发射光谱法测定二氧化碲中的杂质元素

赵秀岩,陆 蓉,叶肇云,姜 华,赵 岩

(北京原子高科有限公司,北京 102413)

摘要:采用发射光谱粉末法同时测定二氧化碲中 Pb、Mn、Ba、Sn、Fe、Co、Cd、Al、Si、B、Bi、Ni、Sb、Zn、Ag、Mg、Cu 17 种杂质元素的含量。选择 KCl 和石墨粉混合物作载体,直接压样于细颈杯式石墨电极中,其回收率为 $80\% \sim 120\%$,相对标准偏差 1.8% $\sim 6.5\%$ 。该方法操作简单,快速且结果准确。 关键词:发射光谱法;二氧化碲;杂质元素 中图分类号:TQ463.7;O657.31 文献标识码:A 文章编号:1000-7512(2007)02-0101-04

Determination of Eighteen Trace Impurities in Tellurium Oxide by Atomic Emission Spectrometry

ZHAO Xiu-yan, LU Rong, Ye Zhao-yun, JIANG Hua, ZHAO Yan (Beijing Atom High Tech Co. Ltd., Beijing 102413, China)

Abstract: The determination of tracing Pb, Mn, Ba, Sn, Fe, Al, etc in tellurium oxide by atomic emission spectrometry(AES) is studied. The sample is directly loaded into a cup electrde with fine neck. The range of the recovery is 80%-120%, and relative standard diversion(RSD) is 1.8%-6.5%. The method is simple, rapid and accurate.

Key words: atomic emisson spetrometry; tellurium oxide; impurity element

¹³¹I 是常用的治疗用放射性核素之一。作 为生产¹³¹I 靶材料的二氧化碲,其纯度直接影响 到¹³¹I 产品核素纯度及产品质量,因此建立一套 准确,可靠的分析方法测定其所含杂质,并对其 中有害杂质元素(如 Al,Pb,Cu,Sb,Zn 等)加以 控制,对保证产品的质量具有非常重要的意义。 用发射光谱法测定纯碲中多种金属元素的含量, 国内外的相关报道比较多,苏联早在 20 世纪六 七十年代就曾有过报道^[1,2],国内也于 20 世纪 70 年代和 2000 年用电感耦合等离子体原子发 射光谱法(ICP-AES)测定高纯碲中的多种杂质 元素^[3~5]。但用发射光谱法测定二氧化碲中的 多种杂质元素报道很少。苏联的 KPACI/JIEB ЩИK B3 等^[6] 曾采用原子发射光谱法,将样品 装在一水平放置且缓慢旋转的薄壁小室电极中, 直流电弧,电流强度 25 A,用大型自准式摄谱仪 测定其中 12 种杂质元素的含量,而国内尚未见 报道。本工作拟采用发射光谱法,用中型 ИСЛ-28 型摄谱仪,对二氧化碲中 Co、Mn、Ba、Fe、Pb、 Sn、Mg、Bi、Al、Cu、Cd、Ag 等 17 种元素的含量 进行测定,从而实现对上述元素的高灵敏度的分 析。

1 主要试剂与仪器

1.1 主要试剂

二氧化碲: A Johnson Matthey Company; 氧化铜、氧化铬、氧化铅、二氧化锰:北京化工厂 产品;三氧化二铁、三氧化二铝:上海试剂厂产

收稿日期:2006-10-20;修回日期:2007-03-11

作者简介:赵秀岩(1966~),女(汉族),河北衡水人,高级工程师,从事放射性药物分析研究工作

品;三氧化二鉍、氧化镁、氧化钴、氧化钛:上海试 剂一厂产品;氧化锡、氧化镍、硼酸:上海试剂三 厂产品;硝酸银、氧化铍、三氧化二锑、五氧化二 磷:天津市化工试剂一厂产品;碳粉:自制。以上 试剂均为光谱纯。

1.2 仪器及工作条件

ИСЛ-28型摄谱仪:苏联;光源:交流电弧, 试样的激发电流6A;8W型光谱投影仪和9W 型测微光度计:上海光学仪器厂;紫外Ⅰ型、Ⅲ型 光谱感光板:天津光学胶片厂;光谱纯石墨电极: 上电极为柱状锥形平头电极;下电极为细颈杯式 电极(自制)。

2 实验方法

采用原子发射光谱,标准加入法直接分析二 氧化碲中杂质的含量,具体步骤是:将样品粉末 直接压样于细颈杯式电极中,采用电流强度为 6 A 交流电弧,选择合适的光谱分析条件,摄谱,对 紫外 I 型、III型光谱感光板在 20 ℃下显影和定 影,测量分析元素的谱线黑度 S。对数据进行处 理,以 S-lgC 作图,确定各分析元素的线性分析 范围,并对方法的准确性和精密度进行验证。其 中 C 为元素含量,g/ μ g。

- 3 结果与讨论
- 3.1 实验条件选择

3.1.1 单透镜与三透镜照明系统比较 单透镜 和三透镜时各元素谱线黑度值的变化示于图 1。 由图 1 可以看出,单透镜照明系统所得各分析元 素的谱线强度明显高于三透镜系统。说明单透 镜照明系统更灵敏,因此选用单透镜照明系统。

3.1.2 载体选择 载体必须能消除不同试样组 分对分析结果的影响,保证良好的摄影再现性,

增强弧焰,减弱光谱背景,提高分析灵敏度。实验选用了 In_2O_3 、 Ga_2O_3 、NaCl、KCl 和石墨粉数种类型的载体,并对样品和载体的比例进行研究,结果示于图 2。由图 2 可以看出,加入载体后,大多数分析元素的黑度均高于无载体下的元素分析,而 KCl 和石墨粉混合物作载体谱线黑度增加最大,实验观测其弧焰稳定,效果最佳,适合定量分析。因此选用 KCl 和石墨混合粉作载体。

3.1.3 电极规格选择 自制细颈杯式电极,电 极规格(孔径×深度)分别为 4.7 mm×3 mm, 4.7 mm \times 4 mm, 4.7 mm \times 5 mm \mathcal{B} 4 mm \times 3 mm,4 mm \times 4 mm, 4 mm \times 5 mm, 4 mm \times 7 mm。观测不同规格电极下,各元素谱线黑度值 的变化,结果示于图 3。由图 3 可以看出,电极 直径 4 mm 的各分析元素的谱线黑度皆大于直 径 4.7 mm 的电极。与同直径的电极相比较,深 度为 3 mm 和 5 mm 的电极各分析元素的谱线 黑度均大于深度 4 mm 的电极,但对于难于测到 的 Ba_{Co} ,前两种电极均不如深度 4 mm 的电 极,综合考虑基体谱线出现情况及电极谱线背景 大小,最终选用 $4 \text{ mm} \times 4 \text{ mm}$ 的电极,此电极样 品装量合适,而谱线背景较弱,保证了较低的检 出限。

3.1.4 电极间隙选择 实验分别采用间隙距离 1.5、2.0、2.5 mm 的电极间隙。实验结果示于 图 4。由图 4 可以看出,电极间隙距离对谱线强 度的递增影响不大,实验采用间隙距离为 1.5 mm。

3.1.5 曝光时间选择及燃烧曲线制作 试样经 过蒸发和激发,发出各光谱的特征谱线。但是, 各元素的蒸发行为比较复杂,必须作蒸发曲线, 了解各待测元素的谱线强度随时间变化的关系, 以及谱线强度与各元素蒸发速度的关系。将样 品每隔 10 s 作板移,做出各元素蒸发曲线,结果 示于图 5。图 5 显示,大部分杂质在 20 s 内出现 最大值,其中 Pb、Bi、Cd、Sb 在 40 s 内全部蒸发, 而 Co、Ba、Fe、Mg、Si、Ni、Al 和 Ag 在 70 s 又出 现第二高峰,为保证谱线强度,选择曝光时间为 50 s。

3.1.6 分析线及样品线性范围 在光谱纯 TeO₂样品中加入 Be、Co、Mn、Ba、B、Fe、Pb、Sn、 Mg、Sb、Si、Bi、Ni、Al、Cu、Cd、Ag 17 种元素氧 化物配成含量不同的混合物,然后逐级稀释。测 定样品的线性范围,所得结果列于表 1。由表 1 可以看出,此分析方法对 Be、Co、Mn、Ba、B、Fe、

表1 被测元素的分析线及线性范围

分析元素	分析线/nm	线性范围/(µg・g ⁻¹)	
Ag	328.0	0.1~1	
В	249.7	$1\!\sim\!100$	
Be	234.8	$1\!\sim\!100$	
Al	308.2	1~100	
Cu	327.4	$1\!\sim\!100$	
Mn	279.8	$1\!\sim\!100$	
Mg	285.2	$1\!\sim\!100$	
Sn	283.9	3~300	
Si	288.1	3~300	
Ni	300.3	3~300	
Cd	326.1	$10 \sim 1\ 000$	
Fe	259.9	$10 \sim 1\ 000$	
Co	242.4	$10 \sim 1\ 000$	
Pb	283.3	$10 \sim 1\ 000$	
Ba	233.5	$30 \sim 3\ 000$	
Sb	287.9	$30 \sim 3\ 000$	
Bi	289.7	30~3 000	

Pb、Sn、Mg、Sb、Si、Bi、Ni、Al、Cu、Cd、Ag 17 种分析元素可保证的测量下限是 0.1 \sim 30 μ g/g。

3.2 分析方法的检验

3.2.1 方法的准确度验证 对被测元素采用标 准加入法,连续摄谱 5次,测量各种元素的平均 回收率,结果列于表 2。由表 2 可以看出,除 Fe 和 Cd 外,各元素的回收率为 80%~120%。Cd 回收率较差的原因是由于 Cd 受基体二氧化碲 谱线干扰较严重。而作为载体的光谱纯石墨中 由于含有微量的 Fe 元素,影响了 Fe 测量的准 确度。

分析元素	样品量/ (µg・g ⁻¹)	第一次			第二次		
		加入量/ (µg・g ⁻¹)	回收量/ (µg・g ⁻¹)	回收率/%	加入量/ (µg・g ⁻¹)	回收量/ (µg・g ⁻¹)	回收率/%
Ag	0.039	0.1	0.14	92.8	0.33	0.40	109
В	-	1	1.05	105	3.3	3.10	93.9
Be	-	1	0.89	89.0	3.3	3.10	93.9
Cu	0.22	1	1.02	80.0	3.3	3.28	92.7
Mn	0.15	1	0.93	78.0	3.3	3.84	112
Al	0.64	1	1.68	104	3.3	3.35	82.1
Mg	0.48	1	12.8	98.0	3.3	3.15	80.9
Sn	1.56	3	1.61	113	10	10.0	84.4
Si	3.0	10	4.39	94	10	12.8	98.0
Ni	2.58	3	5.97	113	10	8.67	86.7
Cd	-	10	136	136	33.3	26.1	76.3
Fe	0.18	10	78.1	78.1	33.3	36.1	108
Со	2.36	10	8.54	85.4	33.3	33.7	101
Pb	-	10	11.3	89.0	33.3	37.1	104
Ba	-	30	31.9	106	100	87.9	87.9
Sb	-	30	36.0	120	100	80.2	80.2
Bi	-	30	34.0	113	100	85.3	85.3

表 2 样品的回收率

3.2.2 方法的精密度 取同一样品连续摄谱 10次,其测定值的标准偏差和相对偏差列于表 3。由表 3 可以看出,其标准偏差 1.8%~7. 1%,相对标准偏差 1.8%~6.5%,二者均< 10%,说明该方法的精密度令人满意。

分析 元素	标准偏差 │%	相对标准 偏差/%	分析 元素	标准偏差 │%	相对标准 偏差/%
Ag	4.2	3.2	Cd	2.8	2.1
В	4.2	6.3	Fe	3	2.6
Be	3.1	4.5	Со	3.4	5.5
Cu	3.0	1.8	Pb	3.8	4.7
Mn	4.3	4.8	Ba	1.8	3.1
Mg	2.7	6.1	Sb	2.7	6.1
Sn	4.3	2.8	Si	6.8	6.3
Al	7.1	6.2	Bi	3.8	6.5
Ni	2.4	3.3			

表 3 方法精密度实验(n=10)

3 小 结

(1) 此分析方法对 Be、Co、Mn、Ba、B、Fe、
 Pb、Sn、Mg、Sb、Si、Bi、Ni、Al、Cu、Cd、Ag 17
 种分析元素可保证的测量下限为 0.1~30 μg/g。

(2)标准加入法回收实验结果表明,其回收
率除 Cd 和 Fe 较差,其他元素的回收率均为
80%~120%,元素的相对标准偏差为 1.8%~
6.5%。方法的准确度和精确度令人满意。

本方法是将样品直接压样于电极,可同时测

定 17 种元素。即本法易取样,样品用量少,测量 方法简单,快速,因此可以推广应用。

致谢:本工作得到景烈老师的指导和帮助,在此 表示衷心的感谢。

参考文献:

- [1] УСТИМОВ АМ, ЧАЛКОВ ИЯ. Химико-спектр альное Определение Примесей В Чистом Теллуре [J]. Заводска Лоборатория, 1969, 35(2): 177-178.
- [2] ШКРОЪОТ ЭП, ТАРАЯ МГ, ЪДЯХМА АА. Получение Аналитического Концентрата При Анализе Теллура Высокой Чистоты[J]. Заводска Лоборатория, 1966, 32(1): 18-19.
- [3] 丁官忠. 纯碲中 K, Na 含量的测定[J]. 分析化 学, 1977, 11(5): 386.
- [4] 张桂广. ICP-AES 法测定碲锭中的 Al, Ag, Bi, Cu,Cd 等 13 个杂质元素[J]. 光谱实验室, 2000, 17(1): 95-97.
- [5] 张朝阳, 马善扬, 苏流坤, 等. ICP-AES 法测定高
 纯碲中的 11 中杂质元素[J]. 光谱实验室, 2005, 22(1): 134-136.
- [6] КРАСИЛБЫЩИК ВЗ, ВОРОПαАЕВ ЕИ, ШТЕ ЙНЪЕР ГА. Спектральный Анализ Диоксида Теллура с Использованием Метода Движущегося Камерного Электрода[J]. Журнал Аналитической Химии, 1978, 133(6): 1 149-1 153.