Article ID: 1001-4322(2004)02-0154-05

# Investigation on repetition-rate electron beam generator for pumping non-chain HF/DF chemical laser<sup>\*</sup>

GAO Huai-lin, YANG Hua, YANG Yan-xia

(Laser Laboratory, Institute of Electronics, the Chinese Academy of Sciences, P. O. Box 2702-45, Beijing 100080, China)

**Abstract** : A 1Hz repetition-rate electron beam generator is being developed to pump HF/DF chemical laser. The pulse width , peak current and peak voltage of the electron beams are 100ns , 100kA and 450kV , respectively. It uses two diodes , two water-filled pulse forming lines , three laser-triggered switches , a pulse transformer and one set of energy storage capacitors. The primary , secondary and mutual inductances of the pulse transformer are 331nH , 26. 5mH and  $1.9\mu$ H , respectively. The capacitance of each pulse forming line is 8.15nF. Its inductance and impedance are 300nH and 6.2 $\Omega$  , respectively. The breaking factor is 0.3 at 1MV charging voltage. The output energy of a nonchain HF/DF chemical laser pulse is expected to be 250J at 3.8 $\mu$ m.

Key words : Repetition-rate electron beams generator ; HF/DF chemical laser ; Pulsed transformer CLC number : TN248.5 Document code : A

With the recent successful application of a single pulse electron beam in pumping high energy laser in the inertial confinement fusion, inertial fusion energy and directional energy laser weapon<sup>[1-5]</sup>, the repetition-rate electron-beam-pumped high energy, high power laser become very interested in these fields today. Thus many laboratories and scien-

tists are involved in developing the repetition-rate electron beam generators to pump gas laser for the laser wavelength from 0.248mm to 10.6 $\mu$ m<sup>[6-9]</sup>. This paper presents our researches on the key technologies of repetition-rate electron beam generator.

#### **1** Repetition-rate electron beam generator

The generator shown in Fig. 1 consists of a pulse transformer (PT), pulse forming lines (PFL1,PFL2), electron-beam diodes ( $D_1$ ,  $D_2$ ), primary capacitor ( $C_0$ ), laser-triggered gas switches ( $G_0$ ,  $G_1$ ,  $G_2$ ), and a high voltage power. The charging voltage on  $C_0$  is 100kV, the peak voltage on the PFL is 1MV. The design parameters for electron-beams are 0.5MeV, 100kA and 100ns. The expected HF/DF laser energy is 250J at 3.8µm.



Fig. 1 Cross-sectional view of the repetition-rate electron-beams pumped non-chain HF/DF laser system

\* Received date 2003-06-26 ; Revised date 2003-09-28

Foundation item Supported by Natural Science Foundation of China( 19885009 )

Biography GAO Huai-lin( 1961— ), male, professor of physics, research on the technology and application of high energy laser today; E-mail ghl @ mail. china. com.

No. 2

## 2 Structure of the pulse forming line

For the water-filled pulse forming lines, their diameters are calculated on the breaking factors of the PFL according to the J. Martin empirical formula<sup>[10]</sup>. If the diameters of the outline and the inner-line of PFL are R and r, when a voltage pulse is applied to the PFL with a peak voltage  $V_{PFL,P}$ , the electric field, breakdown electric field and breaking factors on the inner surface of the outer line of the PFL are defined as

$$E_{R}^{+} = \frac{V_{\text{PEL},P}}{R \ln \frac{R}{r}}, \quad F_{R}^{+} = \frac{0.23\alpha}{t_{\text{eff}}^{1/3} A_{R}^{0.058}}, \quad K^{+} = \frac{E_{R}^{+}}{F_{R}^{+}}$$
(1)

respectively, where  $A_{\rm R}$  is the area of the inner surface of outline,  $t_{\rm eff} = 0.5 \,\mu s$  is the charging time of the voltage higher than 63% of the breakdown voltage on the PFL,  $\alpha$  is the modified factor. It is defined as

$$\alpha = 1 + 0.12 \left( \frac{R/r - 1}{R/r + 1} \right)^{1/2}$$
(2)

For the outer surface of the inner line , the parameters are

$$E_r^- = \frac{V_{\text{PFL},P}}{r \ln \frac{R}{r}}$$
,  $F_r^- = \frac{0.56\alpha}{t_{\text{eff}}^{1/3} A_r^{0.069}}$ ,  $K^- = \frac{E_r^-}{F_r^-}$ 

The dependence of  $K^+$  and  $K^-$  on r and  $\zeta = R/r$  is shown in Fig. 2. The calculation shows that only at  $\zeta = 2.5$ , the two curves overlaid. At r = 8 cm,  $K^+ = K^- = 0.30$ . It is just the breaking factors of the PFL we chose. Here,  $\zeta = 2$ . 5, r = 8 cm and R = 20 cm.



Fig. 2 Breaking factors of the PFL,  $K^+(1)$  and  $K^-(2)$  versus the radius of the inner liner

For propagation time  $\tau = 100$  ns in PFL, its geometrical length L = 1.68 m as  $\tau = \sqrt{\varepsilon_r} \frac{2L}{C}$ , where  $C = 2.998 \times 10^8$  m/s is the velocity of light in vacuum,  $\varepsilon_r = 80$  is the dielectric constant of the de-ionized water. Thus, the capacitance ( $C_{\rm PFL}$ ), inductance ( $L_{\rm PFL}$ ) and impendence ( $Z_{\rm PFL}$ ) of each PFL are given by the following equations

$$C_{\rm PFL} = \frac{\varepsilon_{\rm r}}{18} \frac{L}{\ln \frac{R}{r}} = 8.15 \,\mathrm{nF} \,, \quad L_{\rm PFL} = \frac{\mu_0}{2\pi} L \ln \frac{R}{r} = 330 \,\mathrm{nF} \,, \quad Z_{\rm PFL} = \frac{60}{\sqrt{\varepsilon_{\rm r}}} \ln \frac{R}{r} = 6.2\Omega \quad (4)$$

where  $\mu_0 = 4\pi \times 10^{-7}$  H/m is the magnetic permeability in vacuum the unit of *L* is m. All of the parameters of the PFL are listed in table 1.

Table 1 Parameters of each pulse forming line and the parameters of the repetition rate pulsed transformer

| L    | R    | r    | $C_{\rm PFL1}$ | $L_{\rm PFL1}$ | $Z_{ m PFL1}$ | $	au_1$ | $V_{\rm PFL1}$ | $E_{\rm PFL1}$ | $Z_{ m PFL1}$ | $d_{ m p}$ | $d_{\rm i}$ | $L_{\rm p}$ | $L_{\rm s}$ | М   |
|------|------|------|----------------|----------------|---------------|---------|----------------|----------------|---------------|------------|-------------|-------------|-------------|-----|
| /m   | / m  | / m  | ∕nF            | ∕nH            | $/\Omega$     | /ns     | /MV            | ∕kJ            | $/\Omega$     | ∕cm        | /cm         | ∕nH         | ∕mH         | ∕mH |
| 1.68 | 0.20 | 0.08 | 8.15           | 100            | 6.2           | 100     | 1              | 7              | 6.2           | 36.6       | 16          | 331         | 26.5        | 1.9 |

## **3** Structure of the pulsed transformer

The air core pulsed transformer is shown in Fig. 3.

The windings are composed of 15-turn 2mm thick copper sheet and multi-layer high density polyethylene (HDPE) films. The physical performances of this material and other available insulation films for our test are listed in table 2 . Because the HDPE has a relatively high breakdown field  $\,$  , 3 7 0 kV / cm and small dissipation

factor ,  $0.08 \times 10^{-3}$  at 1MHz , we chose it as the first candidate material. The 2mm thick copper sheet is successively wound on a stainless steel cylinder-transmission line of secondary high voltage pulse. HDTL thin film is used as the turn-to-turn insulation material. The widths of the copper sheet of the primary and secondary coils are 40cm ,  $W_{\rm p}$  =  $W_{\rm s}$  = 40cm. The width of HDTE film is 60cm. The outermost turn of the 15-turn windings is the single primary coil. Other 14 turns are the secondary coils of the pulsed transformer. The diameter of the innermost turn is  $d_i =$ 16cm. The interval distance between turns is 5mm. The total thickness of the secondary windings is 10.3 cm. The diameter of the primary single turn is  $d_{\rm p}$ = 36. 6cm. The total thickness of the transformer windings is 12cm. The average diameter of the secondary coil is defined as



Fig. 3 Structure and the dimension of the pulsed transformer Table 2 Available insulation films for the high voltage pulsed transformer

|      | dielectric constant | dielectric strength     | dissipation factor   |  |  |
|------|---------------------|-------------------------|----------------------|--|--|
|      | at 1MHz             | /( $kV \cdot mm^{-1}$ ) | at 1MHz              |  |  |
| HDPE | 2.34                | 37                      | $0.2 \times 10^{-3}$ |  |  |
| PTFE | 2.1                 | 48                      | 0.5                  |  |  |
| FET  | 2.1                 | 24                      | 0.5                  |  |  |
| PET  | 4.0                 | 42                      | 20                   |  |  |

$$\bar{d}_{s} = \left(\frac{3 + d_{i}^{2} + 2 \times d_{p} \times d_{i} + d_{p}^{2}}{6}\right)^{1/2} = 23.4 \text{cm}$$
(5)

The primary and secondary inductances , the coupling coefficient and mutual inductance of the pulse transformer are get from the following equations <sup>[11,12]</sup>

$$L_{\rm p} = \frac{\mu_0 \pi}{4} \frac{d_{\rm p}^2}{W_{\rm p}} K_L = 331 \,\mathrm{nH} , \quad L_{\rm s} = \frac{\mu_0 \pi}{4} \frac{d_{\rm s}^2}{W_{\rm s}} K_L = 26.5 \,\mu\mathrm{H}$$
$$K = \frac{\overline{d}_{\rm s}}{d_{\rm p}} (\frac{W_{\rm s}}{W_{\rm p}})^{1/2} = 0.64 , \quad M = K \sqrt{L_{\rm p} L_{\rm s}} = 1.9 \,\mu\mathrm{H}$$
(6)

where , n = 14 is the turns of the secondary coil ,  $K_L \approx 1$  is the inductance-modified factor<sup>[12]</sup>. All of the parameters of the transformer are listed in table 1.

### 4 Equivalent circuit model and analysis

The electrical circuit of the system is shown in Fig. 4a.  $C_0$  and R are the primary capacitor and the charging resistor.  $G_0$ ,  $G_1$  and  $G_2$  are laser-triggered gas switches.  $L_p$  and  $L_s$  are the inductances of the primary and secondary windings of the pulse transformer.  $C_{PFL1}$  and  $C_{PFL2}$  are the capacitances of PFL1 and PFL2.  $C_{T1}$  and  $C_{T2}$  denote the capacitances of the transmission lines of the secondary high voltage pulse on the left side and right side, respectively.  $C_{PT}$  is the total distributed capacitance of the copper sheets in the pulsed transformer.  $Z_{D1}$  and  $Z_{D2}$  are the impedances of the two field-emission diodes.



Fig. 4 Schematic of the electric circuit ( a ) and the equivalent circuit of the electron beams generator ( b )

For 2m oil transmission line (  $\varepsilon_r = 2.3$  ), its capacitance is 0.56nF, thus  $C_{T1} = C_{T2} = C_T/2 = 0.28$ nF. For the transformer windings, the capacitance between the innermost two turns of the coil is

$$C_{\rm T-T} = \frac{\varepsilon_{\rm r}}{18} \frac{W_{\rm s}}{\ln \frac{r_{\rm 1} + \Delta r}{r_{\rm 1}}} = 0.9\,{\rm nF}$$
(7)

thus , the series capacitance of the windings is

$$C_{\rm PT} \approx \frac{1}{n+1} C_{\rm T-T} = 0.06 \,\mathrm{nF}$$
 (8)

and the total capacitance on the secondary side of the transformer is

$$C_{\rm s} = C_{\rm PFL1} + C_{\rm PF12} + C_{\rm PT} + C_{\rm TL1} + C_{\rm TL2} = 16.9\,\rm nF$$
(9)

and the equivalent circuit can be simplified as in Fig. 4( b ). For the 100% energy transfer from  $C_0$  to  $C_s$ ,  $L_pC_0 = L_sC_s$  and K = 0.6 must be satisfied in the primary and secondary circuits in the double resonant charging model. Thus , the capacitance of the primary energy storage capacitor( $C_0$ ) is calculated to be  $C_0 \approx 1.4 \mu$ F from above condition and the resonant frequency in these two circuit loops is  $\omega = 1/(L_pC_0)^{1/2} = 1/(L_sC_s)^{1/2} = 1.5$  MHz. The voltage gain of the secondary side to the primary side is  $\alpha = V_s/V_p = (C_0/C_s)^{1/2} = (L_s/L_p)^{1/2} = 9$ . The voltage waveform on the secondary capacitor versus time is as<sup>[13,14]</sup>

$$V_{\rm s}(t) = \frac{\alpha V_0}{2} \left[ \cos \frac{\omega t}{\sqrt{1-K}} - \cos \frac{\omega t}{\sqrt{1+K}} \right] \quad (10)$$

where ,  $V_0$  is the primary voltage on  $C_0$ . The normalized output voltage waveform is shown in Fig. 5. We can see that the charging waveform inverts the time  $t_1 = 1.77$  ms and reaches the maximum value on  $C_s$  at  $t_2 = 2.65$  ms. The rise-time of the voltage pulse from  $t_1$  to  $t_2$  is 880ns.



### 5 Conclusion

In the double resonant charging model , the effective charging time is  $0.88\mu$ s. It is short enough for the de-ionized water-filled pulse forming line. With the pulse transformer , the voltage gain is 9. The transformer windings have enough capacitance to prevent the coil from electrical breaking. If the coefficient of the energy from the electricity to laser is  $3.3\%^{[15]}$ , the output energy of HF/DF laser can reach to 250J at  $3.8\mu$ m. The high-energy laser can run at 1Hz repetition-rate.

#### **References** :

- [1] Sethian J D, Obenschain S P, Gerber K A, et al. Large area electron beam pumped krypton fluoride laser amplifier J]. Rev Sci Instrum, 1997, 68: 2357-2366.
- [2] Owadano Y, Okuda I, Matsumoto Y, et al. Super-ASHURA KrF laser program at ETI[ J]. Fusion Energy ,1996, 3:215-221.
- [3] Ueda K, Takuma H. Scalability of high power KrF laser for ICF driver, in short-wavelength laser and their application [M]. Berlin: Spring-Verlag, 1988. 178-1987.
- [4] Ivanov N G , Lacour B , Losev V F. Pecularities of an e-beam pumped non-chain HF laser A ]. SPIE C ]. 2001 ,4184 :145-148.
- [5] Taraskeo V F, Bakshie H, Lomaev M I, et al. Efficient non-chain chemical HF laser initiated by e-beam and self-sustained discharge[ A]. SPIE [C]. 1998, 3268:228-235.
- [6] Okuda I, Takahashi E, Matsushima I, et al. High-repetition-rate electron-beam-pumped KrF laser technology for inertial-fusion energy driver[J], Jap J Appl Phys, 2001, 40:1152-1155.
- [7] Sethian J D, Myers M, Smith I D, et al. Pulsed power for a rep-rate electron beam pumped KrF laser[J]. IEEE Transaction on Plasma Science 2000, 28:1333-1337.
- [8] Takao K, Masugata K. Generation of multiple pulses with extremely short pulse repetition interval J. IEEE Transaction on Plasma Science, 2000, 28:1382-1385.
- [9] Ionin A, Mayerhofer W, Walther S, et al. Room-temperature repetitively pumped e-beam sustained carbon monoxide laser[ A]. SPIE[ C]. 1995, 2502:44-50.
- [10] Frazier G B, Owl II. Pulsed-electron-beam generator J. J. J Vac Sci Technol, 1975, 12:1183-1187.

- [11] Erickson D J, Caird R S, Fowler C M, et al. A mega-volt pulse transformer power by a fast plate generator [R]. LAN L LA-UR-83-1671, 1-23.
- [12] Knoepfel H. Pulsed high magnetic fields [M]. North-Holland Publishing Company ,1970. 317.
- [13] Rohwein G J , Trace I. A transformer-charged electron beam generator [J]. IEEE Transaction on Nuclear Science , 1975 , 22:1013–1015.
- [14] Simcos G K, Schubert C J. Transformer type accelerator-compact sources of energetic electrons J]. J Vac Sci Technol , 1973 , 10:968-971.
- [15] Apollonov V V, Kazantsev S Y, Oreshkin V F, et al. Nonchain electric-discharges HF( DF) laser with a high radiation energy J. Quantum Electronics, 1998, 28:116–118.

## 用于泵浦非链式 HF/DF 化学激光器的重复频率电子束发生器研究

### 高怀林,杨华,杨艳霞

(中国科学院 电子学研究所 激光实验室,北京 100080)

摘 要: 正在研究的 1Hz 重复频率电子束泵浦 HF/DF 化学激光器,预期产生的电子束能量为 0.5MeV、束流强度为 100kA、束流脉冲宽度为 100ns。在该系统设计中,使用了一个脉冲变压器来对脉冲成形水线进行双共振充电。脉冲变压器的初级、次级电感与互感分别为 331nH 26.5μH 与 1.9μH。脉冲成形线的电容、电感与阻抗分别为 8.15nF 300nH 与 6.2Ω。脉冲成 形线在 1MV 的峰值充电电压下的击穿因子为 0.3。在 3.3% 的能量转换效率条件下,预期可以产生的 HF/DF 激光脉冲能量为 250J 以上。

关键词: 重复频率电子束发生器; HF/DF化学激光器; 脉冲变压器