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Abstract The problem of controlling a single-input-single-output plant without prior knowledge

of high frequency gain sign is addressed by using the model reference robust control approach. A

switching method is proposed based on a monitoring function so that after a finite number of swi-
tchings the tracking error converges to zero exponentially. Furthermore, it is shown that if some

initial states of the closed-loop system are zero, only one switching is needed.
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1 Introduction

Model reference robust control (MRRC) was introduced in [1,2] as a new means of I/O based

controller design for linear time-invariant plants with nonlinear input disturbance and has been extended

to MIMO and non-minimum phase systems[3,4]. To overcome the influence of the nonlinear input

disturbance, the conventional parameter adaptive law in model reference adaptive control (MRAC) was

abandoned in the MRRC. Instead, the concept of bounding function was introduced in the control law

design. Like most of the model following schemes, one of the basic assumptions of the MRRC is that

the high frequency gain sign is known a priori. The relaxation of the assumption of high frequency

gain sign has long been an attractive topic in control community and can be traced back to the paper

by Morse[5]. Several approaches have been proposed so far[6∼8] and most of them, however, are based

on Nussbaum gain. The main disadvantage of Nussbausm-type gain methods lies in the fact that it

lacks robustness to measurement noise. Furthermore, the transient behavior may be unacceptable. In

this paper, a switching scheme is proposed for MRRC of plants with relative degree one and unknown

high frequency gain sign. Based on the Comparison Lemma[9], we first construct a monitoring function

to supervise the behavior of the tracking error, and then put forward a switching method for the

control signal. We show that under the supervision of the monitoring function, only a finite number of

switchings is needed and the tracking error will converge to zero exponentially.

2 Problem formulation

Consider the following single input/single output linear time-invariant plant

y = Gp(s)[u + d] = kp(np(s)/sp(s))[u + d] (1)

where y and u are the system output and input, respectively, Gp(s) is the plant transfer function with

dp(s) and np(s) being monic polynomials of degrees n and m, respectively, and d is an input disturbance.

The reference model is given by

yM = M(s)[r] = (kM/dM (s))[r], kM > 0 (2)

where dM (s) is a monic Hurwitz polynomial with deg(dM (s)) = n − m := n∗ and r is any piecewise

continuous, uniformly bounded reference signal.

We make the following assumptions: A1) Gp(s) is of minimum phase. The parameters of Gp(s)

are unknown but belong to a known compact set; A2) The degree n of dp(s) is a known constant; A3)

The relative degree n∗ = 1; A4) The sign of the high frequency gain kp( 6= 0) is unknown; A5) The

lumped disturbance and uncertainty term d(y, t) is bounded by a known continuous function ρ(y, t)

as, for all (y, t) ∈ R × R+, |d(y, t)| 6 ρ(y, t), ∀t > 0, where the bonding function ρ(y, t) is assumed
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to be continuous, uniformly bounded with respect to t and, locally uniformly bounded with respect to

the system output y. The uncertainty d(y, t) is not necessarily continuous but, if it is discontinuous,

existence of the solution of y is assumed.

The control signal of the MRRC system is of the following form:

u = θ̂
T
ω + uR (3)

where uR is the nonlinear control to be designed to ensure that the tracking error

e := y − yM (4)

tends to be zero, the constant vector θ̂ ∈ R2n will be defined below and ω, the regressor vector, is

defined as

ω := [νT
1 y ν

T
2 r]T (5)

where ν1 and ν2 are generated by input/output filters according to

ν̇1 = Λν1 + bu, ν̇2 = Λν2 + bu, ν1(0) = 0, ν2(0) = 0, Λ ∈ R(n−1)×(n−1), b ∈ Rn−1 (6)

where Λ is a matrix such that det(sI − Λ) is a Hurwitz polynomial and (Λ, b) is a controllable pair.

It is well known[10] that under the above assumptions, there exits a unique constant vector θ
∗ =

[θ∗T
1 θ∗

0 θ
∗T
2 k∗]T ∈ R2n such that, modulo exponentially decaying terms due to initial conditions,

y = Gp(s)[(θ∗)Tω] = M(s)[r] = yM . Since the plant parameters are assumed to be uncertain, the

constant vector θ̂ in (3) is then defined as θ̂ = [θ̂
T

1 θ̂0 θ̂
T

2 k̂]T ∈ R2n which can be obtained from

the nominal plant and is a rough estimate of θ
∗. The tracking error can therefore be expressed from

(1)∼(6) as

e = M(s)κ∗[θ̃
T
ω + df + uR] + ε̄ (7)

where ε̄ denotes a bounded, differentiable and exponentially decaying real function that represents

non-zero initial conditions for all internal states of the MRRC system,

θ̃ := θ̂ − θ
∗, κ∗ := kp/kM = 1/k∗, df := (1 − d1(s))[d], d1(s) := θ̂

T

1 adj(sI − Λ)b (8)

3 Control law design

We consider the control law design for plants with n∗ = 1. From (2), n∗ = 1 implies that we can

write the reference model as M(s) = kM/(s + λ), where λ is a positive constant. Hence, from (7),

ė = −λe + kp(θ̃
T
ω + df + uR) + ε (9)

where ε decays exponentially.

The following lemma summarizes the main result when the sign of kp is known:

Lemma 1[1]. Let the MRRC system satisfy the assumptions A1), A2), A3) and A5). Suppose

the sign of kp is known. If the control signal is defined as

uR :=

8>><>>: −
µ|µ|τ

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
g, if kp > 0

µ|µ|τ

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
g, if kp < 0

(10)

where β > 0, σ > 0 and τ > 0 are design parameters, the functions g and µ are chosen such that

g = BND(|θ̃
T
ω + df |), µ = eg (11)

where BND(·) is the bounding function[1], then, e converges exponentially to either zero (if β > 0) or

to a residual set (if β = 0) whose radius becomes zero in the limit as σ approaches zero.

Corollary 1. The MRRC system is stable if and only if the tracking error e is uniformly bounded.

Remark 1. The bounding function of a signal f , say, BND(|f |) is a known, continuous, nonneg-

ative function that bounds the magnitude (or Euclidean norm) of f [1].



620 ACTA AUTOMATICA SINICA Vol. 32

Since, however, the sign of kp is unknown, we have to redefine the control as

uR :=

8>><>>: u+
R = −

µ|µ|τ

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
g, if t ∈ T+

u−

R =
µ|µ|τ

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
g, if t ∈ T−

(12)

and design a monitoring function to decide when uR should be switched from u+
R to u−

R and vice versa,

where both the sets T+ and T− are the union of some intervals like [tk, tk+1), over which u+
R and u−

R

are applied, respectively, and

T+ ∪ T− = [0,∞), T+ ∩ T− = φ (13)

The difference between (10) and (12) is that if the sign of kp is known, we only need one control signal

while if the sign of kp is unknown, two control signals, u+
R and u−

R, are needed, where u+
R and u−

R

correspond to sgn(kp) > 0 and sgn(kp) < 0, respectively.

To design the monitoring function, we consider Lyapunov function V = e2/2. The time derivative

of V along the trajectory of (9) yields

V̇ = −λe2 + kp[(θ̃
T
ω + df )e + euR] + eε (14)

Suppose we have correctly estimated the sign of kp for some t > t̄0 > 0 where t̄0 is any finite initial

time, then, by replacing (10) in (14) it follows that

V̇ 6 − λ̄e2 + |kp|{|(θ̃
T
ω + df )e| −

µ|µ|τ

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
eg}+

1

2cε

ε2
6

− λ̄e2 + |kp|{|µ| −
µ|µ|τ+1

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
} +

1

2cε

ε2
6

− λ̄e2 + |kp|{
|µ|στ exp(−βτt)

|µ|τ+1 + στ+1 exp[−β(τ + 1)t]
}σ exp(−βt) +

1

2cε

ε2
6

− 2λ̄V + |kp|σ exp(−βt) +
1

2cε

ε2 →

�
0, if β > 0

|kp|σ/2λ̄, if β = 0
, t > t̄0 (15)

where we have used the triangle inequality εe 6 (cεe
2 + ε2/cε)/2 with cε being any positive constant,

and the positive constant λ̄ is defined as λ̄ := λ− cε/2 and is given by designer in advance by properly

choosing cε. Also, note that from (11), |(θ̃
T
ω + df )e| 6 |µ|, and the following inequality has been

used[1]:

|µ|σ exp(−βτt)/{|µ|τ+1 + στ+1 exp[−β(τ + 1)t]} 6 1 (16)

The construction of the monitoring function is as follows. We consider the following differential

equation motivated from (15):

ξ̇ = −2λ̄ξ + |kp|σ exp(−βt) + ε2/2cε, ξ(t̄0) = V (t̄0), t > t̄0 (17)

Comparing (17) with (15), it follows that

V̇ (t) 6 ξ̇(t), ∀t > t̄0 (18)

Note that ξ(t̄0) = V (t̄0); hence, by applying the Comparison Lemma[9] to (14) and (17), we have

V (t) < ξ(t), ∀t > t̄0 (19)

provided that a correct sign of kp has been estimated for all t > t̄0.

We therefore consider the solution of (17). Since ε decays exponentially, there exist constants

δ > 0 and c > 0, such that

|ε(t)| 6 c exp(−δt), t > 0 (20)

Hence, the solution to (17) satisfies

ξ(t) 6 exp[−2λ̄(t − t̄0)]V (t̄0) + cβ exp[−β0(t − t̄0)] exp(−βt̄0)+
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cδ exp[−2δ0(t − t̄0)] exp(−2βt̄0) (21)

where

β0 = min{2λ̄, β}, β0 = min{λ̄, δ}, cβ = 2|k̄p|σ/|2λ̄ − β|, cδ = c2(2|λ̄ − δ|) (22)

where |k̄p| is an upper bound of |kp| which, from the assumption A1), can be obtained a priori. Since

β is a design parameter, we can choose β such that β < 2λ̄; also, we can let δ < λ̄ due to the fact that

a less δ can only make (20) more conservative. As a result,

β0 = β, δ0 = δ (23)

Taking into account (23), the inequality (21) can be rewritten as

ξ(t) 6 exp[−2λ̄(t − t̄0)]V (t̄0) + cβ exp(−βt) + cδ exp(−2δt), t > t̄0 (24)

Recalling that the inequality (19) holds if the sign of kp is correctly estimated, it seems natural to use

ξ as a benchmark to decide whether a switching of uR is needed, i.e., the switching occurs only when

(19) is violated. The motivation behind the introduction of the monitoring function is that ε is not

available for measurement, which implies that c, δ as well as δ given by (22) and (20), respectively,

are unknown. Hence, we have to introduce a monitoring function, say, ϕk, to replace ξ and invoke the

switching of ϕk:

ϕk(t) = exp[−2λ̄(t − tk)]V (tk) + cβ exp(−βt) + (k + 1) exp(−2δkt)

t ∈

�
[tk, tk+1), if k = 0, 1, 2, · · · , ; t0 := 0

[tk, +∞), if no new switching occurs for t > tk

(25)

where tk is the switching time to be defined and δ is any monotonically decreasing sequence satisfying

δk → 0 as k → ∞ (26)

It is clear that we obtain ϕk from (24) mainly by replacing both cδ and δ by k + 1 and δk, respectively,

and by introducing the switching of them. Note that the value of k increases as the switching proceeds

while δk satisfies (26).

Remark 2. The use of the sequence {(k + 1)} in (25) is just for the sake of simplicity. In fact, it

may be replaced by any monotonically increasing sequence {zk} that tends to infinity.

Since both the control signals u+
R and u−

R are continuous, for any finite number of switchings, uR

is piece-wise continuous and therefore, the solution of (9) exists and is continuous[11]. From V = e2/2,

(25) and the continuity of e, we always have V (tk) < ϕk(tk) for each switching instant. We thus define

the switching time for uR (from u−

R to u+
R or u+

R to u−

R) and ϕk as follows:

tk+1 =

�
min{t : t > tk, V (t) = ϕk(t)}, if the minimum exists

+∞, otherwise
(27)

That is, the switching occurs only when the condition V (t) < ϕk(t) is violated.

We have the following main result of this section.

Theorem. Suppose the MRRC system given by equations (1), (2) and (9) satisfies the assump-

tions A1)∼A5). Let the control signal uR be defined by (12) and the switching time of uR (from u+
R

to u−

R and vice versa) be defined by (27). Then, the switching will stop after at most finite number of

switchings, and the tracking error will converge to zero exponentially.

Proof. By contradiction, suppose uR switches between u+
R and u−

R without stopping. Note that

cδ and δ defined by (22) and (20), respectively, are constant, and from (12), uR only has two choices,

uR = u+
R or uR = u−

R, and changes its sign alternately for each switching; hence, after finite k switchings,

must have a correct sign on [tk, tk+1), i.e., uR = u+
R if kp > 0 or uR = u−

R if kp < 0 and, at the same

time, from (25) and (26),

cδ < (k + 1), exp(−2δt) < exp(−2δkt), ∀t > tk (28)
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where tk is the k-th switching time. Comparing (24) with (25), and noting (28), it follows that

ξ(t) < ϕk(t), ∀t ∈ [tk, tk+1) (29)

where we have replaced t̄0 by tk in (24). However, since for a correct estimate of the sign of kp, V

satisfies (19), the above inequality implies that

V (t) < ϕk(t), ∀t ∈ [tk, +∞) (30)

From (27), no new switching will occur again. In fact, if this is not the case, from (27), a finite time

switching implies that the condition

V (tk+1) = ϕt(tk+1) (31)

would be satisfied at some time instant t = tk+1. Since, by the assumption, the sign of kp has been

correctly estimated on [tk, tk+1), the inequality (19) holds on the interval, which, together with (29),

implies that

V (tk+1) 6 ξ(tk+1) < ϕk(tk+1) (32)

a contradiction; hence, no switching will occur again. It should be pointed out that from (25), the

inequality (29) also holds on [tk, +∞) if no new switching occurs after t = tk. Further, the continuity of

e and the finite switchings imply that ϕk(tk) is bounded and, by (25), converges to zero exponentially as

t → ∞. Therefore, from (30) and that V = e2/2, V as well as e will also converge to zero exponentially.

Finally, by invoking the Corollary 1, the system is stable. This completes the proof. �

The following corollary shows a more interesting (probably surprising) fact for the relative degree

one MRRC system.

Corollary. If ε = 0, then at most one switching of uR is needed.

Proof. From (20), ε = 0 implies that the term cδ exp(−2δt) in (24) should be canceled, i.e.,

ξ(t) 6 exp[−2λ̄(t − t̄0)]V (t̄0) + cβ exp(−βt), t > t̄0 (33)

Therefore, once the correct sign of kp is chosen, from (19), (33) and with the same arguments given by

the proof of Theorem, the following inequality holds for any finite k:

V (t) 6 ξ(t) 6 exp[−2λ̄(t − tk)]V (tk) + cβ exp(−βt) < ϕk(t), ∀t ∈ [tk, +∞) (34)

where we have replaced t̄0 by tk. Taking (27) into account, the inequality (34) shows that if the correct

sign of kp is chosen at t0 = 0 (k = 0), no switching occurs; whereas, one switching is enough. �

4 Simulation results

Let the plant Gp(s) := −(s + 1)/(s2 − s − 1), x(0) = [0.5, 0.5]T, where x is the state vector of a

controllable canonical form of the plant. Note that sgn(kp) < 0. The reference model is M(s) = 1/(s+2).

The parameters of the input/output filters are Λ = −2 and b = 1. The reference signal r = sin(2t) and

the disturbance d(y, t) = 0.2 sin t+0.5 sin y +y2 cos t. The design parameters defined by (12) are τ = 0,

σ = 0.15 and β = 1, respectively. To obtain the bounding function of (11), similar to [1], we write

BND(k̃)|r|+ BND(θ̃0)|y|+ BND(θ̃1)|ν1|+ BND(θ̃2)|ν2|+ d1(s)[ρ] + ρ := BND(|θ̃
T
ω + df |) and choose

θ̂ = 0, BND(k̃) = 4, BND(θ̃0) = BND(θ̃1) = BND(θ̃2) = 5 and ρ(y, t) = 1 + y2. We choose at t = 0

the control signal of (12) to be uR(0) = u+
R(0), that is, an incorrect control is given at the beginning

of the simulation since sgn(kp) < 0. The monitoring function ϕk is given by (25) where δk is chosen as

δk = 1/(k + 1) and |k̄p| in (22) is chosen as |k̄p| = 5. The simulation results are shown in figures 1 and

2, from which we can see that after one switching of uR from u+
R to u−

R, the plant output y soon follows

yM and the tracking error converges to zero exponentially.

5 Conclusion

In this paper, we have introduced a switching methodology for the controller design of MRRC

systems without the knowledge of the high frequency gain sign. We have shown that for plants with

relative degree one, our approach can guarantee the tracking error to converge to zero exponentially.

Furthermore, if some of the initial states of the closed-loop system are zero, we have shown that at

most one switching is needed.
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Fig. 1 Tracking error Fig. 2 Control signal
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