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Abstract:

male subjects during rest were analyzed.

The nonlinear dynamical characteristics of respiratory variables recorded from
Three fundamental techniques were employed:
correlation dimension D, and the largest Lyapunov exponent LLE calculations as well as the
Furthermore, a novel approach named C, complexity was introduced,
of the
The results suggest that although the pattern of breathing

surrogate data analysis.

which may improve the understanding of the underlying physiological processes
autonomic/automatic nervous systems.
in the resting human might have properties consistent with that of a chaotic system, the
evidence is not conclusive because the LLE values in original data do not differ from the LLE
values in the surrogate data. However, the data suggest that the values of C, complexity of
several respiratory variables are significant. The results also suggest that many aspects of
particularly breathing may show a non-random complex nature. Moreover, this method may

allow us to quantify changes in the complexity of respiratory variables in response to challenges

in a novel manner.

Key Words: Correlation dimension; Largest Lyapunov exponent; Surrogate data analysis; C,

complexity; Respiration

1 Introduction

The pattern of breathing contains rhythmic

components that are generated and reflexly
modulated within the respiratory neural networks
of the brain stem in a nonlincar manner. The
networks of these units with oscillatory behavior
interact in a complex way to produce respiratory
rhythms, which are either further organized by a
pattern generator or might be self-organizing .
As the result,

respiratory

the complex time courses of the
induced by the

interactions among the units in the processes,

system may be

however, the underlying sub-processes include

well-determined behavior. Nonlinear dynamics

have been shown to be important in describing a
large number of complex physiological systems.
Therefore, it is presumed that these complex time
courses can be characterized more adequately by
nonlinear dynamical analysis rather than by linear

time series analyses P,
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Most investigations of the dynamical behavior

of biological systems have employed fractal
dimension and /or the largest Lyapunov exponent
measurements to distinguish whether or not the
underlying system's behavior is deterministic.
There were several previous reports related to the
study of breath pattern using chaotic dynamics.
Donaldson P! assessed the respiratory behavior in
the

He studied resting adults and concluded

humans using largest Lyapunov exponent

analysis.
that resting respiration was chaotic. However, this

approach could not distinguish a nonlinear

dynamical system from linearly filtered noise.
Pilgram et al'™ employed correlation integral and
correlation dimension techniques and analyzed the
series of infants  during
(REM) Their
conclusion was that breathing during REM sleep
Small et al!”

utilized a new technique for calculating correlation

respiratory  time

rapid-eye-movement sleep.

was deterministic.  Furthermore,
dimension of breath-by-breath data to measure the
respiratory patterns of infants during quite sleep.
They concluded that their data were consistent
with respiration being chaotic. In reaching the

the authors in both
the data

calculating the correlation dimension.
al. (510

conclusions, investigations

employed surrogate techniques  for
Sammon et
analyzed respiratory data of rats in their
series studies.
that the
oscillator with a single degree of freedom in
What  the

respiratory behavior became more complex with

From the results they suggested

respiratory  system behaved as an

anesthetized  vagotomized rats.
the vagus intact indicated the underlying system
possibly exhibited low-order chaos.

However, whether a process is chaotic or not
is subject to potential errors in computation of
Indeed,

cautioned about the conclusion that chaos exists

indexes of chaos. several authors have

simply from satisfying a single criterion of

chaos "1,
the
mathematical techniques, have been developed as
of

Undeniably, the correlation dimension

and Lyapunov exponent, as sophisticated

powerful adjuncts to the graphical analysis

phase space.  However, there may be several

limitations of these measurements. For example,
a large number of data points are required to
ensure numerical convergence; the algorithms are
very sensitive to the effects of noise; a stationary
time series is also theoretically required for using
these algorithms.  All of the limitations might
cause enormous erroneous conclusions. Obviously,
human breath-by-breath data sets will be noisy
because of multiple factors, including voluntary
control, interacting to control respiration, and they
usually will be short because it is difficult to
constrain  human  volunteers  within  specific
conditions for long periods of time to obtain
representative datal',

In this study, three different approaches were
employed to explore whether or not the pattern of
breathing is deterministic.  Firstly, the correlation
of the breath-by-breath data was

which was a of the
complexity of the process being investigated and

in the

dimension
calculated, measure
characterized the distribution of points

phase space.  Secondly, the largest Lyapunov
exponent was estimated, which was a measure of
the predictability of the process and quantified the
exponential divergence of initially close state-space
Thirdly, data

the

analyzed using the same approaches applied in the

trajectories. surrogate were

generated  from original time series and

original data. The surrogate data analysis has

proven to be a valuable test of nonlinear
deterministic systems versus uncorrelated noise !,
The results suggested that, particularly, the pattern
of breathing in the resting human might have
properties consistent with that of a chaotic system.
However, the evidence is not conclusive because
the values for Lyapunov exponents of the raw
data do not differ from the values for Lyapunov
The

the underlying

exponent of the surrogate data. issue has

arisen as to how to describe
of breath-by-breath

sufficient evidence

system time series when
could not be obtained by
Can the

system behaviour using

chaotic  approach. one measure

characteristics of the
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different approach of the nonlinear dynamics, such
as complexity analysis and how does one measure
it?

The present study aimed to assess patterns of

fluctuations of the breath-by-breath data using
nonlinear dynamics. For this purpose, we
introduce a recently developed complexity
approach named C, complexity, = which may

improve the understanding of the underlying
physiological processes of the autonomic/automatic
nervous systems.  The complexity analysis has
been successfully applied in the investigation of
information  transmission in  human cerebral
cortex 19 EEG studies in epilepsy patients !,
heart rate variability sequence analysis ' and
inspiratory airflow pattern induced by visuomotor
task 1.

measurement of complexity named C, complexity

reaction time Furthermore, a novel
has been proposed for overcoming the deficiency
in doing complexity calculation. As we know,
when calculating complexity a series needs coarse
graining which usually results in losses of lot of
significant details. Complexity €, may avoid such
a deficiency by defining C, as a ratio of the areas
of the random component with time axis and the

whole complex series with time axis!"”.

2 Method

2.1 Data collection and preparation

Seven healthy male volunteers who were free
studied.
Recordings of tidal volume (Vt), inspiratory (7ins)

of cardiopulmonary disease  were
and expiratory (Texp) durations, breath frequency
(Bf), ventilation (Ve), breath-by-breath O, uptake
(V0O,), CO, output (VCO,) and

exchange ratio (RQ) were made over one hour in

respiratory

resting state.
200 Hz using a
AIRSPEC, Biggin Hill, UK).

Data were sampled at a rate of
spectrometer (QP9000
Data from the first

mass

5 min of each run were discarded. Data are x=
SEM and T-tests statistically were used to show

significance from zero (P<0.05).
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[20]

A procedure described by Hathorn®™ was used

to obtain equal space data. The value of each
breath measurement was taken as a constant and a
continuous time histogram of all variables was
The amplitude of the histogram was
at 0.4 s (2.5 Hz) intervals to

produce an equal spaced time series.

constructed.
then determined
To eliminate some of high frequency
components introduced by representing the breath
data as discrete step following changes, the time
series were passed through a Hanning filter using
the following function:
x (k)y=x (k —1)x0.25+x (k) x0.5 +x (k+1)x0.25, where
x(k) was a data point.
2.2 Correlation dimension
Grassberger and Procaccia ! developed an
algorithm to yield the correlation dimension D,,
dimension ~ with

which was defined as a

non-integer values. In determining this measure,

pairwise distances are calculated by selecting

spheres centered at randomly chosen reference

points on the attractor. The numbers of neighbors
falling within a sphere of radius r are counted by
successively higher values of r.  Experimentally,
the slope of a plot of the number of points inside
a sphere of radius r (i.e. C(r) plotted against the

radius r; both in logarithmic scales) yields the

correlation dimension D,*.
2.3 The largest Lyapunov exponent
This is

dynamic nature

of the

completely

a fundamental measure

of a system that
described the characteristics of the trajectories in
may be

phase space . Lyapunov exponents

negative, zero or positive. If the exponent is
negative, the trajectories converge over time and
the system is not chaotic. If the exponent is
positive, then the trajectories diverge; that is,
insignificant differences in the initial conditions
become significant over time. In this situation,
the evolution of the trajectory is sensitive to ini-
tial conditions and, by definition, chaotic under
the condition of no noise contaminations for origi-
nal signals. In the present study, the largest Lya-

punov exponent was estimated via the fix-time
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evolution program of Wolf and colleagues™..
2.4 Surrogate data analysis
Theiler et al ™

which surrogate data were generated from the

developed an approach by

original data. It allows testing of the null
hypothesis that the pattern of variation is a result
Fast

to

of linearly autocorrelated gaussian noise.
(FFT)
transform the original data into frequency domain.

Fourier transform was employed
The amplitude components of the FFT analysis
were retained, and the phase relationships were
randomized prior to using an inverse FFT to
generate the surrogate data.
2.5 C, complexity

In order to define C,, we assume that
complex time series (CTS) could be divided into
If the
regular component of CTS can be obtained, then
the random part of CTS will be the difference
between the CTS regular

the C, is defined as a

two parts: regular and random components.

whole and its

component.  Therefore,
ratio of the areas of the random component and
CTS with their time axis. If C~1 then CTS is
If C~0, then CTS

In this study, the frequency

completely random. is
completely regular.
characteristics of CTS were used to determine the
All variables had C, which

was significantly greater than zero; that is they all

regular component.

showed complexity to different degrees.

B 6l

0.8}

LBTPS

0.0L—

(B)

1 1
0 700 1400

Number of breath

Breath-by-breath data (LBTPS)

2.6 Statistics
All the data are expressed as the x =SEM.

Data were analyzed using the i-test and significant
differences between the raw data and the surrogate

data are presented when P<0.05.

3 Results

1A of tidal

volume calculated in breath-by-breath data in one

Figure shows original traces

male subject with a 200Hz original sampling

frequency over 55 min. Figure 1B  gives the
tow-dimensional return maps generated from the
tidal volume time series during resting state in the
subject. The two co-ordinates of each point were
calculated as x(¢#) and x(i+7), where 7 is time lag
and was 1 breath data point. Figure 2 presents
the saturation curves of the correlation dimension
(Fig. 2A) the

(Fig. 2B) computed from the tidal volume for both

and largest Lyapunov exponent
original breathing signals and their surrogate data
in the group of seven subjects. The correlation
dimension values remain relatively stable over the
range of embedding dimension from 8~12 for both
original and surrogate data. It can be seen that
the curve of original data was significantly (P<

0.05) lower at all points compared with those

obtained from their surrogate data. However, in
L6}
0.8
*
1 1
0.0 08 1.6

Breath-by-breath data (LBTPS)

Fig.1 (A) The traces of tidal volume calculated for each breath in one male subject over 55 min;

(B) Two-dimensional phase space portraits (return map) using the breath-by-breath data, x(z), of

tidal volume.

time delay and equals 1 for the variable

The two co-ordinates of each point were calculated as x(¢) and x(t+7), where 7 is
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Figure 2B, the two curves generated from original
and surrogate data were much closer together and

were not significantly different from each other.
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Fig.2 Averaged group values obtained from the time
series of tidal volume in seven male subjects.
(A) Correlation dimension D,; (B) The largest Lya-
punov exponent LLE. M: Real data; @: Surrogate data
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of the

correlation dimension and the largest Lyapunov

Table 1 gives the group values

exponent of eight respiratory variables for both
The values of D, for

almost all of variables in their original form are

raw and surrogate data.

around 2.1 to 2.7, except for respiratory exchange
ratio RQ. On the contrary, the values of their
surrogate data are ranged from 4.6 to 6.5, which
are significantly different from that of the raw
(P<0.05).
difference between D, of original RQ and that of
its surrogate data (1.4+0.10 vs. 3.8+0.20, P<0.05).

For most of respiratory variables, except for RQ,

signals There 1is also significant

the values of the largest Lyapunov exponent of
original data are positive ranged from 0.19 to 2.8,
which are more or less similar to that of the
surrogate data. The value of the raw RQ data
was negative (—0.02+0.02).

Figure 3A presents the original traces of
respiratory exchange ratio RQ calculated for
breath-by-breath data from one male subject (as
same as Figure 1) over 55 min. Figure 3B shows
the traces of RQ after resampling at 2.5 Hz. The
regular part of CTS for RQ can be found in
Figure 3C in which the frequency characteristics
of the CTS were used to determine its regular
component. We used both fast Fourier transform

(FFT) and inverse-FFT implemented in Matlab

Table 1 Largest Lyapunov exponents (LEr & LEs: real and surrogate data, bits/s) and correlation dimension

(Dyr & Dys: real and surrogate data) in seven male subjects

LEr Do Dss
Vt 0.19+0.04 0.18+0.03 2.3+0.10 4.7£0.30*
Ti 0.21+0.05 0.14+0.02 2.7+0.10 5.2+0.30*
Te 0.23+0.02 0.16+0.03 2.5+0.10 6.5+0.70*
Bf 0.18+0.03 0.15+0.02 2.4+0.10 6.4+£0.30*
Ve 0.21+0.03 0.19+0.02 2.1+0.20 4.6+0.20*
VO, 0.28+0.07 0.23+0.04 2.3+0.10 4.9+0.40*
VCO, 0.25+0.02 0.22+0.03 2.3+0.10 5.9+0.40*
RQ -0.02+0.02 0.09+0.03 1.4+0.10 3.8+£0.20*

Values are x+SEM. *, significant difference, raw data vs. surrogate data (P<0.05)
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Fig.3 (A) Original
exchange ratio) obtained from for one male subject;

(B) The traces of RQ after resampling at 2.5 Hz;

traces of RQ (respiratory

(C) Traces of the regular part of the complex time
series (CTS)

(v5.2, The Math Works, Inc., 1998) to achieve
this procedure. Complexity C, measurements of
the time series of the eight respiratory variables,
which includes breath-by-breath O, uptake (VO,)
and CO, output (VCO,), respiratory exchange rate
(RQ), inspiratory and expiratory duration (77 &
Tg), breath frequency (BF), tidal volume (Vt) and
ventilation equivalent (Ve), are presented in Figure
4. Al variables have C, which are significantly
than that is, they all show

greater zZero;

complexity of different degrees. However, the C,
value for RQ is less than 0.05, that is, it is more

regular, rather than random signals. On the other

hand, several respiratory variables present a much
more random nature, with a C, of >0.2.

03F

0.2

C, complexity

o yCO, VO, RQ Ve Vt BF T TE
Fig.4 Complexity (C,) of 8 respiratory variables including
breath-by-breath O, uptake (VO,) and CO, output (VCO,),
respiratory exchange rate (RQ), inspiratory and expiratory
duration (77 & Tg), breathe frequency (BF), tidal volume
(Vt) and ventilation equivalent (Ve). All data are x+SEM

and significant from zero (P<0.05)

4 Discussion

Recently, there have been many claims of
evidence of chaos in a wide range of physical
of the

implication that a chaotic system is deterministic,

and physiological systems. Because
presentation of evidence for chaos could mean
that the system under study can be described by
relative simple mathematical relationships.  But
there have been many presentations of incorrect
of the of

In almost every case, the weak link

application methods nonlinear
mathematics.
in the argument was the supposition that a single
test providing evidence of chaos was adequate.
The method of data has

provided the opportunity to evaluate a relationship

surrogate analysis
by testing the null hypothesis that chaos is present
Theiler et all'V
evaluated the Lyapunov exponent algorithm of
Wolf et al®. They found that the algorithm did

not yield realistic values with

in the randomly generated data.

surrogate data.

Therefore, it should not be surprising that there
were more positive Lyapunov exponent with
surrogate data in the results (Table 1).  The
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implication is that the ventilatory and gas
exchange variables might have been chaotic, but
there is no evidence based on the analysis
performed.

The findings of the present study would
suggest that the pattern of breathing in the resting
human might have properties consistent with that
of a chaotic system (i.e. lower D, in real data
compared to surrogate data and positive Lyapunov
exponents for each of the respiratory variables).
However, the evidence is not conclusive because
the algorithm of Wolf et al for determining
Lyapunov exponent failed to provide a reliable
estimation of the exponents for the surrogate data
(Table 1

contaminations

and Figure 2).  Furthermore, noise

always increase the dimensional
complexity of the real data,
exhibit

Therefore, caution needs

and almost any
experimental  data  will noninteger
correlation dimension™,
to be applied as it has been pointed out several
times that concluding the presence of chaos
simply on the basis of results from one test can
be misleading"",
breath-by-breath

occasionally appears to have properties consistent

No matter how the pattern of

sequence in  resting human

with deterministic system, the evidence is not

strong. It is no doubt that there are some

limitations of attempting to study patterns of

breathing in human. In contrast to the rat model

8~10
I human

studied by Sammon and his co-workers!
subjects have the ability to voluntarily over-ride
Further,

we attempted to strictly control the environment,

the respiratory controller. even though

the possibility of external cues influencing the
pattern of breathing cannot be eliminated™.
In the early fifties von Neumann raised the

concept of complexity and its importance.

[24]

Kolmogorov wrote the real description of

definition of complexity, 1i.e. the algorithmic

complexity.  Kaspar and Schuster ™ gave the
procedures for computing complexity. Xu and his
co-workers 1 defined two  complementary
complexity measures,

and C,

which were C, complexity

complexity, base on Kolmogorov
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complexity algorithm. To avoid coarse graining
during C, and C, complexity calculation, they ™
proposed a new measurement of complexity, C,
complexity, which was defined as a ratio of the
areas of the random component with time axis
and the whole complex series with time axis.
This novel approach has been successfully applied

% and

in studying EEG mutual information !
analyzing inspiratory airflow curve responding to
the influence of a simple visuomotor reaction time
task @ As

breath-by-breath sequences in human subjects we,

an alternative way to measure
in this study, have presented the approach of the

complexity =~ measurement, C,  complexity

measurement.  Although such measures are not
suited to provide direct evidence of deterministic
chaos comparison with the estimation of
correlation dimension and Lyapunov spectra for
respiratory time series, they might allow the
classification of respiratory dynamics and the
identification of  changes in respiratory
complexity?.

Our results suggest that the C, complexity of
the respiratory variables 1is significant. This
method may allow us to quantify changes in the
complexity of respiratory variables in response to
challenges in a novel manner. The results also
suggest that many aspects of particularly breathing
may show a non-random complex nature.
Moreover, the measurement of the C, complexity,
by which the nonlinear behavior of respiratory
could be

terms such stochastic and regular deterministic,

variables interpreted with regards to

may provide significant information  about

respiratory processes. However, the mechanism
responsible for this complexity is unknown, such
as whether it represents chaotic "system" noise or
serves a deterministic function in central nerve
system (CNS) driven respiratory control.

In conclusion, this report has addressed the
limitations of previous studies that have examined
whether respiratory is chaotic.  Unlike in most
previous studies, we used surrogate data method,

not only in measurement of the largest Lyapunov
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exponent but also correlation dimension, to check
whether the apparently chaotic behaviour was due
to linearly filtered noise. The results suggest that
although the pattern of breathing in the resting
human might have properties consistent with that
of a chaotic system, the evidence is not
conclusive because the LLE values in original data
differ from the LLE values in the

surrogate data. the data suggest that

do not
However,
the C, complexity of several respiratory variables

is significant. Moreover, this method may allow

us to quantify changes in the complexity of

respiratory variables in response to challenges in a

novel manner.
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