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Abstract 

A signal development in contemporary physics is the widespread use, in explanatory 

contexts, of highly idealized models. This paper argues that some highly idealized models in 

physics have genuine explanatory power, and it extends the explanatory role for such 

idealizations beyond the scope of previous philosophical work. It focuses on idealizations of 

nonlinear oscillator systems.  

1. Introduction 

Physicists since Galileo have explained natural phenomena making central use of 

approximations and abstractions. These explanations involve reasonably accurate models that 

are quite good (albeit simplified) representations of physical systems, both the explanatory 

factors and the natural phenomena to be explained. Indeed, it is precisely the representational 

accuracy of models that is taken to underwrite their explanatory power. However, a signal 

development in contemporary physics is the widespread use, in explanatory contexts, of 

highly idealized models which do not seem to fit this “Galilean” approach. Physicists appeal 

to these sorts of idealizations in their explanations, but we lack an account that makes sense 

of this practice. The idea that non-approximative idealizations may underwrite bona fide 

scientific explanation goes against orthodox views of scientific explanation. Ultimately I 

want to claim that at least some non-approximative, highly idealized models in physics have 

genuine explanatory power, and I want to extend the explanatory role for such idealizations 
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beyond the scope of previous philosophical work. My focus will be on nonlinear oscillator 

systems and the explanation of highly idealized models of long-timescale behaviour using 

highly idealized models of short-timescale behaviour and asymptotic mathematical 

techniques. I shall propose that this type of explanation is a good one because it meets three 

criteria: first, the explanation is of a modified Deductive-Nomological form I shall call 

Deductive-Nomological-Idealization (D-N-I); second, it instantiates a general pattern of 

argumentation successful in a wide range systems, a criterion I shall call unification; third, 

the explanation is characterizable at the base (short-timescale) level, a criterion I shall call 

basal derivability (in Section 4). First, however, it will be helpful to look more closely at 

other types of explanations involving idealizations (Section 2) and then briefly to investigate 

how nonlinear oscillators are modelled (Section 3). 

2. Galilean and semi-Galilean idealization 

Galileo famously developed a range of idealizing techniques aimed at simplifying and 

explaining natural phenomena, techniques Ernan McMullin calls, following Husserl, 

“Galilean idealizations” (McMullin 1985). Galilean idealizations make use of simplified 

mathematical representations, causal decomposition, and “construct idealization” wherein a 

diagrammatic or theoretical model of the system is constructed incorporating false elements 

that approximate the real system. Idealizations of a simple pendulum, for example, may 

include assumptions that the bob is a point mass, the amplitude of oscillation is very small, 

there is no air resistance or friction, the wire is massless and inelastic, and the support is 
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motionless.1 As Galileo states explicitly in De Motu, he is able to “draw true conclusions 

even from false assumptions” (quoted in McMullin 1985, 255). All Galilean idealization is 

characterized by the fact that complementary to idealization are reverse techniques for adding 

back real-world details and de-idealizing by eliminating simplifying assumptions. Galilean 

idealizations thus have an intrinsic “self-correcting” feature such that they can (at least in 

principle) be brought in closer and closer agreement with empirical observations in a non-ad 

hoc way. McMullin calls Galilean idealizations “truth-testifying,” because although they are 

not true, in the sense of perfectly representing the physical system, they admit to self-

corrections that approach arbitrarily close to the truth, at least in principle (McMullin 1985, 

264). Further, these corrections are not ad hoc because each one is independently justified. In 

the pendulum case, for example, we have good empirical reason to introduce corrections 

such as assuming a finite mass for the pendulum wire and allowing motion in the support. 

Four characteristics of Galilean idealization are relevant to their role in the kind of 

scientific explanation that is our focus here. First, from a Galilean idealization can be derived 

results about behaviour of a physical system that approximate the actual behaviour to be 

explained. Second, this approximation can be improved, in principle, to any degree such that 

something arbitrarily close to the explanandum can be derived from the idealized model. 

Third, the self-correcting process improves the approximation by adding back neglected 

features of the system such that each correction to the Galilean idealization is itself is 

theoretically justified and thereby fully explained. Fourth, the approximations apply to 

                                                 

1 These idealizations are only Galilean over a short timescale. Non-Galilean features appear 
in any damped oscillator over a long timescale (see Section 4).  
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components (spatial parts) of the system, the explanans, and the behaviour to be explained is 

determined by, and in some sense a product of, these parts.  

Most discussions of the explanatory role of Galilean idealization assume a modified 

version of the Deductive-Nomological approach to explanation (Hempel 1965). As is well 

known, the D-N account faces some significant challenges if taken offering formal criteria 

specifying necessary and sufficient conditions on scientific explanation (see, e.g., Salmon 

1984). As we shall see, ultimately the D-N approach will prove inadequate to analyze 

explanations involving non-Galilean idealizations (Section 4). For now, however, the D-N 

account provides a perspicuous way of viewing the structure of one type of explanation 

involving Galilean idealization, explanations of large-scale or structural features of systems 

in terms of their component parts and the laws of combination and interaction governing 

those parts. In this type of explanation, the lawlike premises included in the D-N explanans 

trace causal or structural dependencies in the physical system. They describe how the 

components combine and interact to produce the explanandum, and this substantive aspect 

underwrites the genuinely explanatory nature of the D-N derivations. 

Galilean idealizations feature in D-N explanations by enabling the derivation of a 

conclusion, call it E*, that approximates, in the sense of differing negligibly from, E, the 

actual explanandum (typically the observed values). The characteristics of Galilean 

idealization just sketched ensure that the differences between E* and E are small and that 

these differences are themselves fully explained. On what I call the Deductive-Nomological-

Idealization (D-N-I) account of explanation, Galilean idealizations explain the explanandum 

by entailing a conclusion that approximates the explanandum, without entailing the 

explanandum nor even rendering it probable. Our focus is on inter-level explanation of the 

large-scale behaviour of a system in terms of its component parts, and as with regular D-N 
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explanations, the explanans must include at least one lawlike premise that describes how the 

components combine and interact to produce the explanandum. But rather than premises 

being true, as in D-N explanation, these premises are Galilean idealizations about the 

components of the system.2  

Galilean idealizations are far more pervasive in many philosophers’ accounts of science 

than they are in science itself. Some philosophers have brought attention to characteristics of 

models in contemporary physics that seem to fit poorly with Galilean idealization 

(Cartwright 1983; Morgan and Morrison 1999; Batterman 2002). For example, in 

hydrodynamic models of fluid flow around solid bodies, the Navier-Stokes equations are 

unsolvable analytically. On the boundary-layer approach, two distinct idealizations are used 

and the Navier-Stokes equation is solved in each idealized regime. A model of a frictionless, 

non-viscous fluid is used far from the boundaries, while close to the boundaries the Navier-

Stokes equation is solved for a very thin layer of viscous fluid with a no-slip condition. The 

two models are then matched at their interface, from which dynamical relations can be 

derived that depend on the configuration of the boundary, the velocity of the fluid and its 

viscosity. Neither model provides an accurate or approximate representation of the observed 

fluid flow, and neither model can be incrementally corrected to provide one. However, the 

models enable the derivation of structural dependencies in systems with fluid flows across 

solid bodies. As Morrison puts it, the models explain “‘how possibly’ certain kinds of 

behaviour take place” (Morrison 1999, 63). Although the models fail accurately to represent 

many of the details of the observed behaviour, they do enable us to represent these structural 

                                                 

2 For two developments of D-N explanation along these lines, see (Causey 1977; Elgin and 
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characteristics of a class of physical systems. “The reason that models are explanatory is that 

in representing these systems they exhibit certain kinds of structural dependencies” 

(Morrison 1999, 63). Although the models include non-approximative (non-Galilean) 

idealizations of components of the system, the end result is an approximate and accurate 

representation of the large-scale structure of the system. As Morrison emphasizes, “the 

explanatory role is a function of the representational features of the model” (Morrison 1999, 

64).  

Other examples of idealizations which fail to fit the Galilean approach have been 

investigated in detail by Robert Batterman (Batterman 2002; Batterman 2005a; Batterman 

2005b). Batterman focuses on physical systems wherein base-level (or “fundamental”) theory 

breaks down, including statistical mechanical models at criticality, the semi-classical limit of 

quantum mechanics, the breakdown of the wave theory of light in catastrophe optics, and 

drop formation in hydrodynamics. These models include idealizations of components of the 

system that fail to approximate the system itself: an infinite number of molecules in statistical 

mechanical models at criticality, zero-wavelength solutions in optics, etc. A key feature of 

these idealizations is their structural stability or stability under perturbations at the base level, 

a feature physicists call universality. These structural features are revealed through 

asymptotic analyses in which base-level details are systematically eliminated using 

asymptotic mathematical techniques. A paradigm case of this approach are renormalization 

group techniques used to analyze thermodynamic systems at critical points and to derive 

structural features such as the critical exponent β (Batterman 2002, pp. 37-42). In this way, 

asymptotic analyses enable idealized models accurately to characterize the underlying 

                                                                                                                                                       

Sober 2002). 
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structural or universal features—without, as in the Galilean case, making use solely of 

approximate representations of the component parts of the system. 

We can conclude that one reason (and, perhaps, the essential reason) that asymptotic 

analyses so often provide physical insight is that they illuminate structurally stable 

aspects of the phenomenon and its governing equations (known or not)…. As a result, 

we can be confident that our theories adequately mirror or represent the world 

(Batterman 2002, p. 59). 

These asymptotic analyses explain structural features of physical systems to the extent that 

they enable the derivation of accurate representations of these features using asymptotic 

techniques. As Batterman puts it, the derived structural stability “is what leads us to take the 

principle features resulting from asymptotic analyses to be explanatory” (Batterman 2002, p. 

57). 

Call the sorts of models just discussed semi-Galilean idealizations. They are used to 

understand physical systems in which Galilean idealizations are uninformative or simply 

break down altogether. As we have seen, semi-Galilean idealizations differ from Galilean 

ones in that the former centrally involve idealizations that are not approximations of base-

level component features of the physical system, and which no amount of incremental 

reverse-engineering will correct. However, both semi-Galilean and Galilean idealizations 

provide idealized descriptions of lower-level components in the system, components which 

combine and interact to produce upper-level structural features. Both aim to provide accurate, 

approximate representations of these structural features, and both aim to explain these 

features on the basis of their lower-level component parts. Thus, semi-Galilean idealizations 

feature in D-N-I explanations as well. Premises in the explanans include idealized 

descriptions of the components of a system, initial and boundary conditions, and lawlike 
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generalizations. In the semi-Galilean case, some aspects of the idealized descriptions fail to 

approximate the components, and the lawlike generalizations include asymptotic techniques 

(such as renormalization group techniques). However, the derived explanandum, E*, 

approximates E, the physical behaviour to be explained. In the type of semi-Galilean 

explanation we are focusing on, what is being represented and ultimately explained is a 

structural feature of a specific physical system (e.g., its critical exponent β) or the stability of 

such a feature (e.g., the fact that systems with diverse base-level components have the same 

critical exponent β). The argument contained in the explanans quite accurately derives facts 

about the structure of the system and its stability (or universality) based on an idealized 

account of base-level component parts.3 

One might worry that in the semi-Galilean case the explanation makes essential use of 

premises that are not just false, but non-approximatively and incorrigibly so. This worry is 

unfounded, for whatever the explanatory merits of Galilean idealizations, they are shared by 

semi-Galilean idealizations. The present paper takes the approach that at least some Galilean 

idealizations are genuinely explanatory. Thus, one type of scientific explanation provides a 

deductive argument whose premises include an idealized description of the base-level 

components, initial and boundary conditions, and one or more lawlike generalizations that 

trace causal or structural dependencies, and whose conclusion approximates the upper-level 

physical behaviour or characteristic to be explained. As we have seen, Galilean and semi-

                                                 

3 On the approach taken here, Batterman’s asymptotic explanations are thus a kind of D-N-I 
explanation, one in which the explanandum is the universality characteristic of the system 
(Batterman 2002, pp. 37-60). Batterman’s term “asymptotic explanation” is potentially 
misleading because, as we shall see in Section 4, similar asymptotic mathematical techniques 
are used in a quite different type of explanation.  
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Galilean idealizations share all these features and thus, on this approach, are genuinely 

explanatory on the same grounds. As Morrison and Batterman emphasize, the explanatory 

merits of their (semi-Galilean) cases rest in part on the accurate and approximate 

representation of the explanandum, just as in the Galilean case. However, one may take an 

alternative approach, namely that Galilean idealizations have no explanatory power 

themselves but rather function provisionally, as markers of progress towards actual (true) 

explanations based on fundamental, perfect, non-idealized models of the physical system. On 

this approach, explanations involving Galilean idealizations are at best incomplete or partial, 

and they are eliminable in favour of true explanations. Again, in the type of explanation we 

have been looking at semi-Galilean idealizations can play exactly the same role.4 The more 

general worry here where to draw the line: should we admit as scientific explanations only 

D-N explanations with true premises, should one broaden the scope of scientific explanation 

to include Galilean idealization, or should one go further still and include semi-Galilean 

idealization? I contend that the line cannot be drawn between explanations involving 

Galilean and semi-Galilean idealization. 

In the Galilean and semi-Galilean idealizations we have looked at, explanatory power 

followed from a D-N-I account of how base-level components combine and interact to 

produce upper-level structural features of the system. The remainder of this paper extends an 

explanatory role for idealizations to physical systems in which this is not the case. It suggests 

that some highly idealized models in physics have genuine explanatory power that does not 

                                                 

4 For an argument along these lines in the context of Batterman’s asymptotic explanation, see 
(Belot 2005 and Batterman 2005b). For an argument that the “perfect model” approach is 
misguided and inapplicable to science, see (Teller 2001). 
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rest on their ability approximately or accurately to represent the effects of base-level 

component parts. I shall call the idealizations involved in these explanations non-Galilean. 

Non-Galilean idealization plays a key role in understanding nonlinear oscillators, to which 

we now turn.  

3. Nonlinear oscillators 

A divide-and-conquer strategy common in physics uses one model to cover base-level 

characteristics of a system and another model to cover high-level phenomena. For instance, 

models of statistical mechanics treat fluids as composed of interacting point particles, while, 

at a larger spatial scale, hydrodynamics treats the same system as composed of a continuous 

fluid. We have seen several other examples of this strategy already. However, not all 

divisions between models occur along spatial scales. The modelling technique in the 

effective field theory program in quantum field theory is to use distinct models for distinct 

energy scales. In the kind of models we shall be looking at, the base-level models describe 

short-timescale behaviours while upper-level models describe long-timescale behaviours. 

Our focus is on nonlinear oscillator systems, and the divide-and-conquer strategy is used 

successfully to produce idealized linear models of aspects of the larger, unmodellable 

nonlinear system. It will be useful to start with a brief look at a simple nonlinear oscillator 

system, the weakly-damped van der Pol oscillator (for a more detailed development of this 

case, see [self-reference omitted]). As I shall argue, this oscillator is an example of a non-

Galilean idealization playing a substantive explanatory role, and, more importantly, is just 

one instance of a quite general pattern of such explanations in nonlinear oscillator dynamics. 

The one-dimensional nonlinear van der Pol oscillator was originally investigated by B. 

van der Pol as a model of the human heart (van der Pol and van der Mark 1928). It also 
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describes some oscillatory vacuum tube and electronic circuits. The oscillator undergoes 

near-harmonic oscillations with weak positive and negative damping, resulting in a slow 

variation of frequency and amplitude over time. A key characteristic of the van der Pol 

oscillator is its limit cycle behaviour. Whatever initial non-zero value of the amplitude, over 

time it will converge to a stationary limit-cycle amplitude. For any short-timescale snapshot 

of the oscillator, of the order of a small number of oscillations, the dominant behaviour will 

be the near-harmonic oscillations. Indeed, over a short timescale, the behaviour of the van 

der Pol oscillator is indistinguishable from that of a simple harmonic oscillator with fixed 

amplitude and frequency. By contrast, over the long timescale, of the order of convergence to 

the limit cycle, individual oscillations become irrelevant and behaviour is dominated by the 

rate of change of amplitude. These are two very different sorts of behaviour, and this should 

motivate the use of two different models to represent the behaviour of this nonlinear system. 

Figure 1 presents a schematic view of these two sorts of models. Short-timescale (base-level) 

models are simple harmonic oscillators. They have nothing to say about amplitude variation, 

limit cycles or long-term behaviour. Rather, they simplify the short-timescale behaviour by 

treating it linearly. Long-timescale models are obtained by reducing the resolution, or coarse 

graining, resulting in a linear model of the change in amplitude over time. Long-timescale 

models have nothing to say about the phase and amplitude of oscillation.  The two families of 

models describe distinct aspects of the same physical system. This process of modelling 

simple, linear behaviours of interest in complex nonlinear systems is characteristic of what 

physicists do.  
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Figure 1. Two kinds of models of van der Pol systems 

 The short-timescale and long-timescale models are related, of course. One might be 

inclined to think long-timescale models straightforwardly reduce to short timescale models. 

However, they do not in the van der Pol case, nor do they in models of nonlinear oscillators 

more generally. In the van der Pol case, the base-level, short-timescale model, plus an 

assumption that the amplitude and phase of oscillation vary only slowly with respect to the 

period of oscillation, plus asymptotic mathematical techniques (involving the replacement of 

divergent series by an asymptotic cut-off series) are used to derive, to an arbitrary degree of 

accuracy, the behaviour of the upper-level, long-timescale model. The second-order solution 

provides a quite accurate prediction of the observed variation in amplitude over time at the 

upper level and the stability of the limit cycles under perturbation. The van der Pol oscillator 

is a characteristic example of a self-excited, damped nonlinear oscillator. Self-excited 

oscillators typically have a number of stationary states of oscillations or limit cycles. These 

systems are largely insensitive to initial conditions, as we have seen, in the sense that over 

long timescales (t  ∞) the behaviour of the systems is determined by intrinsic features of 

the system. Intertheoretic relations between models of nonlinear oscillators at distinct levels 



  

   

13

is subtle and interesting, but the details of these relations are beyond the scope of the present 

paper (see [self-reference omitted]).  

 Weakly-damped nonlinear oscillators are described by equations of the form 

(1) 0),( =+′−′′ yyyFy ε                    10 <<< ε  

where y(t) is the oscillation variable and F is a nonlinear polynomial. This nonlinearity 

means that the oscillator equation cannot be solved exactly, nor, in general, can it be solved 

using approximation techniques involving regular limits, such as regular perturbation 

methods (regular perturbation methods will not work in systems with dissipative forces in 

which amplitude is time-dependent). Rather, methods used to solve the equation make use of 

divergent asymptotic series which involve singular limits. These asymptotic methods divide 

into two main groups, methods of slowly-varying amplitude and phase (such as the Krylov-

Bogoliubov-Mitropolsky technique) and multi-timescale expansion methods (Mickens 1981). 

As we saw in the van der Pol case, asymptotic methods require additional premises and, 

mathematically, replacement of the divergent series (at the singular limit) with a convergent 

cut-off series. Thus, solutions to weakly-damped nonlinear oscillator equations follow a 

common pattern, summarized as follows.  

1) A nonlinear differential equation describing the system is posited and transformed to 

dimensionless variables so it has the form of (1).  

2) At the base level, short-timescale behaviour is modelled by a simple harmonic 

oscillator (ε = 0). Phenomena of interest are identified at one or more upper levels 

(longer timescales).  
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3) An asymptotic method is used to first order in ε to derive rough approximations of the 

behaviour at longer timescales (the method of slowly varying amplitude and phase or 

a multi-timescale expansion). 

4) The upper-level model(s) derived in (3) are compared with the phenomenology of the 

system at long timescales. If more precise description is needed, one or more 

asymptotic methods are used to calculate higher-order corrections to the long-

timescale behaviour. 

This argument pattern, which is filled in in specific instances in much detail, works in a 

broad range of weakly-damped nonlinear oscillator systems.  

 The approach taken to modelling features of weakly-damped nonlinear oscillators 

generalizes. Weakly-damped nonlinear oscillators are a subset of nonlinear oscillator 

systems, and an argument pattern applies to the latter systems that is similar to but somewhat 

broader than the one sketched above. For example, the short-timescale behaviour of non-

weakly damped oscillators will be periodic but not necessarily harmonic, so the argument 

pattern will make use of a range of harmonic and non-harmonic short-timescale models in 

step 2. Nonlinear oscillators are themselves a subset of nonlinear systems more generally, 

including chaotic and other non-periodic systems. These systems typically have physical 

phenomena of interest at two or more levels, and these levels may be distinguished in a 

variety of ways, including spatial scale, timescale or energy scale. I suggest that explanations 

of features of idealized models of nonlinear systems at one level in terms of features at one or 

more lower levels follow a number of argument patterns that share a family resemblance with 

the argument pattern sketched above. Each system, for example, is treated in terms of two or 

more idealized models, as a rule linear ones, in just the way that the van der Pol small-ε 

oscillators are well represented by a linearized harmonic oscillator at one level and by a 
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linearized model of the change in amplitude and another level. Models of nonlinear systems 

have similar properties and relations both to other models representing the same system and 

to other models representing other systems. As well, there will be similar derivational 

relations, in terms of asymptotic techniques, between model pairs, of the kind we have seen 

in the van der Pol case. While it is beyond the scope of the present paper to a undertake a 

detailed survey of all models of self-excited weakly-damped oscillators, weakly-damped 

oscillators, nonlinear oscillators or nonlinear systems, I hope to have made plausible the idea 

that the derivations share a set of argument patterns, and that these argument patterns 

themselves share certain similarities. 

4. Non-Galilean explanatory idealization 

What explanatory relations, if any, obtain between base-level and upper-level families of 

models in van der Pol systems? Prima facie, it seems that the explanandum, the observed 

limit cycle behaviour, is explained by the base-level model on the same grounds as Galilean 

explanation: from the base level it is possible to derive something quite close to the 

explanandum, and that derivation can be made, in principle at least, to yield a result 

arbitrarily close to the explanandum (although derivational complexity above second order is 

a significant practical limitation). However, idealization in the van der Pol case lack two 

Galilean features that were taken to underwrite the explanatory power of idealizations in the 

first place. First, the base-level model does not contain an approximation of the dynamics of 

the actual system. The base-level model is that of a simple harmonic oscillator with fixed 

amplitude and phase. A key feature of the van der Pol oscillator, and nonlinear systems more 

generally, is the failure of a regular limit relation. 

(2) 0
0

lim =
→

≠ eTTε
ε

. 
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As we have seen, the dynamics of the van der Pol oscillator (Tε) is qualitatively different 

from the dynamics of the ε = 0 simple harmonic oscillator (Tε=0). In the same way, the upper-

level model picks out one characteristic of the behaviour of the system, the change in 

amplitude, but necessarily omits the oscillatory feature of the system. Secondly, no amount 

of incremental reverse-engineering will transform the base-level or upper-level models into 

more accurate representations of the system. In fact, the base-level model does not even aim 

to approximate the system; rather, as we have seen, both the base- and upper-level models 

aim to capture a simple, linear behaviour of interest in a complex nonlinear system.  

 With respect to the failure of a regular limit relation to obtain, failure to approximate 

base-level features of the system and their incorrigibility in this regard, the van der Pol case 

is similar to semi-Galilean idealizations described in Section 2. In another, highly 

consequential respect, the van der Pol case is quite different. As we have seen, semi-Galilean 

idealizations are explanatory along D-N-I grounds in a way analogous to Galilean 

idealizations. In the semi-Galilean case, base-level components are spatial parts of the upper-

level description of the system. The key consideration was that the explanans described how 

the upper-level behaviour to be explained was produced by the base-level component parts 

and lawlike generalizations. It is here that the van der Pol model differs substantially from 

the semi-Galilean case. The base-level, short-timescale behaviour is not a spatial part of the 

upper-level, long-timescale explanandum. And this difference will be crucial for assessing 

the explanatory merits of van der Pol models and models of nonlinear oscillators more 

generally. I have called non-Galilean those idealizations that fail approximately or accurately 

to represent the effects of base-level component parts. In the van der Pol case, as in nonlinear 

oscillators more generally, there are no base-level spatial parts of the system. The base-level 

idealization describes short-timescale parts of the system, but this is not analogous to the way 
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spatial components in Galilean and semi-Galilean systems combine and interact to produce 

upper-level (large-scale) behaviour. In the van der Pol case, there are no structural 

dependencies, of the sort highlighted in semi-Galilean systems discussed in Section 2. Short-

timescale behaviours are not components of the system and do not combine and interact to 

produce an effect, so the idealizations of the van der Pol case (and cases like it) are non-

Galilean.  

In the van der Pol case the explanation fits the D-N-I account, so it would seem that non-

Galilean idealizations can underwrite scientific explanations. But here we must proceed 

carefully. We have seen how the explanandum (limit cycle behaviour) is derived based on 

facts about the base-level model, the van der Pol equation, and asymptotic mathematical 

techniques. The problem, however, is that the D-N-I account is not a sufficient condition on 

scientific explanation. We do not want to admit as a bona fide scientific explanation just any 

old idealization that fails even approximately to model the intended physical system and for 

which derivation of the putative explanandum requires invoking additional premises distinct 

from the idealization itself. The worry is that if we allow the van der Pol explanation we will 

have no principled way of debarring all sorts of patently gerrymandered pseudo-explanations. 

For instance, the base level van der Pol system could be modelled by a periodic non-

harmonic function, such as a square wave. Here, the standard asymptotic derivation of limit 

cycles does not go through. Instead, introduce a premise that the change in amplitude over 

the long timescale corresponds to the observed behaviour, and the desired result can be 

derived. This derivation begs the question and obviously fails to have any explanatory merit. 

D-N-I explanation, as D-N explanation, needs to be supplemented with constraints on the 

allowable types of derivations and lawlike generalizations that are explanatory. In the 

Galilean and semi-Galilean cases, D-N-I derivations were explanatory precisely because they 
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traced structural dependencies in the physical system, particularly with respect to the way in 

which base-level components combined and interacted to produce upper-level structures. 

Idealizations, disconnected from their Galilean moorings, seem lost in a sea of false premises 

and ad hoc lawlike generalizations, and they seem particularly poor candidates to underwrite 

scientific explanation. 

 Nevertheless, I would like to suggest that some non-Galilean idealizations do have 

explanatory power. To see how, we need to broaden our thinking: the explanatory merits of a 

derivation are not only a function of features internal to that derivation (the truth of premises, 

the content of lawlike generalizations) but also a global function of how that derivation fits 

into a larger pattern of derivations in the scientific field. The remainder of this paper sketches 

and approach to explanatory idealization that provides a perspicuous way to take into account 

this global aspect of scientific explanation. 

The key requirement is unification, which ensures that the D-N-I derivation is not ad hoc 

but rather forms part of larger theoretical structure applicable to a broad range of physical 

systems. On an approach to explanatory unification due to Philip Kitcher (Kitcher 1981, 

Kitcher 1989), explanations are arguments (deductive derivations) that are appropriately 

connected to a larger pattern of argumentation in a field of science. One form of unification 

is derivational parsimony, where one or a small number of argument patterns are used in a 

broad range of explanations ([self-reference omitted]). These argument patterns share a 

common structure and a common toolbox of associated models, mathematical techniques and 

empirical assumptions that underwrite the premises in the derivations. This is clearly the case 

for nonlinear oscillators. We have seen how a family of asymptotic methods, a common 

base-level model and a set of common additional assumptions form part of the explanation of 

long-timescale features of weakly-damped nonlinear oscillators, following a simple four-step 
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structure. My claim is that the derivation of limit cycles and their properties in the van der 

Pol system forms part of a unified pattern of such derivations for nonlinear oscillators more 

generally. These arguments succeed in deriving quite accurate accounts of a wide range of 

long-timescale behaviours while making use of modest explanatory resources within a fixed 

set of patterns of argumentation. In short, the derivation of the limit cycles and their stability 

properties in the van der Pol oscillator is explanatory because it is part of a pattern of such 

derivations that uses few argument patterns to explain and predict a large range of results (for 

a more detailed development and defence of explanatory unification, see [self-reference 

omitted]). 

A common worry about unification approaches to explanation is the spectre of the 

obsessive unifier who arbitrarily constructs spurious argument patterns to link otherwise 

disparate systems. In our case, explanatory unification would seem to allow for the most 

unified set of argument patterns to be high-level descriptions of common features of 

nonlinear oscillators, clearly unexplanatory. To preclude this, an additional requirement of 

basal derivation is needed, stipulating that explanations of upper-level features of physical 

systems must be in base-level terms. As we have seen, non-Galilean idealizations in the van 

der Pol case play a central role but form only one part of the explanans. The novel upper-

level properties of the van der Pol oscillator—the existence of limit cycles, their precise 

structure and their stability— are derived using asymptotic methods involving a lower-level 

model of the system, additional empirical assumptions, and mathematical techniques. The 

asymptotic method includes an assumption of slowly varying amplitude and phase that is 

itself characterizable in lower-level terms. The key point is that empirical premises in the 

explanation can be articulated entirely in terms used to describe the lower-level model, even 

though the premises are not part of the description of the model itself (indeed, the premises 
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are inconsistent with the model in our example). In short, in the van der Pol case, the 

explanans satisfies the criterion of basal derivation because it contains premises about the 

lower-level model, about asymptotic mathematical techniques, and additional assumptions 

that lie outside the scope of the model but are describable in basal terms.  

 The explanations we have been looking at in nonlinear oscillator systems are of the D-N-I 

form and satisfy the criteria of unification and basal derivation just described. The 

idealizations involved in the explanation are non-Galilean yet, I have suggested, provide a 

excellent cases of idealizations playing substantive explanatory roles. 

5. Conclusion 

One might object, in the end, that without a description in the explanans of how component 

parts combine and interact to produce the explanandum (even in the attenuated semi-Galilean 

sense) we have a very weakened sense of explanation indeed. Limit cycle behaviour in the 

van der Pol case has been derived, to be sure, but it has not been explained because we have 

no account of how the limit cycle behaviour arises in causal or structural terms. Although 

there are some superficial similarities between the semi-Galilean and non-Galilean cases we 

have looked at, especially with respect to the use of asymptotic techniques, features of base-

level non-Galilean idealizations simply fail to be explanatorily relevant in the way that they 

are in semi-Galilean cases. 

 Nothing said here precludes this kind of objection. However, it raises a worry about the 

basis of the explanatory merits of semi-Galilean idealizations in the first place. The problem 

is that semi-Galilean idealizations, which fail even to approximate features of base-level 

components, seem to be poor candidates for explaining upper-level structure. Recall that in 

semi-Galilean cases, D-N-I derivations were taken to be explanatory because they trace 
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structural dependencies in the physical system, particularly with respect to the way in which 

base-level components combine and interacte to produce upper-level structures. The ways in 

which semi-Galilean idealizations mis-represent features of base-level components leads to 

scepticism about the extent to which they can be said to truly to trace physical dependencies 

at all. The explanations discussed in Section 2 involving semi-Galilean idealizations are good 

ones, the worry goes, but it is implausible that the explanatory relevance of these 

idealizations follow from their ability to trace causal structure.  

 The solution, I recommend, is to give serious consideration to an alternative perspective, 

favoured by empiricists, on which causal relations are derivative from explanatory relations 

(see Kitcher 1989, pp. 494-500). A derivation does not get its explanatory power by tracing 

causal structure; rather, a derivation is taken to trace causal structure (or at least an 

idealization thereof) when it is explanatorily unified. So it may seem that the explanatory 

merits of semi-Galilean idealizations are underwritten by universality in physical systems 

while the explanatory merits of non-Galilean idealizations are based on universality in our 

theoretical structure. In fact, the former is but an aspect of the latter. 
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