文章编号: 1001-4322(2003)07-0721-04

CeF₃ 闪烁探测器对 DD 中子的相对灵敏度

胡孟春¹, 叶文英², 周殿忠¹, 王振通¹, 张建华¹, 胡青元¹, 杨洪琼¹, 杨高照¹ (1. 中国工程物理研究院 核物理与化学研究所, 四川 绵阳 621900; 2. 中国工程物理研究院 电子工程研究所, 四川 绵阳 621900)

摘 要: 用国内近年新研制的 CeF₃ 闪烁体和常用闪烁体 ST401 分别配特性相同的光电倍增管,构成两种 闪烁体探测器,在强度不随时间变化的 DD 中子源场中测量了这两种闪烁探测器的相对灵敏度,测量结果表 明:CeF₃ 闪烁探测器对 DD 中子的灵敏度比同尺寸 ST401 的灵敏度低一个量级以上。

关键词: CeF₃; 无机闪烁体; 辐射探测; DD 中子源; 中子灵敏度 **中图分类号**: TL812; TL816 **文献标识码**: A

CeF₃ 晶体响应时间快、发光产额相对较高,同时具有无机闪烁体密度高,原子序数高,对 射线和 X 射线 探测效率高,对带电粒子阻止本领强的特点,近年来越来越引起人们的关注,一些研究者对 CeF₃ 晶体的发光光 谱特性、衰减时间特性、发光产额^[1~3]、抗辐射特性^[4]等方面进行了研究。通过分析中子(n)和 辐射与 CeF₃ 闪烁体相互作用过程的物理机制差异,估计 CeF₃ 闪烁体对中子,辐射的探测效率,由此可以知道 CeF₃ 闪烁体 对 辐射灵敏而对中子辐射相对不灵敏,这种特性对在中子,混合辐射场中测量快 辐射提高其信噪比是非 常有意义的,而有关这方面的研究数据报道较少。本工作用光电倍增管分别配常用闪烁体 ST401 和国内近年 新研制出的直径为 45mm 的大面积 CeF₃ 闪烁体,构成两种闪烁体探测器,用 DD 稳态中子源测量这两种闪烁探 测器对中子的相对灵敏度,以获得 CeF₃ 闪烁体探测器抗中子干扰能力的相关实验数据。

1 测量系统情况

在 DD 中子源场中,测量 CeF₃ 闪烁探测器的中子相对灵敏度,其测量系统构成与常规稳态测量系统^[5,6]基本相同,见示意图1,现场探测器与源的相对位置布局见图2。

Fig. 1 Calibration system of neutron sensitivity of CeF₃ scintillation detector
 图 1 CeF₃ 闪烁探测器相对中子灵敏度测量系统示意图

 Fig. 2
 Experimental arrangement

 图 2
 CeF₃ 闪烁探测器与源的相对位置布局

K-400 高压倍加器加速 D 粒子束打到 D 靶上,通过 D(d,n)³He 反应形成恒定的中子流,在与入射 D 束成 103 方向上,出射的中子能量约为 2. 5MeV,可视为稳态单能中子,中子产额约 10⁸s⁻¹,探测系统放置在距离中 子源 90cm 处,将稳态中子流转化为稳定的电流信号,电信号经过电缆传输到记录间,用 6517 型电流仪(electrometer/high resistance system)测量探测器的输出电流 *I*(单位 A),中子源靶点相对于探测器与中子源的距离很 小,因此这种加速器中子源可按点源对待。

中子源的一般监测方法是采用伴随粒子法^[7,8],由于 D(d,n)³He 反应所形成的³He 粒子能量较低,当入射

^{*} 收稿日期:2002-10-08; 修订日期:2003-03-05

基金项目:中国工程物理研究院基金资助课题(J09-305)

作者简介:胡孟春(1963-),男,湖南株洲人,硕士,副研究员,主要从事粒子探测技术研究;四川绵阳 919 信箱 212 分箱; E-mail:yhjc9364 @my-public.sc.cninfo.net。

D 核能量大于 150keV 时,很难与靶上散射的 D 核分开,采用伴随³He 粒子法监测 DD 中子源是不合适的。K 400 高压倍加器上的 DD 反应除 D(d,n)³He 外还有一个反应 D(d,p) T,D(d,p) T 与 D(d,n)³He 有同样的反应 率,且 D(d,p) T反应中的质子很容易被记录^[7],本实验的中子监测方法是:记录 D(d,p) T 反应形成的质子数 N_p (单位为 s⁻¹),再按公式(1)推算中子源产额 Y(单位为 s⁻¹)。

$$Y = N_{\rm p} K_{\rm p} \tag{1}$$

这里 K_p 是根据两竞争反应的分支比、角分布各项异性因子、质子探测器对靶所张的立体角等参数推算出来的 中子产额与质子监测记数关系的比例因子。

按公式 (2) 计算测点处的中子注量率 ϕ (单位为 s⁻¹ cm⁻²), *L* 为探测器闪烁体中心至 DD 中子源靶头中心的距离 (单位为 cm), 用公式 (3) 计算探测器的中子灵敏度 *S* (单位为 C cm²)。

$$\phi = Y/4 L^2 \tag{2}$$

$$S = I/\phi \tag{3}$$

2 本底测量方法

进入探测器并对探测器电流输出有贡献的辐射 包括:加速器上D(d,n)³He反应形成中子的直接贡 献和本底辐射贡献。本底来源和构成较复杂,既有 从源方向直接来的中子、本底;也有中子打到环境 物质上,从其它不同位置和方向散射来的中子、本 底,它们的强度和能量分布、角度分布难以确切测 量。这些本底包括中子以及DD反应中伴随粒子与 加速器靶头和靶管材料作用产生的 辐射,中子与 加速器靶头和靶管材料作用产生的散射中子,中子 与探测器以外的其它物质(如放置探测器的平台,还

Fig. 3 Background measurement system with tapered shield
 图 3 测量散射本底的挡锥法测量系统示意图

有地面、天花板、墙壁等)作用形成次级散射中子和次级 辐射等。本底电流贡献占光电探测器总电流输出的 份额值与本底辐射量有关还与光电探测器中的闪烁体性质有关。测量非透射过来的这部分本底对探测器输出 电流的贡献,一般采用在探测器与源之间挡屏蔽锥的方法^[8,9],挡锥法测量散射本底的系统见示意图3。

屏蔽锥由 Fe、聚乙烯(CH₂), 和 Pb 复合构成, DD 中子与 Fe 作用后,中子衰减且能量降低,含氢的(CH₂), 进一步慢化和衰减 1MeV 以下的中子, Pb 吸收屏蔽锥上产生的次级 辐射,最终使从中子源直接透射过来的中 子降低 2 个量级以上,挡屏蔽锥后的探测器电流输出来自于本底的贡献,这本底中不包括靶头直接来的本底贡 献。尽管 D(d,p) T 反应与 D(d,n)³ He 反应本身不产生,但中子以及 DD 反应伴随粒子与加速器靶头和靶管材 料作用要产生 辐射,这部分本底用挡锥法是不能扣除的,由于靶头和靶管材料比较薄,物质少,这部分本底份 额不大,因此可以认为挡锥后测量的电流就是本底电流。

3 测量结果与分析

3.1 直接测量结果

光电倍增管为 CH#T3 型^[10,11],光阴极有效截面直径为 50mm,ST401 晶体的直径为 50mm,CeF₃ 晶体直径为 45mm。按图 1 系统测量得到中子注量率和探测器输出电流后,不扣除本底对探测器电流输出贡献的情况下,用公式(3)计算得到相应探测器对DD中子的灵敏度数据,见表1,表中数据已按光电倍增管的增益进行 表1 未扣本底情况下的中子相对灵敏度比较

 Table 1 Experimental results of neutron sensitivity (with background)								
crystal thickness/mm	ST401/ (10^{-17}C cm^2)	$CeF_{3}/(10^{-17}C cm^{2})$	ST401/CeF ₃ (same volume)					
3	6.61	0.40	13.35					
5	8.73	0.64	11.07					
8	11.90	1.00	9.68					
10	14.00	1.23	9.22					
15	19.30	1.83	8.54					
20	24,60	2.42	8.23					

ble 1 Experimental results of neutron sensitivity (with background)

了相对归一。

由表 1 可以看出未扣本底情况下,当晶体厚度在 3 ~ 20mm 范围内,ST401 探测器的 DD 中子灵敏度与同体 积 CeF3 的比值在 8 以上,晶体越薄,其比值越大。

3.2 扣除本底后结果

按图 1 系统测量的结果对应的是信号加本底,按图 3 系统测量的结果是本底。测量结果表明:对于 ST401 闪烁探测器电流输出,(信号 + 本底)/本底 = 4.06,对于 CeF₃ 闪烁探测器(信号 + 本底)/本底 = 1.8,本底形成 电流的贡献约占 ST401 探测器总电流输出份额值的 25 %,由于 ST401 闪烁探测器对中子灵敏,对 辐射也同样 灵敏,可以得出:本底辐射中 辐射的份额占进入探测器中总辐射的比例相对较小,因此测量 ST401 闪烁探测 器对中子的灵敏度其不确定度相对小一些。然而由于 CeF₃ 闪烁探测器对 辐射灵敏而对中子辐射相对不灵 敏,辐射本底电流贡献占 CeF₃ 探测器总电流输出的份额值相对大一些。扣除本底情况后的 CeF₃ 探测器中子 相对灵敏度测量结果见表 2,表中数据也已按光电倍增管的增益进行了相对归一。本底辐射在 CeF₃ 闪烁探测 器中形成高比例的电流贡献,扣除这些本底电流贡献后的结果不确定度很难降低,因此在这种情况下要精确测 量 CeF₃ 对 DD 中子的绝对灵敏度是很困难的。

表 2 扣除本底情况后的的中子相对灵敏度比较

Table 2	Experimental	results of	neutron	sensitivity (without	background)
---------	--------------	------------	---------	---------------	---------	-------------

crystal thickness/mm	ST401/ (10 $^{-17}$ C cm ²)	$CeF_{3}/(10^{-17}C cm^{2})$	ST401/ \mbox{CeF}_3 (same volume)
3	4.98	0.18	22.64
5	6.58	0.28	18.77
8	8.97	0.44	16.41
10	10.60	0.55	15.63
15	14.50	0.81	14.49
20	18.50	1.08	13.96

事实上 CeF₃ 主要用于 辐射测量而非中子测量,人们并不特别关心 CeF₃ 对中子的绝对灵敏度,更关心的 是 CeF₃ 探测器在中子、 混合辐射场中测量 辐射的信噪比。通过与 ST401 探测器的中子相对灵敏度比较,可 以得到 CeF₃ 探测器对 DD 中子灵敏度的量级概念,再与 CeF₃ 探测器的 辐射灵敏度^[12~14]比较可获得其信噪 比数据。

由表 2 可以看出扣除本底情况后,当晶体厚度在 3 ~ 20mm 范围内,ST401 探测器的 DD 中子灵敏度与同体 积 CeF3 的比值在 13 以上,晶体越薄,其比值越大。

4 结 论

对以上的测量结果分析研究,可以得出:(1) 对本批 CeF₃ 晶体,当晶体厚度在 3 ~ 20mm 范围内,CeF₃ 探测器的 DD 中子灵敏度比同体积的 ST401 低一个量级以上;(2) 结合 CeF₃ 探测器的 辐射灵敏度绝对测量数据,可获得在中子、 混合辐射场中 CeF₃ 探测器测量 辐射的信噪比;(3) CeF₃ 探测器对脉冲响应时间快,同时对 灵敏而对中子相对不灵敏,在中子、 混合脉冲辐射场中测量快 辐射时,CeF₃ 是一种较好的候选新型快响 应无机闪烁体。

参考文献:

- [1] Anderson D F. Properties of the high-density scintillator cerium fluoride [J]. IEEE transaction on nuclear science, 1989, 36:137-140.
- [2] Moses W W, Dernenzo S E. Cerium fluoride, a new fast , heavy scintillator [J]. IEEE transaction on nuclear science, 1989, 36:173-176.
- [3] 蒋海音,王德武,刘建飞,等.用北京同步辐射光源研究氟化物闪烁体的荧光时间衰减特性[J].高能物理与核物理,1996,20(12):1103—1109. (Jiang H Y, Wang D W, Liu J F, et al. Study of fluorescent decay properties of fluorides with Beijing synchrotron radiation source. *High Energy Physics and Nuclear Physics*, 1996, 20(12):1103—109)
- [4] 王兆民,许咨宗,宫竹芳,等.强辐射场下氟化铈的荧光特性[J].原子与分子物理学报,1998,15(2):229-234. (Wang ZM, Xu ZZ, Gong Z F, et al. The fluorescence characteristic of cerium fluoride under strong irradiation field. *Chinese Journal of Atomic and Molecular Physics*, 1998, 15(2): 229-234)
- [5] 刘庆兆. 脉冲辐射场诊断技术[M]. 北京:科学出版社, 1994. 158—164. (LIU Q Z. The diagnosis technology of pulse radiation field. Beijing: Science Press, 1994. 158—164)
- [6] 胡孟春,叶文英,周殿忠. 460mm ×600µm 硅 PIN 探测器 灵敏度和时间响应测量[J]. 核电子学与探测技术,2002,22(4):339-340. (Hu M C, Ye W Y, Zhou D Z. The measurement of 460mm ×600µm silicon PIN detector sensitivity and time respond. *Nuclear Electronics &Detection Technology*,

2002, 22(4):339-340)

- [7] 刘 荣,林理彬,王大伦,等. 用大角度伴随粒子法测量聚变中子产额及其校对实验[J]. 核电子学与探测技术, 1999, **19**(6):428-432. (Liu R, Lin L B, Wang D L, et al. Measurement and check of fusion neutron yield with the method of associated particles at a large angle. *Nuclear Electronics & Detection Technology*, 1999, **19**(6):428-432)
- [8] 陈家斌, 冯杰, 郑志坚, 等. 塑料闪烁探测器氘氚中子灵敏度标定[J]. 强激光与粒子束, 1995, 7(1):141-145. (Chen JB, Feng J, Zheng Z J, et al. The sensitivity calibration of the plastic scintillation detectors for D-T neutrons. *High Power Laser and Particle Beams*, 1995, 7(1):141-145)
- [9] 刘 荣, 蒋 励, 王 玫,等. 在特定实验条件下的散射中子本底研究[J]. 核电子学与探测技术, 2001, **21**(4):241-243. (Liu R, Jian L, Wan M, et al. Study on scattering neutron background under specific condition of experiment. *Nuclear Electronics & Detection Technology*, 2001, **21**(4): 241-243)
- [10] 胡孟春,叶文英,周殿忠,等. 一种大电流光电倍增管在脉冲测量中的应用[A]. 核电子学与核探测技术学术交流会论文集[C]. 2002.
 134 37. (Hu M C, Ye W Y, Zhou D Z, et al. The application of a large current photomultiplier tube in the pulse measurement. Proceedings on nuclear electronics & detecting technologies. 2002. 134 137)
- [11] 阿利比科夫 A,等. 脉冲电离辐射探测器[M]. 北京:原子能出版社, 1983, 7:74—97. (Alibikev A, et al. Pulse ionized radiation detector. Beijing: Science Press, 1983, 7:74—97)
- [12] 胡孟春,叶文英,彭太平,等. 一种对中子相对不灵敏的大动态脉冲 辐射探测器[J]. 高能物理与核物理,2003,27(4):80-84. (Hu M C, Ye W Y, Peng T P, et al. A large dynamic range gamma radiation detector with insensitivity to neutron radiation. *High Energy Physics and Nuclear Physics*, 2003, 27(4):80-84)
- [13] 胡孟春,周殿忠,李如荣,等. CeF₃闪烁探测器 灵敏度测量[A]. 第 11 届全国核电子学与探测技术年会论文集[C]. 2002. 165—167. (Hu M C, Zhou D Z, Li R R, et al. The gamma rays sensitivity measurement of CeF₃ scintillator detector. Proceedings of the 11th national conference on nuclear electronics & detection technology. 2002. 165—167)
- [14] 胡孟春,叶文英,周殿忠,等. 脉冲中子环境中的近距离弱脉冲 辐射探测系统[A]. 第八届高功率粒子束暨高压学术交流会论文集[C].
 2001. 214—216. (Hu M C, Ye W Y, Zhou D Z, et al. The near distance weak pulse radiation detection system in pulse rr combined field. Proceedings of the 8th national conference on high power particle beams and high voltage. 2001. 214—216)

DD neutron relative sensitivity of cerium fluoride scintillation detector

HU Meng chun¹, YE Weng ying², ZHOU Diarr zhong¹, WANG Zhen tong¹, ZHANG Jian hua¹, HU Qing yuan¹, YANG Hong qiong¹, YANG Gao zhao¹

(1. Institute of Nuclear Physics and Chemistry, CAEP, P. O. Box 919-212, Mianyang 621900, China;

2. Institute of Electronic Engineering, CAEP, P. O. Box 919-519, Mianyang 621900, China)

Abstract : Two kinds scintillation detectors are composed of cerium fluoride (CeF_3) and ST401 with photomultiplier tube respectively, the experimental sample of CeF_3 is the newly developed inorganic scintillator in China in recent years, ST401 is a common plastic organic scintillator. The DD neutron relative sensitivity of the two scintillation detectors are measured in DD neutrons source radiation field, which indicate that the DD neutron sensitivity of CeF_3 scintillation detector is less than one-tenth that of ST401 with same volume.

Key words: Cerium fluoride (CeF₃); Inorganic scintillator; Radiation detection; DD neutron source; Neutron sensitivity