电 网 技 术 Power System Technology Vol. 32 No. 1 Jan. 2008

文章编号: 1000-3673 (2008) 01-0041-05 中图分类号: TM712 文献标识码: A 学科代码: 470-4054

集抄系统中少量测点的潮流计算方法

姜 形,彭 谦

(华北电力大学 电气与电子工程学院,北京市 昌平区 102206)

Power Flow Calculation of Measurement-Absence Nodes in Concentrated Meter Reading System

JIANG Tong, PENG Qian

(School of Electrical and Electronic Engineering, North China Electric Power University, Changping District, Beijing 102206, China)

ABSTRACT: A poor-measurement power flow calculation method under measurement-absence of partial nodes in concentrated meter reading system is researched. The influence of different positions of measurement-absence node on solvability of power flow calculation is analyzed; a solvability analysis method for network with poor-measurement nodes is proposed and the equations for poor-measurement power flow, which are solved by Newton-Raphson method, are established. Calculation results of IEEE 7-bus system and IEEE 33-bus system validate the correctness of the proposed method.

KEY WORDS: power system; distribution network; power flow algorithm; concentrated meter reading system

摘要:研究了集抄系统部分节点数据无量测情况下的少量测 潮流算法,探讨了无量测节点的不同位置对潮流计算可解的 影响,提出了少量测点网络可解性分析方法。建立了少量测 节点网络潮流方程,并采用牛顿-拉夫逊法进行方程解算。7 节点网络和 IEEE33 节点算例验证了所提方法的正确性。

关键词: 电力系统; 配电网; 潮流计算; 集抄系统

0 引言

随着经济建设的快速发展,人们对电网的要求 越来越高,尤其在供电质量、供电可靠性、工作效 率和优质服务等方面提出了更高的要求,这就需要 提高配电网自动化的水平。集抄系统不仅能节约人 力资源,更重要的是还可以提高实时抄表的准确 性^[1-2]。

集抄系统通过统一对时可以采集设备安装点 相同时刻的有功功率、无功功率、电压等数据。利 用这些数据进行网络计算可以得到网络各个采集 时刻的运行状态^[3]。由于集抄系统提供的数据对于 潮流计算是冗余的,这在理论上为在配电网中少配 置集抄系统提供了基础。但在网络所有节点上都安 装集抄系统会提高生产、运行成本,因此现场实际 运行要求在满足网络计算的前提下尽量少配置集 抄系统以节约成本。

通常配电网潮流计算要求每个节点都要有已 知的量测量,如果网络中的某些节点没有任何量测 数据,则不能计算出网络的状态^[4-13]。文献[14-15] 中提出用状态估计方法计算量测点缺失时的网络 状态,提出用历史数据作为无量测点的初始数据, 并对初始数据进行加权计算来计算网络状态,但网 架结构的变化与权重的选择会对计算结果产生较 大的影响。

本文利用配电网部分节点的冗余数据,研究配 电网存在少量无量测节点时网络可解的条件以及 相应的潮流计算方法。

1 含有无量测节点的网络多解问题

若要求解n个未知数,必须有只包含这n个未 知数的线性无关的方程。配网潮流计算的已知量为 节点的有功功率、无功功率,未知量为节点的电压、 相角。在关于节点的有功功率、无功功率列写方程 时,如果方程数目与未知数目相等,那么可以求解 出各个节点的电压、相角。

定义: 电压、功率均为已知的节点为 PQU 节点; 电压、功率均未知的节点为 0 节点; 有功功率、 无功功率恒为 0 的 PQ 节点为连接节点。

若某个节点为 PQU 节点,该节点的未知量为 相角,那么对该节点的有功功率、无功功率可以列 写两个方程,方程数目多于未知数目,则网络可解。 因此若网络中存在一个无量测节点,同时存在两个 或两个以上的 PQU 节点,则网络是可能解出的。 图 1 为一个 7 节点配电网络,假设节点 1 为平 衡节点,节点 2、5、6、7 为 PQU 节点,节点 3、4 为 0 节点。

Fig. 1 Sketch map of 7 nodes distribution network

分析图 1 所示网络,假设节点 2、5、6、7 的 相角已知,则节点 2 通过支路 2-3 注入节点 3 的电 流已知,节点 4 通过支路 4-5 注入节点 5 的电流也 已知。更改节点 3、4 的注入功率可以得到无数组 满足网络要求的解,因此网络是不可解的。可见 0 节点在网络中位置的不同会影响网络是否有解,因 而有必要分析网络可解的条件。

2 少量测点网络可解性分析

若网络中除平衡节点外的所有节点的注入功率已知,如果网络有解,则该解是唯一的。如果把各个节点的注入功率映射为接入阻抗进行计算,那么该网络的解不发生变化。下面把节点注入功率映射为阻抗进行网络分析。图 2 从左到右依次为 PQ 节点、PQU 节点、0 节点在文中的表示方法。

Fig. 2 Sketch map of 3 types of node

当网络中存在一个 0 节点时,需要列写两个 PQU节点方程才能进行计算。图3为一个配电网络, 其中节点1为平衡节点,节点2经过一个0节点接 地,节点3连接两个 PQU 节点4、5。

图 3 0 节点位于节点 2 处的配电网络 Fig. 3 Distribution network of node 0 connects to node 2

分析图 3 网络可知, 节点 3 与节点 4、5 等电势,因此如果节点 4 的电压幅值已知,则节点 3、5 的电压幅值也为已知。虽然图 3 中给出了节点 4、5 的电压幅值,但对于整个网络来说,只是增加了一个已知条件,方程数目少于未知数目,网络无解。

对于图 3 所示网络,无论节点 3 接入如何复杂的网络,对于网络整体而言,方程数目都是少于未

知数目,网络无解。也就是说,0节点经过与它相 连的连接节点直接接入平衡节点的网络无解。与多 个 PQU 节点直接相连的连接节点等价为一个 PQU 节点。

把图 3 网络中的 PQU 节点 4 支路接入节点 2 处,得到图 4。

图 4 PQU 节点与 0 节点连接于 2 节点的配电网络 Fig. 4 Distribution network of node 0 and PQU connected to node 2

图 4 中节点 2、3 分别连接一条安装有集抄系统 的支路,同时节点 2 还连接一条无量测的支路,节 点 1、2、3、4、5 的电压幅值已知。节点 3、5 等电 势,取节点 3 为平衡节点,则支路 5-7 电流可解;支 路 2-3、5-7 为串连,电流相等,节点 2 电压可解, 支路 4-7 电流也可解。任意给定支路 1-2 一组电流值, 都可以得到一个与之对应的支路 2-6 的电流值,网络 有无数多组解,因此网络不可解。

把图4中的0节点接于节点3,得到图5。

图 5 PQU 节点与 0 节点连接于 3 节点的配电网络 Fig. 5 Distribution network of node 0 and PQU connected to node 3

对节点2列写电流方程

 $Y_{12}(U_1^{\&} - U_2^{\&}) = Y_{24}U_2^{\&} + Y_{23}(U_2^{\&} - U_3^{\&})$ (1) 式中未知量为节点 2、3 的相角,方程数目等于未 知量数目,网络可解。

如果网络中含有其它 PQ 节点,对该节点列写 方程,方程增加的数目与未知量增加的数目是相同 的,因此 PQ 节点的数目不影响网络是否可解。在 进行可解性分析时,可以把 PQ 节点的对地电阻视 为开路处理,把线路阻抗视为短路处理。这样网络 中只保留了平衡节点、PQU 节点、0 节点以及连接 节点。把相邻的只与其它连接节点相连的连接节点 合并为一个连接节点。

对于只含有一个0节点的网络,如果网络中含

有两个连接节点,其中一个连接节点连接平衡节点 及 PQU 节点,另外一个连接节点连接 0 节点和一 个 POU 节点,则这个网络可解。

配电网网络中含有多个 0 节点的情况如图 6 所示。

图 6 大型配电网络图 Fig. 6 Sketch map of large-scale distribution network

图 6 中节点 1 为平衡节点,节点 2、3、7、9 为 PQU 节点,节点 4、8 为 0 节点,节点 5、6 为 PQ 节点。把图 6 所示网络分为两个部分,节点 1~4 为一部分,节点 5~9 为另一部分。1~4 部分中连接 节点 2 与平衡节点以及一个 PQU 节点相连,连接 节点 4 与 0 节点和一个 PQU 节点相连,这部分网 络可解。虽然节点 4 的注入功率未知,但是该节点 的电压幅值、相角可解,因此可以把节点 4 视为平 衡节点。根据上述分析可知,节点 5~9 部分网络也 为可解的,则网络整体可解。

对于含有 *n* 个 0 节点的复杂配电网络,可以得 到如下的少量测节点网络可解性分析方法:

(1)把网络中所有 PQ 节点按连接节点处理, 线路阻抗按照 0 节点处理。

(2)如果两个连接节点相邻,同时这两个连 接节点又只与其它连接节点相连,那么合并这两个 连接节点为一个。

(3)分割整体网络为 *n* 个子部分,每个子部分中只包含一个0节点。

(4)如果两个子部分通过联络线路相连,把 联络线两端电势高的节点视为低电势侧子网络的 平衡节点进行分析。

(5)如果每个子网络中含有两个连接节点, 其中一个连接平衡节点和 PQU 节点,另外一个连 接 0 节点和 PQU 节点,则网络整体可解。

3 计算方法

图 7 为简化配电网络。节点 1 为平衡节点,节 点 4 为 0 节点,节点 2、3 为 PQU 节点。对节点 2、 3 列写节点功率方程

Fig. 7 Sketch map of mini-scale distribution network

$$\begin{cases} \hat{S}_{2} = \hat{U}_{2} \sum_{i=1}^{3} Y_{2i} U_{i}^{k} \\ \hat{S}_{3} = \hat{U}_{3} \sum_{i=2}^{4} Y_{3i} U_{i}^{k} \end{cases}$$
(2)

式中:视在功率 S_2 、 S_3 ,电压 U_2 、 U_3 为已知量; 电压 U_4 ,相角 q_2 、 q_3 、 q_4 为未知量。方程数目为 四个,未知量数目与方程数目相同,所以方程是可 解的。对式(2)两端求导得到

$$\begin{bmatrix} \Delta P_{2} \\ \Delta Q_{2} \\ \Delta P_{3} \\ \Delta Q_{3} \end{bmatrix} = \begin{bmatrix} \frac{\Delta P_{2}}{\Delta U_{4}} & \frac{\Delta P_{2}}{\Delta d_{2}} & \frac{\Delta P_{2}}{\Delta d_{3}} & \frac{\Delta P_{2}}{\Delta d_{4}} \\ \frac{\Delta Q_{2}}{\Delta U_{4}} & \frac{\Delta Q_{2}}{\Delta d_{2}} & \frac{\Delta Q_{2}}{\Delta d_{3}} & \frac{\Delta Q_{2}}{\Delta d_{4}} \\ \frac{\Delta P_{3}}{\Delta U_{4}} & \frac{\Delta P_{3}}{\Delta d_{2}} & \frac{\Delta P_{3}}{\Delta d_{3}} & \frac{\Delta P_{3}}{\Delta d_{4}} \end{bmatrix} \begin{bmatrix} \Delta U_{4} \\ \Delta d_{2} \\ \Delta d_{3} \\ \Delta d_{4} \end{bmatrix}$$
(3)

比较式(3)与牛拉法关于节点 2、3、4 行成的雅克比 矩阵可以看出,式(3)为牛拉法关于节点 2、3、4 形 成的雅克比矩阵消去 ΔP_4 、 ΔQ_4 所对应的行以及 ΔU_2 、 ΔU_3 所对应的列。

设网络中*i、j*点有量测数据,*p、q、u、k*点无 量测,则在传统牛拉法雅克比矩阵中消去 $\Delta P_k \land \Delta Q_k$ 节点对应的行以及 $\Delta U_i \land \Delta U_j$ 对应的列,方程数目、 节点数目各减少两个。

4 算例分析

4.1 7节点网络算例分析

Tab 1

图 8 为 7 节点网络模型。7 节点网络参数和支路参数分别见表 1、2。

7	1	2	3	4	5	6
	↓	↓	↓	↓	↓	♦

图 8 7 节点配电网网络模型 Fig. 8 7 nodes distribution network model

表1 7节点网络参数

Tab. 1 Farameter of 7 houes network							
节点号	节点类型	有功功率/pu	无功功率/pu	电压初值/pu			
0	VV	0	0	1.06			
1	PQ	-0.01	-0.01	1			
2	PQ	-0.01	-0.01	1			
3	PQ	-0.01	-0.01	1			
4	PQ	-0.01	-0.01	1			
5	PQ	-0.01	-0.01	1			
6	PQ	-0.01	-0.01	1			

	表 2 7 节点	网络支路参数	
Tab. 2	Line parame	ter of 7 nodes n	etwork
支路首	支路尾	电阻/pu	电抗/pu
0	1	0.02	0.08
1	2	0.08	0.25
2	3	0.06	0.2
3	4	0.06	0.23
4	5	0.04	0.15
5	6	0.03	0.12

以图 8 所示网络对本文算法进行验证。取节点 7 为平衡节点进行潮流计算,计算结果如表 3 所示。以 计算结果数据为基础,模拟集抄系统数据,分析无 量测点位置对潮流计算的影响。节点 3、6 为 0 节 点,节点 1、2、4、5 为 PQU 节点,计算迭代 6 次 收敛,结果如表 4 所示。

表 3 7 节点网络潮流计算结果

Tab. 3	Result of 7	nodes network	power flow	calculation

节点亏	7	1	2	3	4	5	6
电压/pu	1.06	1.054 1	1.037 9	1.027 6	1.019	1.015 3	1.0138
相角/(°)	0	-0.185 1	-0.629 7	-0.930 3	-1.209 3	-1.3312	-1.381 3

表 4 节点 3、6 无量测潮流计算结果 Tab. 4 Result of power flow calculation that node 3 and node 6 have no data

节点号	7	1	2	3	4	5	6
电压/pu	1.06	1.054 1	1.037 9	1.027 6	1.019	1.015 3	1.013 8
相角/(°)	0	-0.185 1	-0.629 7	-0.930 3	-1.209 5	-1.3314	-1.381 6

比较表 3 与表 4 中的计算结果可知,在保留 4 位有效数字时,少点潮流计算时的计算结果电压幅 值没有误差,节点 4、5、6 的相角有不超过 0.0002° 的偏差,可见该算法是可靠的。

调整两个 0 节点的位置进行计算,计算收敛情况如表 5 所示。

表 5 调整 0 节点后的结果 Tab. 5 Result of adjusting 0 node

0节点位置	1	2、3	2、4	2, 5	2,6	3、4	3、5	3、6
收敛情况	发散	发散	发散	收敛	收敛	发散	发散	收敛

分析表 5 中的计算结果可知,少量测点网络可 解性分析方法是正确的。

4.2 IEEE 33 节点网络算例分析

对文献[16]中的 IEEE 33 节点的配电网进行计算,网络拓扑结构如图 9 所示。

取功率基准值为100MVA,电压基准值为10kV,

节点 33 为平衡节点进行潮流计算,计算结果如表 6 所示。

表 6 IEEE 33 网络潮流计算结果 Tab. 6 Result of IEEE 33 distribution network power flow calculation

节点	电压幅值/pu	电压相角/(°)	节点	电压幅值/pu	电压相角/(°)
33	1.000 0	0.000 0	17	0.852 5	-0.888 5
1	0.995 0	0.024 6	18	0.994 2	0.007 2
2	0.971 4	0.1644	19	0.9884	-0.100 9
3	0.958 8	0.277 9	20	0.987 3	-0.132 2
4	0.946 2	0.3947	21	0.986 3	-0.165 2
5	0.915 0	0.232 8	22	0.965 6	0.113 6
6	0.909 1	-0.171 1	23	0.9547	-0.033 4
7	0.900 8	-0.106 0	24	0.949 2	-0.106 3
8	0.890 1	-0.234 4	25	0.911 7	0.302 0
9	0.880 2	-0.345 3	26	0.907 3	0.400 7
10	0.878 7	-0.332 1	27	0.887 8	0.545 6
11	0.876 2	-0.310 9	28	0.873 8	0.684 1
12	0.865 7	-0.475 1	29	0.867 7	0.874 3
13	0.861 8	-0.618 1	30	0.860 6	0.721 0
14	0.859 4	-0.686 8	31	0.8590	0.679 0
15	0.857 1	-0.729 2	32	0.858 5	0.664 8
16	0.853 6	-0.870 9			

取图 5 中节点 17 为 0 节点, 节点 15、16 为 PQU 节点, 程序迭代 5 次收敛, 计算结果如表 7 所示。

表 7 IEEE 33 网络少量测计算结果

Tab. 7 Result of one poor- measure node power flow calculation for IEEE 33 distribution network

节点	电压幅值/pu	电压相角/(°)	节点	电压幅值/pu	电压相角/(°)
33	1.000 0	0.000 0	17	0.852 5	-0.889 4
1	0.995 0	0.024 6	18	0.994 2	0.007 2
2	0.971 4	0.1644	19	0.988 4	-0.100 9
3	0.958 8	0.277 9	20	0.987 3	-0.132 2
4	0.946 2	0.394 6	21	0.986 3	-0.165 2
5	0.915 0	0.2327	22	0.965 6	0.113 6
6	0.909 1	-0.171 3	23	0.954 7	-0.033 4
7	0.900 8	-0.106 2	24	0.949 2	-0.106 3
8	0.890 1	-0.234 7	25	0.9117	0.301 8
9	0.880 2	-0.345 7	26	0.907 3	0.400 6
10	0.878 7	-0.332 4	27	0.887 8	0.545 4
11	0.876 2	-0.311 3	28	0.873 8	0.684 0
12	0.865 7	-0.475 6	29	0.867 7	0.874 1
13	0.861 8	-0.618 7	30	0.860 6	0.720 9
14	0.859 4	-0.687 4	31	0.859 0	0.678 8
15	0.857 1	-0.729 9	32	0.858 5	0.664 7
16	0.853 6	-0.871 7			

比较表 4 与表 5 的计算结果可知,电压幅值没 有偏差,相角的最大偏差为 0.000 9°,计算结果正 确,少点潮流计算方法成立。

5 结论

本文应用集抄系统采集的量测量冗余的特点,

研究了网络中某些节点不存在量测时的少量测潮 流计算方法。经过分析,给出了少量测点网络可解 性分析方法,并给出了实际的计算方法。算例验证 了理论的正确性。该方法为配电网的少量测点的潮 流计算提供了参考。

参考文献

- 谢开贵,周家启.树状网络潮流计算的新算法[J].中国电机工程 学报,2001,21(9):116-120.
 Xie Kaigui, Zhou Jiaqi. A new load flow algorithm for radial distribution networks[J]. Proceedings of the CSEE, 2001, 21(9): 116-120(in Chinese).
- [2] 张尧,王琴,宋文南,等.树状网的潮流算法[J].中国电机工程 学报,1998,18(3):217-220.
 Zhang Yao, Wang Qin, Song Wennan, et al. A load flow algorithm for radial distribution power networks[J]. Proceedings of the CSEE, 1998, 18(3):217-220(in Chinese).
- [3] 车仁飞,李仁俊. 一种少环配电网三相潮流计算新方法[J]. 中国电机工程学报, 2003, 23(1): 74-79.
 Che Renfei, Li Renjun. A new three-phase power flow method for weakly meshed distribution systems[J]. Proceedings of the CSEE, 2003, 23(1): 74-79(in Chinese).
- [4] Cheng C S, Shirmohammadi D. A three-phase power flow method for real-time distribution system analysis[J]. IEEE Trans on Power Systems, 1995, 10(2): 671-679.
- [5] Zimmerman R D, Chiang H D. Fast decoupled power flow for unbalanced radial distribution systems[J]. IEEE Trans on Power Systems, 1995, 10(4): 2045-2051.
- [6] Shirmohammadi D, Hong H W. A compensation-based power flow method for weakly meshed distribution and transmission networks [J]. IEEE Trans on Power Systems, 1998, 3(2): 753-762.
- [7] Chen T, Chen M. Distribution system power flow analysis-a rigid approach[J]. IEEE Trans on Power Delivery, 1991, 6(3): 1146-1152.
- [8] IEEE Distribution Planning Working Group Report. Radial distribution test feeders[J]. IEEE Trans on Power Systems, 1991, 6(3): 975-985.
- [9] 余娟,颜伟.配电网合环网络模型及其馈线电流的计算[J].中国电机工程学报,2005,25(25):76-81.
 Yu Juan, Yan Wei. The model of the closed loop distribution network and the current calculation of its feeders[J]. Proceedings of the

CSEE, 2005, 25(25): 76-81(in Chinese).

- [10] 刘健,董海鹏,程红丽.采用等效负荷简化配电网[J].中国电机 工程学报,2002,22(8):35-39.
 Liu Jian, Dong Haipeng, Cheng Hongli. Simplified distribution analysis based on equivalent load model[J]. Proceedings of the CSEE, 2002,22(8):35-39(in Chinese).
- [11] 吴政球,荆勇.考虑负序零序非线性求解的三相潮流计算方法
 [J].中国电机工程学报,2001,22(4):77-81.
 Wu Zhengqiu, Jing Yong. Three phase power flow solution based on node injection currents[J]. Proceedings of the CSEE, 2001, 22(4):77-81(in Chinese).
- [12] 张小平,陈珩.不对称三相潮流的对称分量分析法[J].中国电机 工程学报,1993,13(6):1-11.
 Zhang Xiaoping, Chen Hang. Symmetrical component analysis for unsymmetrical three phase power flow[J]. Proceedings of the CSEE, 1993,13(6):1-11(in Chinese).
- [13] 王守相,王成山.基于区间算法的配电网三相潮流计算模型[J].中 国电机工程学报,2002,22(2):52-58.
 Wang Shouxiang, Wang Chengshan. Distribution three-phase power flow models based on interval algorithm[J]. Proceedings of the CSEE, 2002, 22(2): 52-58(in Chinese).
- [14] 李慧,杨明皓.配电网非量测负荷的最小二乘估计[J].电网技术,2003,27(7):47-51.
 Li Hui, Yang Minghao. Least-square state estimation of pseudo-

measured loads in distribution systems[J] . Power System Technology, 2003, 27(7): 47-51(in Chinese).

- [15] 李慧,杨明皓.基于负荷电流的配电网非量测负荷估计[J].中国电机工程学报,2005,25(5):33-37.
 Li Hui, Yang Minghao. A load-current-based state estimation for distribution systems non-measurement loads[J]. Proceedings of the CSEE, 2005, 25(5): 33-37(in Chinese).
- [16] Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Trans on Power Delivery, 1989, 4(2): 1401-1407.

收稿日期: 2007-03-06。

作者简介:

姜 形(1970—),男,博士,教授,从事电力网络分析和计算机应 用方面的研究;

彭 谦(1980—),男,博士研究生,研究方向为配电网自动化, E-mail: <u>pq.ncepu@163.com</u>。

(实习编辑 王晔)

国家电网公司荣获"中华社会责任奖"

2007年12月16日,"中华民族品牌与企业社会责任高峰论坛暨2007年度企业社会责任调查活动 揭晓颁奖典礼"在北京全国人大会议中心举行,国家电网公司以最高综合得分获得"中华社会责任奖"。 本次评选活动旨在宣传为中国经济做出突出贡献的企业、民族品牌和公益人物,由中共中央党校学习 时报社、中华企业社会责任研究会、中华民族品牌协会等单位主办,新华网、中华网、新浪网等近百 家网络媒体进行了网上联展,备受社会各界关注。共有69家国内企业和49家外资在华企业参与了"中 华社会责任奖"的网上投票评选,组委会根据投票、短信和实地调查情况进行了综合评分,国家电网、 中国石油、中国移动、埃克森美孚、西门子、中国惠普、诺基亚、麦当劳等20家中外企业获奖,国家 电网公司的综合得分位居首位。