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1 Introduction
It is almost always claimed1 that Weyl deliberately unified gravitation and elec-
tricity in the rectification of general relativity he attempted in 1918. In fact the
unification, as Bergia [5] and Ryckman [6] have pointed out and a couple of pas-
sages2,3 show, was the unintended outcome of apparently gratuitous a priori4 prej-
udice.5 But what prejudice?

The evidence suggests that the theory came straight out of Weyl’s sense of
mathematical ‘justice,’ which led him to put the direction and length of a vector
on an equal footing. Levi-Civita [9] had discovered that the parallel transport de-
termined by Einstein’s covariant derivative was not integrable—while length, far
from depending on the path taken, remained unaltered.6 For Weyl this was unfair:

1 Certainly by Folland [1], Trautman [2], Perlick [3], Vizgin [4] and others. 2 Weyl [7] pages
148-9: Indem man die erwähnte Inkonsequenz beseitigt, kommt eine Geometrie zustande, die
überraschenderweise, auf die Welt angewendet, nicht nur die Gravitationserscheinungen, son-
dern auch die des elektromagnetischen Feldes erklärt. 3 Weyl [8]: Übrigens müssen Sie nicht
Glauben, daß ich von der Physik her dazu gekommen bin, neben der quadratische noch die lineare
Differentialform in die Geometrie einzuführen; sondern ich wollte wirklich diese “Inkonsequenz,”
die mir schon immer ein Dorn im Auge gewesen war, endlich einmal beseitigen und bemerkte
dann zu meinem eigenen erstaunen: das sieht so aus, als erklärt es die Elektrizität. 4 As opposed
to “experimentally founded” or even “empirically justified” (with respect to the past; a posteriori
justification is of course another matter). A priori considerations can be æsthetic or mathematical,
for instance. 5 I say “prejudice”—and not “principle” or “assumption,” for instance—to em-
phasize the unexpected, gratuitous, almost unaccountable character of the considerations. 6 For
there are three cases: length is left unchanged; or length varies, but integrably; or length varies, in
a way that depends on the path taken.

1



both features deserved the same treatment.7 He remedied with a connection that
made congruent transport (of length) just as path-dependent as parallel transport.
This ‘total’ connection restored justice through a length connection it included, an
inexact one-form Weyl couldn’t help identifying with the electromagnetic poten-
tial A,8 whose curl F = dA, being closed (for dF = d2A vanishes everywhere),
provides Maxwell’s two homogeneous equations. Source-free electromagnetism
(up to Hodge duality at any rate) thus came, quite unexpectedly, out of Weyl’s
surprising sense of mathematical justice.

Admittedly there were also intimations,9 from the beginning, announcing an
‘infinitesimal’ agenda of sorts; but it was largely unmotivated back then, and too
vague to produce the theory on its own—in fact it may even have been suggested
by the theory. The programme would take shape over the next years, acquiring jus-
tification and grounding; Ryckman has found roots in Husserl, and connected, or
even identified it with a ‘telescepticism’ opposed to distant comparisons. But his
compelling reconstruction of the agenda and its philosophical background rests
largely on a couple of texts (footnotes 24 and 25) from a subsequent ‘context of
justification.’

‘Mathematical justice’ has, in the context of discovery, a more conspicuous
(though sometimes, as we shall see in 3.1, thinly disguised) presence than the in-
finitesimal agenda. It is also logically stronger, being enough—together with a
handful of simple and natural operations—to yield all of source-free electromag-
netism. So I contend that what was really at work in the spring of 1918, what
effectively gave rise to Weyl’s theory of gravitation and electricity, was the equal
rights of direction and length.

7 Weyl [7] page 148: [. . . ] und es ist dann von vornherein ebensowenig anzunehmen, daß das
Problem der Längenübertragung von einem Punkte zu einem endlich entfernten integrabel ist, wie
sich das Problem der Richtungsübertragung als integrabel herausgestellt hat. 8 Providing the
geometrical objects of which Weyl gives only the components (except in words, as we are about
to see) may seem anachronistic. But Weyl—who for instance writes “[. . . ] die gik [. . . ] bilden die
Komponenten des Gravitationspotentials. [. . . ] einem Viererpotential [. . . ] dessen Komponen-
ten ϕi [. . . ]” ( [7] page 148)—undeniably sees the geometry behind the components, and indeed
even refers to the geometrical objects I denote with single letters, like A (Viererpotential) or g
(Gravitationspotential). 9 Weyl [7] page 148, for instance: In der oben charakterisierten Rie-
mannschen Geometrie hat sich nun ein letztes ferngeometrisches Element erhalten [. . . ]. Or (same
page): Eine Wahrhafte Nahe-Geometrie darf jedoch nur ein Prinzip der Übertragung einer Länge
von einem Punkt zu einem unendlich benachbarten kennen [. . . ].
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2 Background: Einstein, Levi-Civita
We can begin with aspects of Einstein’s theory of gravitation, since Weyl’s the-
ory grew out of it. What interests us above all is affine structure, given by the
Christoffel symbols Γ a

bc. Through the geodesic equation

(1)
d2xa

ds2
+ Γ a

bc

dxb

ds

dxc

ds
= 0

and the wordlines satisfying it, the Christoffel symbols provide a notion of (para-
metrised10) straightness, of inertial, unaccelerated motion, of free fall.

The left-hand side of (1) gives the components 〈dxa,∇σ̇σ̇〉 of the covariant
derivative ∇σ̇σ̇ of the vector σ̇ with components dxa/ds = 〈dxa, σ̇〉, in the direc-
tion σ̇ tangent to the worldline

σ : I → M : s 7→ σ(s)

with coordinates σa(s) = xa(σ(s)), where I is an appropriate interval and M
the differential manifold representing the universe; a = 0, . . . , 3. The Christoffel
symbols are related to ∇ by

Γ a
bc = 〈dxa,∇∂b

∂c〉,
where the basis vectors ∂a = ∂a(x) = ∂/∂xa are tangent to the coordinate lines of
the system xa.

Einstein only appears to have explored the infinitesimal behaviour of the par-
allel transport determined by his covariant derivative. It was Levi-Civita [9] who
first understood that if ∇g vanishes, as in Einstein’s theory, the direction of the
vector Vs ∈ Tσ(s)M transported according to ∇σ̇Vs = 0 depends11 on the path σ
taken—whereas the squared length ls = g(Vs, Vs) remains constant along σ, for

∇g = 0 = ∇σ̇Vs

means that dls/ds = ∇σ̇ls vanishes.

10 For (1) determines an equivalence class [s] of affine parameters, each parameter of which gives
the proper time of a regular clock, with its own zero and unit of time. The parameters belonging to
[s] are related by affine transformations s 7→ υs+ ζ, where the constants υ and ζ give the unit and
zero. The constant υ is typically chosen so that g(∂0, ∂0) = 1, where g is the metric tensor and
∂0 the timelike basis vector. 11 Page 175: La direzione parallela in un punto generico P ad una
direzione (α) uscente da un altro punto qualsiasi P0 dipende in generale dal cammino secondo cui
si passa da P0 a P . L’indipendenza dal cammino è proprietà esclusiva delle varietà euclidee.
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3 The emergence of Weyl’s theory

3.1 The equal rights of direction and length
Weyl felt that as parallel transport depended on the path taken, congruent transport
ought to as well. In fact his generalisation of Einstein’s theory appears to have
been entirely determined by the intention of putting direction and length on an
equal footing. The following table12—parts of which may for the time being be
more intelligible than others—outlines Weyl’s programme.

DIRECTION LENGTH
coordinates (up to gauge) gauge

parallel transport congruent transport
gravitation electricity

Levi-Civita connection Γ a
bc length connection A

δV a = −Γ a
bcX

bV c δl = −〈α,X〉 = −AbX
bl

directional curvature Ra
bcd (of Γ a

bc) length curvature F = dA
geodesic coord. ya (at P ): Γ a

bc = 0 geod. gauge (at P ): A′ = A + dλ = 0
equival. principle: ẍa + Γ a

bcẋ
bẋc 7→ ÿa equiv. principle: α = −lA 7→ α′ = 0

A few words about “coordinates (up to gauge).” The parallel between coordinates
and gauge, which Weyl draws13,14,15,16 over and over, can be seen as a parallel
between direction and length. Surely Weyl does not mean “coordinates including
gauge, as opposed to gauge,” for that would be redundant. And up to gauge,
12 Parts of it were inspired by Coleman and Korté [10] pages 204-5 and 211-2. 13 Weyl [7]:
Die auftretenden Formeln müssen dementsprechend eine doppelte Invarianzeigenschaft besitzen:
1. sie müssen invariant sein gegenüber beliebigen stetigen Koordinatentransformationen, 2. sie
müssen ungeändert bleiben, wenn man die gik durch λgik ersetzt, wo λ eine willkürliche stetige
Ortsfunktion ist. 14 Weyl [11] page 396: Zum Zwecke der analytischen Darstellung denken wir
uns 1. ein bestimmtes Koordinatensystem und 2. den an jeder Stelle willkürlich zu wählenden
Proportionalitätsfaktor im skalaren Produkt festgelegt; damit ist ein “Bezugssystem”9 für die
analytische Darstellung gewonnen. And footnote 9: Ich unterscheide also zwischen “Koordi-
natensystem” und “Bezugssystem.” 15 Weyl [11] page 398: In alle Größen oder Beziehun-
gen, welche metrische Verhältnisse analytisch darstellen, müssen demnach die Funktionen gik,
ϕi in solcher Weise eingehen, daß Invarianz stattfindet 1. gegenüber einer beliebigen Koordina-
tentransformation (“Koordinaten-Invarianz”) und 2. gegenüber der Ersetzung von (7) durch (8)
(“Maßstab-Invarianz”). 16 Weyl [12] page 101: Um den physikalischen Zustand der Welt an
einer Weltstelle durch Zahlen charakterisieren zu können, muß 1. die Umgebung dieser Stelle auf
Koordinaten bezogen sein und müssen 2. gewisse Maßeinheiten festgelegt werden. Die bisherige
E i n s t e i n sche Relativitätstheorie bezieht sich nur auf den ersten Punkt, die Willkürlichkeit des
Koordinatensystems; doch gilt es, eine ebenso prinzipielle Stellungnahme zu dem zweiten Punkt,
der Willkürlichkeit der Maßeinheit, zu gewinnen.
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coordinates provide no more than direction: The coordinates xa assign to each
event P ∈ M a basis ∂a ∈ TP M , and a dual basis

dxa = g[(∂a) = g(∂a, · ) ∈ T ∗
P M

providing the components V a = 〈dxa, V 〉 of any vector V ∈ TP M ; a = 0, . . . , 3.
The gauge transformation g 7→ e2λg induces a transformation V 7→ eλV , or
V a 7→ eλV a, through

e2λg(V, V ) = g(eλV, eλV ) = g(eλ∂a, e
λ∂b)V

aV b = g(∂a, ∂b)e
λV aeλV b.

Direction, given by the ratios

eλV 0 : eλV 1 : eλV 2 : eλV 3 = V 0 : V 1 : V 2 : V 3,

remains unaffected.
Weyl clearly distinguishes between a ‘stretch’ (like a stretch of road) and its

numerical length, determined by the gauge chosen. Just as a direction [eλV ](all λ) is
‘expanded’ with respect to a coordinate system, which provides its numerical rep-
resentation (the ratios V 0 : · · · : V 3), a stretch gets ‘expanded’ in a gauge, which
likewise gives a numerical representation, the squared length l = e2λg(V, V ).

The rest of the table should in due course become clearer. Let us now see how
the inexact one-form A, from which so much of electromagnetism can be derived,
emerges from the equal rights of direction and length.

3.2 Electromagnetism from equal rights
Weyl calls a manifold M affinely connected if the tangent space TP M at every
point P ∈ M is connected to all the neighbouring tangent spaces TP ′M by a
mapping

ΞX : TP M → TP ′M : VP 7→ VP ′ = ΞXVP

linear both in the ‘main’ argument VP ∈ TP M and in the (short)17 directional
argument X = P ′−P , where P ′ (being near P ) and hence X are viewed as lying
in TP M . Being linear, ΞX will be represented by a matrix, in fact by

Ξ a
c = 〈dxa,ΞX∂c〉 = Ξ a

bcX
b = 〈dxa,Ξ∂b

∂c〉〈dxb, X〉.
17 The necessary shortness of X seems inconsistent with linearity, which would ‘connect’ P with
the entire tangent space TP M and not just with the small neighbourhood ‘covering’ M . In this
context it may be best to view the linearity in the directional argument as being appropriately
restricted (of course the length of X does not matter in differentiation, in which limits are taken).
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Weyl specifically refers to the components δV a = 〈dxa
P ′ , VP ′〉 − 〈dxa

P , VP 〉, re-
quiring them to be linear in the components Xb and V c

P = 〈dxc
P , VP 〉. The bilinear

function Γ a({Xb}, {V c}) = δV a will be a matrix, represented by Γ a
bc; the differ-

ence δV a is therefore −Γ a
bcX

bV c.
With respect to the geodesic coordinates ya which make

Γ a
c = Γ a

bcX
b = 〈dya,∇X∂c(y)〉

and δV a vanish, leaving the components V a unchanged, Ξ a
c becomes the identity

matrix δa
c = 〈dya,ΞX∂c(y)〉 ↔ diag(1, 1, 1, 1). Physically this has to do with the

equivalence principle, according to which a gravitational field Γ a
bc can always be

eliminated or generated at P by an appropriate choice of coordinates.
With equal rights in mind Weyl turns to length, using the very same scheme.

To clarify his procedure we can take just a single component of the difference
{δV 0, . . . , δV 3}, calling it δl (this will be the ‘squared-length-difference scalar’).18

The upper index of Γ a
bc accordingly disappears, leaving δl = ΓbcX

bV c.19 If we
now take a single component of the main argument {V 0, . . . , V 3}, calling it l (this
will be the squared length), the second index of Γbc disappears as well, and we are
left with δl = ΓbX

bl, where Γb = 〈A, ∂b〉 are the components of a one-form,20

denoted A with electricity in mind.
But this is not really Weyl’s argument, which is better conveyed as follows.

The object A generating the squared-length-difference scalar δl has to be linear
in the squared length l and the direction X . A linear function A(l, X) = δl of a
scalar l and vector X yielding a scalar δl will be a one-form:21

δl = −〈α, X〉 = −〈α, ∂b〉〈dxb, X〉 = −αbX
b

= −〈A,X〉l = −〈A, ∂b〉〈dxb, X〉l = −AbX
bl,

18 Weyl seems to use d and δ interchangeably, and d in a way—see footnote 17—that is unusual
not only today, but even then. He does not distinguish between the scalar representing the differ-
ence in squared length, and the corresponding one-form (as we would call it); but the distinction
seems useful. 19 One can perhaps think of the hybrid, intermediate connection Γbc as being
something like 〈A,∇∂b

∂c〉. 20 One may wonder how the tensor A can be the counterpart of the
connection Γ a

bc, which is not a tensor. The components Aa = 〈A, ∂a〉 = Γa only transform as
a tensor with respect to coordinate transformations Aa 7→ Āb = Aa〈dx̄b, ∂a(x)〉, however; with
respect to recalibration Aa 7→ A′a = Aa + ∂aλ the components Aa do not transform ‘tensorially,’
and can be locally cancelled, for instance. 21 Weyl in fact writes dl = −ldϕ, whereas I write
α = −lA. The misleading d’s cannot be understood globally—or even locally, in the theory of
gravitation and electricity, in which F = d2ϕ will be the Faraday two-form: where dϕ is closed,
in other words the differential (even on a small neighbourhood) of a function ϕ, there would be no
electromagnetism.
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where α is the squared-length-difference one-form. An exact one-form A = dµ
would make congruent transfer integrable, removing the dependence of the recal-
ibration

e
∫

γ A = e
∫

dµ = e∆µ

on the path γ : [0, 1] → M , where ∆µ = µ1 − µ0 is the difference between
the values µ1 = µ(P1) and µ0 = µ(P0) of µ at P1 = γ(1) and P0 = γ(0).
Mathematical justice therefore demands that A be inexact, and that the curl F =
dA accordingly not vanish everywhere.

Confirmation that A has to be one-form, possibly inexact, is provided by
Weyl’s requirement that the squared-length-difference one-form α = −lA be
eliminable at any point P by recalibration.22 As l is given (and does not van-
ish), this amounts to A + dλ = 0 at P , where the gauge λ is geodesic.23 Since
dλ is a one-form, A must be one too. Though dλ is exact, Weyl only asks that it
cancel A at P—so A needn’t even be closed, or locally exact.

With F = dA and its consequence dF = 0 before him Weyl couldn’t help see-
ing the electromagnetic four-potential A, the Faraday two-form F = dA (which
vanishes wherever A is closed) and Maxwell’s two homogeneous equations,24 ex-
pressed by dF = 0—not to mention an electromagnetic ‘equivalence principle’
according to which the squared-length-difference scalar δl and one-form α, as
well as the electromagnetic four-potential A, can be eliminated or generated at a
point by the differential dλ of an appropriate gauge λ.

In coordinates

Fab = F (∂a, ∂b) = ∂aAb − ∂bAa ↔




0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 ,

where Ex, Ey, Ez are the components of the electric field and Bx, By, Bz those of
the magnetic field. Or F = Fab dxa ∧ dxb/2. And the vanishing three-form

dF =
1

2
dFbc ∧ dxb ∧ dxc =

1

6
∂aFbc dxa ∧ dxb ∧ dxc

22 Weyl [13] page 122: Ein Punkt P hängt also mit seiner Umgebung metrisch zusammen, wenn
von jeder Strecke in P feststeht, welche Strecke aus ihr durch kongruente Verpflanzung von P
nach dem beliebigen zu P unendlich benachbarten Punkte P ′ hervorgeht. Die einzige Forderung,
welche wir an diesen Begriff stellen (zugleich die weitgehendste, die überhaupt möglich ist), ist
diese: Die Umgebung von P läßt sich so eichen, daß die Maßzahl einer jeden Strecke in P durch
kongruente Verpflanzung nach den unendlich benachbarten Punkten keine Änderung erleidet.
23 By analogy one might even call it ‘inertial’ or ‘unaccelerated.’ 24 In full, ∇ · B = 0 and
∇× E + ∂B/∂t = 0.
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has components dF (∂a, ∂b, ∂c) = ∂aFbc + ∂bFca + ∂cFab.
Maxwell’s other two equations are obtained, in ‘source-free’ form, by setting

d∗F equal to zero, where ∗F is the Hodge dual of the Faraday two-form, with
coordinates

(∗F )ab = (∗F )(∂a, ∂b) ↔




0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0


 .

Electromagnetism thus emerged, altogether unexpectedly, from the equal rights
of direction and length.

3.3 The illegitimacy of distant comparisons
Weyl has another a priori prejudice, rooted, as Ryckman [6] has cogently argued,
in Husserl. It is expressed in two similar passages,25,26 which roughly say: As
the curvature R(P ) is subtle and hard to perceive directly, a “cognizing ego” at
the “ego center” P ∈ M takes itself to be immersed in the ‘psychologically priv-
ileged’ tangent space TP M . The universe M resembles TP M in the immediate
vicinity U of P , where they practically coincide, and ‘cover’ one another. Be-
yond U the relation between M and the ‘intuitive’ space TP M grows looser, as
the universe goes its own way, bending as the energy-momentum tensor T varies.

Ryckman writes (page 148) that
25 Weyl [14] page 173: Erkennt man neben dem physischen einen Anschauungsraum an und be-
hauptet von ihm, daß seine Maßstruktur aus Wesensgründen die euklidischen Gesetze erfülle, so
steht dies mit der Physik nicht in Widerspruch, sofern sie an der euklidischen Beschaffenheit der
unendlich kleinen Umgebung eines Punktes O (in dem sich das Ich momentan befindet) festhält
[. . . ]. Aber man muß dann zugeben, daß die Beziehung des Anschauungsraumes auf den physis-
chen um so vager wird, je weiter man sich vom Ichzentrum entfernt. Er ist einer Tangentenebene
zu vergleichen, die im Punkte O an eine krumme Fläche, dem physischen Raum, gelegt ist: in der
unmittelbaren Umgebung von O decken sich beide, aber je weiter man sich von O entfernt, um
so willkürlicher wird die Fortsetzung dieser Deckbeziehung zu einer eindeutigen Korrespondenz
zwischen Ebene und Fläche. 26 Weyl [15] page 52: Die Philosophen mögen recht haben, daß
unser Anschauungsraum, gleichgültig, was die physikalische Erfahrung sagt, euklidische Struktur
trägt. Nur bestehe ich allerdings dann darauf, daß zu diesem Anschauungsraum das Ich-Zentrum
gehört und daß die Koinzidenz, die Beziehung des Anschauungsraumes auf den physischen um
so vager wird, je weiter man sich vom Ich-Zentrum entfernt. In der theoretischen Konstruktion
spiegelt sich das wider in dem Verhältnis zwischen der krümmen Fläche und ihrer Tangentenebene
im Punkte P : beide decken sich in der unmittelbaren Umgebung des Zentrums P , aber je weiter
man sich von P entfernt, um so willkürlicher wird die Fortsetzung dieser Deckbeziehung zu einer
eindeutigen Korrespondenz zwischen Fläche und Ebene.
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Weyl restricted the homogeneous space of phenomenological intu-
ition, the locus of phenomenological Evidenz, to what is given at, or
neighboring, the cognizing ego [. . . ]. But in any case, by delimiting
what Husserl termed “the sharply illuminated circle of perfect given-
ness,” the domain of “eidetic vision,” to the infinitely small homoge-
neous space of intuition surrounding the “ego-center” [. . . ]

This restriction or delimitation can be understood in two ways: directly, in terms
of the limitations of our senses, and of an accordingly circumscribed domain of
sensory access; or more mathematically, as follows: The conscience attaches a
kind of intuitive ‘certainty’ to all of TP M , which, being flat and homogeneous,27

can be captured or ‘understood’ in its entirety once any little piece is. The universe
shares that certainty as long as it resembles TP M , and hence only in U, outside
of which it is subject to all sorts of unforeseeable variations. Integrable congruent
propagation had to be rejected as allowing the certain comparison of lengths well
beyond U, indeed at any distance, without the welcome ambiguities related to the
path followed. Returning to Ryckman (page 149):

Guided by the phenomenological methods of “eidetic insight” and
“eidetic analysis”, the epistemologically privileged purely infinites-
imal comparison relations of parallel transport of a vector, and the
congruent displacement of vector magnitude, will be the foundation
stones of Weyl’s reconstruction. The task of comprehending “the
sense and justification” of the mathematical structures of classical
field theory is accordingly to be addressed through a construction
or constitution of the latter within a world geometry entirely built
up from these basic geometrical relations immediately evident within
a purely infinitesimal space of intuition. A wholly epistemological
project, it nonetheless coincides with the explicitly metaphysical as-
pirations of Leibniz and Riemann to “understand the world from its
behaviour in the infinitesimally small.”

3.4 The two prejudices
Removed from the context of Weyl’s theory, the two prejudices are entirely dis-
tinct. While one is markedly infinitesimal, ‘mathematical justice’ has nothing
(necessarily) infinitesimal about it: in a spirit of equal rights one could require,

27 Curvature (which vanishes everywhere) and the metric are constant.
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for instance, both the directions and lengths of the vectors in some set to have
the same kind of distribution—uniform, say, or Gaussian—around a given vector.
Nothing infinitesimal about that.

An abundant insistence in the early going on the equal rights of direction and
length, together with the absence, back then, of any developed, articulated expres-
sion of the telescepticism of footnotes 24 and 25, suggests the following account.
First, then, there was mathematical justice, which, far from being at odds with
Weyl’s nascent telescepticism, supported and perhaps even suggested it. In due
course Weyl’s ‘purely infinitesimal geometry’ acquired more explicit philosoph-
ical grounding—expressed in footnotes 24 and 25 and rooted in the thought of
Husserl—which can in hindsight be viewed as justifying and motivating the sur-
prising, apparently gratuitous early insistence on equal rights.

4 Compensating transformations
We have seen how Weyl’s theory, building on general relativity, came out of the
inexact one-form A—whose transformations

(2) A 7→ A′ = A + dµ

are counterbalanced in the theory by

(3) g 7→ g′ = eµg,

leaving length unaltered. Such compensation is fundamental enough to be worth
looking at briefly.

Freedom to transform A according to (2) is left by the length curvature F =
dA, which is indifferent to an exact term dµ, as

F = dA′ = dA + d2µ = dA.

But (2) does change length. Transporting the vector X0 from point P0 with
value µ0 = µ(P0) to point P1 with value µ1 = µ(P1), the final squared length
g1(X1, X1) acquires the additional (integrable) factor e∆µ, where ∆µ = µ1 − µ0.
For µ recalibrates, along a curve γ, according to

e
∫

γ A 7→ e
∫

γ A′ = e
∫

γ(A+dµ) = e
∫

γ Ae∆µ = e
∫

γ Aeµ1e−µ0 6= e
∫

γ A,

and therefore

g1(X1, X1) = e
∫

γ Ag0(X0, X0) 6= e
∫

γ A′g0(X0, X0).
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But the conformal transformation (3) compensates, leaving length unchanged:

g′1(X1, X1) = eµ1g1(X1, X1) = e
∫

γ A′g′0(X0, X0) = e
∫

γ Ae∆µeµ0g0(X0, X0)

The exponents cancel, yielding the original dilation

g1(X1, X1) = e
∫

γ Ag0(X0, X0).

The metric g is compatible with the covariant derivative ∇ if ∇g vanishes, in
which case the straightest worldlines (satisfying∇σ̇σ̇ = 0) will also be stationary,
satisfying

δ

∫ √
g(σ̇, σ̇) ds = δ

∫
ds = 0

too. The covariant derivative of the recalibrated metric g′ only vanishes if µ is a
constant (for then dµ vanishes); otherwise

∇g′ = dµ⊗ g′,

which combines (2) and (3), to express the weaker Weyl compatibility.

5 Einstein’s objection
Out of a sense of mathematical justice, then, Weyl made congruent displacement
just as path-dependent as parallel transport. But experience, objected Einstein, is
unfair, showing congruent dispacement to be integrable. In a letter to Weyl dated
April 15th (1918) he argued28 that clocks running at the same rate at one point
will continue to run at the same rate at another point, however they get there—
whatever the requirements of mathematical justice. Four days later he reformu-

28 So schön Ihre Gedanke ist, muss ich doch offen sagen, dass es nach meiner Ansicht aus-
geschlossen ist, dass die Theorie die Natur entspricht. Das ds selbst hat nämlich reale Bedeu-
tung. Denken Sie sich zwei Uhren, die relativ zueinander ruhend neben einander gleich rasch
gehen. Werden sie voneinander getrennt, in beliebiger Weise bewegt und dann wieder zusammen
gebracht, so werden sie wieder gleich (rasch) gehen, d. h. ihr relativer Gang hängt nicht von der
Vorgeschichte ab. Denke ich mir zwei Punkte P1 & P2 die durch eine Zeitartige Linie verbun-
den werden können. Die an P1 & P2 anliegenden zeitartigen Elemente ds1 und ds2 können dann
durch mehrere zeitartigen Linien verbunden werden, auf denen sie liegen. Auf diesen laufende
Uhren werden ein Verhältnis ds1 : ds2 liefern, welches von der Wahl der verbindenden Kurven
unabhängig ist.—Lässt man den Zusammenhang des ds mit Massstab- und Uhr-Messungen fallen,
so verliert die Rel. Theorie überhaupt ihre empirische Basis.
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lated29 the objection in terms of the ‘proper frequencies’ of atoms (rather than
genuine macroscopic clocks) “of the same sort”: if such frequencies depended on
the path followed, and hence on the (electromagnetic) vicissitudes of the atoms,
the chemical elements the atoms would make up if brought together would not
have the clean spectral lines one sees.

But even if experience shows congruent displacement to be integrable, it would
be wrong to conclude that the equal rights of direction and length led nowhere; for
the structure that came out of Weyl’s ostensibly groundless sense of mathematical
justice would survive in our standard gauge theories, whose accuracy is much less
questionable.

6 Final remarks
There are various levels of ‘experience,’ ranging from the most concrete to the
most abstract: from the most obvious experimental level, having to do with the re-
sults of particular experiments, to principles, perhaps even instincts, distilled from
a lifetime of experience. One such principle could be Einstein’s “I am convinced
that God does not play dice,” to which, having—we may conjecture—noticed that
the causal regularities behind apparent randomness eventually tend to emerge, he
may ultimately have been led by experience: by his own direct experience, to-
gether with his general knowledge of science and the world. One would nonethe-
less hesistate to view so general and abstract a principle as being a posteriori,
empirical. It is clearly not a posteriori with respect to any particular experiment;
only, if at all, with respect to a very loose, general and subjective kind of ongoing
experience, capable of being interpreted in very different ways.

An unexpected empirical fertility of apparently a priori and unempirical prej-
udice can sometimes be accounted for in terms of a derivation, however indirect,
from experience: by attributing remote empirical roots to considerations which at
first seem to have nothing at all to do with experience. Fair enough, the world
can be experienced in very different ways, some much less obvious and straight-
forward than others. But here we have a prejudice which—however subtle and

29 [. . . ] wenn die Länge eines Einheitsmassstabes (bezw. die Gang-Geschwindigkeit einer Ein-
heitsuhr) von der Vorgeschichte abhingen. Wäre dies in der Natur wirklich so, dann könnte es
nicht chemische Elemente mit Spektrallinien von bestimmter Frequenz geben, sondern es müsste
die relative Frequenz zweier (räumlich benachbarter) Atome der gleichen Art im Allgemeinen ver-
schieden sein. Da dies nicht der Fall ist, scheint mir die Grundhypothese der Theorie leider nicht
annehmbar, deren Tiefe und Kühnheit aber jeden Leser mit Bewunderung erfüllen muss.
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developed one’s faculties for interpreting experience—seems to be completely
unempirical. Perhaps the empirical shortcomings of the theory are best blamed,
then, on the totally unempirical nature of the prejudice from which it was derived.

Or is it so completely unempirical? The principle of sufficient reason comes
to mind: if there is a difference, an imbalance, there had better be a reason for
it—failing which, balance, or rather justice should prevail. Even Einstein’s dice
may come to mind: If a situation of apparent balance, such as

(4) |ψ〉 =
1√
2
(|α〉+ |β〉)

gives rise to an imbalance (as it must, if a measurement is made), such as the
eigenvalue +1 of the operator A = |α〉〈α| − |β〉〈β|, there had better be a rea-
son: a circumstance unrepresented in (4) which favours |α〉—for God does not
play dice. But the ‘balance’ before the disruption is not always so easily seen;
what tells us in general which objects or entities are to be put on an equal foot-
ing, for imbalances to become apparent? Judgment, surely; a judgment somehow
founded in experience, which assesses the relevant peculiarities of the context and
determines accordingly.

And what about the great empirical success of the progeny, of the gauge the-
ories that would follow? Fluke? Or are the descendants ‘illegitimate,’ and not so
direct after all? Is the connection between today’s gauge theories and the equal
rights of direction and length too tenuous to be worth speaking of? The scheme
of compensation outlined in Section 4 survives in today’s gauge theories, and is
central to their success . . . but any attempt to answer these questions would take
us too far from our subject.

Whatever the relationship between mathematical justice and experience, we
have a surprising example of how directly an elaborate theory can emerge from
simple a priori prejudice. The prejudice here seems gratuitous and arbitrary in the
context of discovery, and only acquires justification and grounding years later, by
association with an articulated ‘telescepticism,’ which provides epistemology and
motivation.

I thank Ermenegildo Caccese, Dennis Dieks, John Earman, Rossella Lupacchini,
Antonio Masiello, George Sparling for many fruitful discussions; the Center for
philosophy of science, University of Pittsburgh, where as Visiting Fellow I began
work on Weyl’s theory; and above all Thomas Ryckman, for inspiration, ideas and
advice.
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