The N-B structure was firstly extended to constructing common Lyapunov functions for nonlinear switched systems in [2]. Some sufficient conditions based on Lie algebraic structure were proposed in [3]. [4] provided

[^0]a nice Lie algebraic condition than the solvability of Lie algebra implies CQLF, which generalized the condition of [1]. The most updated and beautiful Lie algebra conditions were proved in [5]. Necessary and sufficient conditions for quadratic stabilization and a geometric description of the set of planar control systems were provided in [6]. A necessary and sufficient condition of CQLF was given in [7]. In fact, the approach in both [7] and [6] is based on constructing CQLF by considering the topological structure of the set of CQLFs. An alternative approach in constructing CQLF is using stable matrices A_{i}. The purpose of this paper is to investigate how far N - B structure can be extended for non-commutative set of stable matrices. In general the Lie algebra generated by them is not solvable. We intend to combine the Lie algebra structure with $\mathrm{N}-\mathrm{B}$ structure to enlarge the applicability of $\mathrm{N}-\mathrm{B}$ structure.

2 CQLF for Two Matrices

In this section we consider the case of $N=2$. First consider the involutive case and then non-involutive case.
Definition 1. Let $\mathcal{L} \subset g l(n, R)$ be a sub-algebra, $\operatorname{dim}(\mathcal{L})=N$, and a linearly independent set of matrices $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{N}\right\} \subset \mathcal{L}$ are given.

1) \mathcal{A} is called a stable basis of \mathcal{L} if all $A_{i}, i=1, \cdots, N$ are stable and they form a basis of \mathcal{L}.

In this case \mathcal{A} is said to be involutive.
2) \mathcal{A} is called a stable generator of \mathcal{L} if all $A_{i}, i=$ $1, \cdots, N$ are stable and $\mathcal{A}_{L A}=\mathcal{L}$.

For $N=2$, let $\left\{A_{1}, A_{2}\right\}$ be a stable basis. Our question is: can we use the algorithm (3) to construct a CQLF for A_{1} and A_{2}. Since $\left\{A_{1}, A_{2}\right\}$ is a basis, we have

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=\alpha A_{1}+\beta A_{2} \tag{5}
\end{equation*}
$$

Denote by $\sigma(A)$ the set of eigenvalues of A. Then we can show that in a cone area of $\alpha-\beta$ plane the N -B structure remains available:
Theorem 1. Let $\left\{A_{1}, A_{2}\right\}$ be a stable basis satisfying (5). Then A_{1} and A_{2} share an N-B type CQLF if the following two conditions are satisfied:

$$
\begin{equation*}
\alpha>-2 \min _{\sigma}\left|\operatorname{Re} \sigma\left(A_{2}\right)\right|, \quad \beta<2 \min _{\sigma}\left|\operatorname{Re} \sigma\left(A_{1}\right)\right| \tag{6}
\end{equation*}
$$

Proof. Choosing any positive definite matrix $Q>0$, we set

$$
\begin{equation*}
P_{0}\left(A_{1}+\frac{\beta}{2} I\right)+\left(A_{1}+\frac{\beta}{2} I\right)^{\mathrm{T}} P_{0}=-Q \tag{7}
\end{equation*}
$$

Then we know that (7) has a unique solution $P_{0}>0$. Using this P_{0}, we set

$$
\left\{\begin{array}{l}
P_{1} A_{1}+A_{1}^{\mathrm{T}} P_{1}=-P_{0} \tag{8}\\
P_{2} A_{2}+A_{2}^{\mathrm{T}} P_{2}=-P_{1}-\mu P_{0}, \quad \mu>0
\end{array}\right.
$$

Then we can show that for suitably chosen μ, P_{2} (precisely, $\left.x^{\mathrm{T}} P_{2} x\right)$ is a CQLF.

From the second equation of (8) we have

$$
P_{1}=-\left(P_{2} A_{2}+A_{2}^{\mathrm{T}} P_{2}+\mu P_{0}\right)
$$

Plugging it into the first equation of (8) and using (5) and (7) yields

$$
\begin{align*}
& \left(P_{2} A_{1}+A_{1}^{\mathrm{T}} P_{2}\right)\left(A_{2}-\frac{\alpha}{2} I\right)+\left(A_{2}-\frac{\alpha}{2} I\right)^{\mathrm{T}} \times \tag{9}\\
& \left(P_{2} A_{1}+A_{1}^{\mathrm{T}} P_{2}\right)=-\beta P_{1}+P_{0}+\mu Q
\end{align*}
$$

Now choosing $\mu>0$ large enough, the right hand side of (9) becomes positive definite. Using (6), we know that $A_{2}-\frac{\alpha}{2} I$ is Hurwitz. It follows that

$$
P_{2} A_{1}+A_{1}^{\mathrm{T}} P_{2}<0
$$

That is, P_{2} is the CQLF for A_{1} and A_{2}.
Theorem 1 shows how far the N-B approach can go when we have a stable basis of two dimensional Lie algebra. The advantage is that it provides an easy way to construct a CQLF. But it is conservative. Because we have the following:
Proposition 1. If two stable matrices A_{1} and A_{2} satisfy (5), then they share a CQLF.

Proof. According to (5) it is easy to verify that $\mathcal{L}=$ $\left\{A_{1}, A_{2}\right\}_{L A}$ is solvable because $\mathcal{L}^{2}=0$. The conclusion follows from [4].

Next, we consider non-solvable case. Roughly speaking, if $\left[A_{1}, A_{2}\right]$ is sufficiently close to zero, then by continuity this result remains true even though $\left\{A_{1}, A_{2}\right\}$ is not involutive.

Using the same argument in the proof of Theorem 1, we can prove the following:
Proposition 2. Let A_{1}, A_{2} be two stable matrixes and $\left[A_{1}, A_{2}\right]=C$. Then A_{1}, A_{2} share a CQLF if there exists a positive definite matrix P_{0}, such that

$$
\begin{equation*}
P_{0}+P_{2} C+C^{\mathrm{T}} P_{2}>0 \tag{10}
\end{equation*}
$$

where P_{2}, uniquely determined by P_{0} via (3), is a CQLF.

3 CQLF for \boldsymbol{N} Matrices

In this section, we try to extend the Propositions 1 and 2 to N matrix case. Consider the set \mathcal{A} of stable matrices and choose any $A_{i} \in \mathcal{A}$. For notational brevity, denote it as A_{N}. Finding a CQLF is equivalent to asking when a QLF of A_{N} is also the QLF for others. Then we propose the following algorithm: Choose any $P_{N-1}>0$ and set

$$
\begin{equation*}
P_{N} A_{N}+A_{N}^{\mathrm{T}} P_{N}=-P_{N-1} \tag{11}
\end{equation*}
$$

Following [1], we define

$$
\begin{equation*}
P_{i, j}=P_{j} A_{i}+A_{i}^{\mathrm{T}} P_{j}, \quad 1 \leq i \leq N ; j=N-1, N \tag{12}
\end{equation*}
$$

First, we assume $\left[A_{N}, \operatorname{Span}\{\mathcal{A}\}\right] \subset \operatorname{Span}\{\mathcal{A}\}$, which is equivalent to

$$
\begin{equation*}
\left[A_{N}, A_{i}\right]=\sum_{k=1}^{N} c_{i}^{k} A_{k}, \quad i=1, \cdots, N-1 \tag{13}
\end{equation*}
$$

Then we have the following result:

Theorem 2 Consider the set \mathcal{A} of stable matrices satisfying (13). Then \mathcal{A} share a CQLF P_{N}, if the following two conditions are satisfied:

$$
\begin{align*}
& \max \left(c_{i}^{i}\right)<2 \min \left|\operatorname{Re} \sigma\left(A_{N}\right)\right| \\
& -P_{i, N-1}+c_{i}^{N} P_{N-1}-\sum_{k=1, k \neq i}^{N-1} c_{i}^{k} P_{k, N}>0 \tag{14}
\end{align*}
$$

Where $i=1, \cdots, N-1$.
Proof. Using (14), we have

$$
\begin{aligned}
& P_{i, N}\left(A_{N}+\frac{c_{i}^{i}}{2} I\right)+\left(A_{N}+\frac{c_{i}^{i}}{2} I\right)^{\mathrm{T}} P_{i, N} \\
& =\left(P_{N} A_{i}+A_{i}^{\mathrm{T}} P_{N}\right) A_{N}+A_{N}^{\mathrm{T}}\left(P_{N} A_{i}+A_{i}^{\mathrm{T}} P_{N}\right)+ \\
& c_{i}^{i}\left(P_{N} A_{i}+A_{i}^{\mathrm{T}} P_{N}\right) \\
& =P_{N}\left(A_{N} A_{i}-\sum_{k=1}^{N} c_{i}^{k} A_{k}\right)+A_{i}^{\mathrm{T}} P_{N} A_{N}+A_{N}^{\mathrm{T}} P_{N} A_{i}+ \\
& \left(A_{i}^{\mathrm{T}} A_{N}^{\mathrm{T}}-\sum_{k=1}^{N} c_{i}^{k} A_{k}^{\mathrm{T}}\right) P_{N}+c_{i}^{i}\left(P_{N} A_{i}+A_{i}^{\mathrm{T}} P_{N}\right) \\
& =\left(P_{N} A_{N}+A_{N}^{\mathrm{T}} P_{N}\right) A_{i}+A_{i}^{\mathrm{T}}\left(P_{N} A_{N}+A_{N}^{\mathrm{T}} P_{N}\right)- \\
& c_{i}^{N}\left(P_{N} A_{N}+A_{N}^{\mathrm{T}} P_{N}\right)-\sum_{k=1, k \neq i}^{N-1} c_{i}^{k}\left(P_{N} A_{k}+A_{k}^{\mathrm{T}} P_{N}\right) \\
& =-P_{i, N-1}+c_{i}^{N} P_{N-1}-\sum_{k=1, k \neq i}^{N-1} c_{i}^{k} P_{k, N}>0
\end{aligned}
$$

Using the first in equality of (14) we know that $A_{N}+\frac{c_{i}^{i}}{2} I$ is stable, so it follows that

$$
P_{i, N}=P_{N} A_{i}+A_{i}^{\mathrm{T}} P_{N}<0, \quad i=1, \cdots, N-1
$$

That is, P_{N} is a CQLF for $\{\mathcal{A}\}$.
Consider the set \mathcal{A} without the assumption (13), denoted by

$$
\begin{equation*}
\left[A_{N}, A_{j}\right]=C_{N, j}, \quad 1 \leq j \leq N \tag{15}
\end{equation*}
$$

Using the similar argument in the proof of Theorem 2, we have
Theorem 3. Consider the set \mathcal{A} of stable matrices, $C_{N, j}$, $1 \leq j \leq N$, defined in (15) and P_{N-1} and P_{N} defined in (11).

$$
\begin{equation*}
P_{i, N-1}+P_{N} C_{N, i}+C_{N, i}^{\mathrm{T}} P_{N}<0, \quad i=1, \cdots, N-1 \tag{16}
\end{equation*}
$$

Then the P_{N} constructed in (4) is a CQLF of \mathcal{A}.
Example 1. Consider the following three stable matrices

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cccc}
-1 & -3 & 2 & 0 \\
-1.8 & 0 & -0.9 & 2 \\
-1 & 6 & -5 & 1 \\
4.8 & -3.2 & 2.9 & -5.1
\end{array}\right) \\
A_{2}=\left(\begin{array}{cccc}
-1.65 & -4.8 & 2.85 & -0.3 \\
-3 . & 0.15 & -1.4 & 3.15 \\
-1.35 & 9.6 & -7.35 & 2.1 \\
7.5 & -4.65 & 4.3 & -7.65
\end{array}\right) \\
A_{3}=\left(\begin{array}{cccc}
-2.2 & -6.5 & 3.8 & -0.5 \\
-4.0 & 0.2 & -1.9 & 4.2 \\
-1.8 & 13 . & -9.8 & 3.0 \\
10 & -6.2 & 5.8 & -10.2
\end{array}\right)
\end{gathered}
$$

Now the second in equality of (20) assures that

$$
\begin{equation*}
\left(P A_{\lambda}+A_{\lambda}^{\mathrm{T}} P\right)<0, \quad \forall \lambda \in \Lambda \tag{23}
\end{equation*}
$$

In general, without assumption (19), we denote

$$
\begin{equation*}
\left[A_{\lambda}, B\right]=C_{\lambda}, \quad \forall \lambda \in \Lambda \tag{24}
\end{equation*}
$$

Using the similar argument, it is easy to prove that
Proposition 3. $\{B, \mathcal{A}\}$ share a CQLF P as defined in (18) if

$$
\begin{equation*}
Q_{\lambda}+\left(P C_{\lambda}+C_{\lambda}^{\mathrm{T}} P\right)>0, \quad \forall \lambda \in \Lambda \tag{25}
\end{equation*}
$$

5 Conclusion

The N-B method for constructing CQLF has been generalized to the case where the set of stable matrices are not commutative. The generalized constructing methods have been proposed. Some conditions have been obtained to assure the resulting matrix being CQLF.

References

1 Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Automatic Control, 1994, 39(12): 2469~2471
2 Mancilla-Aguilar J L. A condition for the stability of switched nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(1): 2077~2079
3 Ooba T, Funahashi Y. Two conditions concerning common QLFs for linear systems. IEEE Transactions on Automatic Control, 1997, 42(5): 719~721
4 Liberzon D, Hespanha J P, Morse A S. Stability of switched systems: a Lie-algebraic condition. Systems Control Letters, 1999, 37(3): 117~122
5 Agrachev A A, Liberzon D. Lie-algebraic stability criteria for switched systems. SIAM Journal on Control and Optimization, 2001, 41(1): 253~269
6 Cheng D. Stabilization of planar switching systems. Systems Control Letters, 2004, 51(2): 79~88
7 Cheng D, Guo L, Huan J. On quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2003, 48(5): $885 \sim 890$

ZHU Ya-Hong Ph. D. candidate at Institute of Systems Science, Chinese Academy of Sciences. Her research interests include system theorem and control. Corresponding author of this paper. E-mail: yhzhu@amss.ac.cn

CHENG Dai-Zhan Professor in Institute of Systems Science, Chinese Academy of Sciences. His research interests include nonlinear system and control. E-mail: dcheng@amss.ac.cn

QIN Hua-Shu Professor in Institute of Systems Science, Chinese Academy of Sciences. Her research interests include system theorem and control. E-mail: qin@iss.ac.cn

[^0]: Received September 14, 2005; in revised form September 19, 2006 Supported by National Natural Science Foundation of P. R. China (60274010, 60343001, 60221301, 60334040)

 1. Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080
 DOI: 10.1360/aas-007-0202
