产渗流土壤入渗性能测量仪的设计及应用*

刘 汗 赵晓芬 潘英华 赵 军 雷廷武

【摘要】 设计了一种在降雨、径流和侵蚀影响作用下测量土壤入渗性能的入渗仪,该装置由针头式降雨部分、 下垫面产流集流部分和观测部分组成。与传统双环入渗仪比较表明:产渗流入渗仪可以测量降雨初期数值较高的 土壤入渗性能,从降雨开始完整地测量土壤入渗性能变化全过程。降雨初期测量土壤入渗率大于双环法测量结果, 随着雨强的增大,土壤入渗性能降低速度也随之加快。

关键词: 人渗仪 设计 土壤入渗性能
 中图分类号: S152.7
 文献标识码: A

引言

目前,测定土壤入渗速率的主要方法有:双环 法、水文法和人工降雨法^[1~3]。双环法不便于在坡面 上使用,必须将坡面整理平整后再用双环入渗仪测 量坡地土壤入渗速率,坡面的连续性势必被破坏。水 文法要求降雨资料详实可靠,对小流域降雨时空变 异性及土壤的位置变异性缺乏具体的描述。人工模 拟降雨法更接近于实际天然降雨情况下土壤水入渗 过程,为无压入渗,通常雨强大小可调,不受地形限 制使用。

此外,还有采用喷灌设施进行人工模拟降雨测 量入渗产流的装置和便于运输的滴头式野外坡地土 壤入渗产流的试验装置^[4~6]。但这些装置普遍受降 雨强度的限制,不能测得早期很高的土壤水入渗率, 初始入渗率受限于雨强大小,在地表发生积水前测 量出的初始入渗率均等于雨强大小,无法真实反映 土壤在降雨初始阶段较高的入渗性能,土壤为处于 供水限制条件下的入渗。

为此,本文设计一种适用于野外和室内测量土 壤降雨入渗性能的产渗流入渗仪。通过人工观测或 高精度相机固定位置拍摄水流在入渗坡面的推进覆 盖面积,利用固定直尺作为比例尺,即可对水流在入 渗坡面的推进过程进行较为精确的观测,该装置提 供了一种测量降雨、侵蚀和径流影响下土壤入渗性 能动态变化过程新途径。

1 计算模型

土壤入渗率为[7]

$$i = \frac{px_1w}{A} + p - \frac{1}{A}\frac{\mathrm{d}Q}{\mathrm{d}t} \tag{1}$$

式中 i---土壤入渗率,mm/h

t——降雨历时,h w——入渗土体宽度,m

*x*₁——产流面坡面长度,m

p——雨强,mm/h Q——径流收集量,L

A——入渗坡面上径流推进所覆盖面积,m²

式(1)中雨强 p 通过降雨器调节至恒定值;入 渗坡面上径流推进所覆盖的面积 A 由高精度相机 实时拍摄,通过计算机影像处理计算而得;产流面坡 面长度 x₁ 由试验前通过调节径流引导槽的长度确 定;w 也就是径流引导槽的宽度;径流收集量 Q 通 过径流收集盒测量得出,同时用秒表记录径流收集 历时,便可计算得出 dQ/dt 项。

2 产渗流入渗仪的工作原理及测定

2.1 产渗流入渗仪结构

产渗流入渗仪结构如图1所示。

产渗流入渗仪的承水箱箱体由不锈钢薄板制成,在承水箱一侧根据人工标定的雨强数值安装有出水孔,在试验过程中能够保持恒定水位,不同高度的出水孔代表不同的恒定雨强。承水箱尺寸为220 cm×70 cm×20 cm,径流引导槽尺寸为

收稿日期: 2006-05-11

^{*} 国家自然科学基金资助项目(项目编号:40635027)和国家"973"重点基础研究发展计划资助项目(项目编号:2002CB111502)

刘 汗 中国农业大学水利与土木工程学院 博士生,100083 北京市

赵晓芬 黄石理工学院机电工程学院 副教授,435003 湖北省黄石市

潘英华 烟台师范学院地理与资源管理学院 副教授,264025 山东省烟台市

赵 军 中国科学院水土保持研究所 高级工程师,712100 陕西省杨凌

雷廷武 中国农业大学水利与土木工程学院 教授 博士生导师 通讯作者

(2)

图 1 产渗流入渗仪示意图 1. 坡面土壤 2. 降雨器支腿 3. 针头 4. 承水箱 5. 出水孔 6. 振动器 7. 径流引导槽 8. 径流侧挡板 9. 影像拍摄系统 10. 径流收集口 11. 径流收集盒 12. 入渗坡面

100 cm×15 cm×10 cm,径流侧挡板尺寸为 200 cm×20 cm。

径流引导槽由薄钢板冲压成形,在表面涂刷万 能胶水,并将砂布铺平压实粘贴在薄钢板上,以利于 AB 段收集的雨水均匀流向入渗土体 BC 段,不发生 雨水集聚并流现象,而且能有效减少雨滴降落在引 导槽内溅起的流失量。承水箱内按照等间距均匀打 孔,并通讨万能胶水将橡皮胶塞粘在孔内,保证水不 从橡皮胶塞周围发生侧漏,每个橡皮胶塞内插入一 个普通医用针头作为雨滴模拟发生器。在承水箱的 两侧位置分别安装 2 个偏心轮式电动机振动器。为 了达到较好的振动效果,使雨滴从针头下落时更为 接近天然降雨的随机性,电动机的供电电源由调压 器控制,通过输出电压控制电动机的转速,间接达到 控制针头随机共振的程度。径流侧挡板将下垫面试 验区域划分为3个土槽,代表3个重复试验。侧挡板 在入渗土体 BC 段位置上粘贴有钢制直尺,便于试 验过程中人工观测或者拍摄图像作为计算处理参考 坐标。承水箱放置在角钢制作的框架内,框架通过铁 链铰接在钢制支架上,铰链可以在二维平面内任何 角度自由旋转,使得雨滴振动效果为平面上二维随 机振动,可以更好地模拟天然降雨。另外,铰链削减 了振动能量传送至支架,有利于支架的整体稳定性。 4个支腿均设计了可升降螺旋便于在坡地上试验时 承水箱亦能保持水平状态,支腿底部支撑上方约15 cm 处设置了一个铁圆环,增大受力面积防止支腿陷 入土壤过深。径流收集口采用薄白铁皮加工而成,为 了防止径流侧漏,前侧挡板与径流收集口用防水胶 带粘接,径流收集口保持一定的顺坡度,确保径流平 顺过渡到收集盒内。

2.2 测定方法

2.2.1 雨滴直径测定

雨滴直径的测定采用滤纸测定法^[8],滤纸选用 杭州新华造纸厂生产的 *p*15 cm 定性中速滤纸,涂料 采用质量比为1:10的大红水溶性曙红染料和滑石 粉混合粉末,使用前用板刷将混合粉末薄薄地均匀 涂在滤纸上。取承接雨滴滤纸若干张,逐一量取各色 斑直径,并按分组统计的方法,计算各直径级雨滴的 体积及出现次数,计算各直径级雨滴体积占总体积 的百分数,绘制雨滴体积随直径变化分布图(图 2) 单个雨滴体积按近似球体体积计算,从图上求出该 次降雨的中径。针头水滴直径 d 与色斑直径 D 的关 系为^[9]

图 2 不同雨强下雨滴中数直径分布图

由图可见,3种雨强下雨滴中径 d₅₀都约为 2.5 mm。60 mm/h和40 mm/h雨强下雨滴直径组 成大于 20 mm/h雨强,说明雨强较大时雨滴直径组 成相应增大,雨滴对地表打击动能也相应加大,符合 天然降雨特性,故能够较好地模拟天然降雨实际效 果。

2.2.2 降雨均匀度测定

降雨均匀度可以通过不同测点处雨强(降雨量) 进行计算。降雨分布均匀性一般用均匀系数 K 表 示,均匀系数 K 值越大,降雨分布的均匀性越好。当 K≥80%时,称均匀程度为好。均匀系数计算式为

$$K = 1 - \frac{|\Delta H|}{\overline{H}} \tag{3}$$

$$|\Delta H| = \frac{\sum_{i=1}^{n} |H_i - \overline{H}|}{n} \tag{4}$$

$$r = (p_{\text{max}} - p_{\text{min}})/p_{\text{max}}$$
(5)

式中 |*△H*|---平均离差

H_i——每个测点的雨量,mm

H——散水面积上的平均降雨量,mm

r——重复性误差,%

试验中用6组矩形盒均匀摆放在降雨器下,降 雨历时为30min,雨量、雨强及均匀系数计算结果 如表1所示。

3 应用结果分析

为了检验产渗流入渗仪的测量效果,试验在中

雨强	降雨	实测雨强	平均雨强	均匀系	重复性
$/mm \cdot h^{-1}$	量/mL	$/mm \cdot h^{-1}$	$/mm \cdot h^{-1}$	数 <i>K</i>	误差 r/%
20	318	10.260	10 015	0.96	4.76
	303	9.771	10.015		
	355	11.464	11 076	0.96	6.76
	331	10.688	11.070		
	313	10.100	10 041	0.96	1.15
	309	9.983	10.041		
40	670	21.613	22 410	0.98	6.94
	720	23.226	22.413		
	700	22.569	22 272	0.98	5.87
	743	23.977	23.213		
	705	22.737	22 850	0.98	1.06
	712	22.981	22.039		
60	864	27.862	28 528	0.99	4.56
	905	29.194	20. 320		
	868	27.990	29 044	0.99	6.99
	933	30.097	23.044		
	847	27.327	28 520	0.99	8.15
	922	29.751	20.009		

表 1 雨强及均匀系数测量结果

科院水土保持研究所黄土高原土壤侵蚀与旱地农业 国家重点实验室内进行。产渗流入渗仪放置在 3 m×8 m 可升降式土槽上试验,为了进行比较分 析,同时用双环入渗仪进行测定。双环入渗仪参照荷 兰 Eijkelkamp 公司设计标准,内环直径 28 cm,外环 直径 53 cm,由马氏瓶通过橡胶软管对内环恒定供 水,马氏瓶放置在精度为 1 g 电子秤上,水量变化实 现连续观测。试验所用土壤为陕西省杨凌粘黄土,土 样均采自地表下 20~30 cm 土层,其颗粒组成见表 2。

表 2 供试土壤颗粒组成

粒径	$1\sim$	0.25 \sim	0.05~	0.01 \sim	0.005~	<0.001
/mm	0.25	0.05	0.01	0.005	0.001	<0.001
百分率/%	0.4	8.6	44	13	22	12

土壤风干后过 5 mm 筛,含水率约为 2%。按容 积密度 1.2 g/cm³ 分层装入,每 5 cm 为一层。装土 压实过程中为了更接近实际野外土壤结构,避免土 壤孔隙结构碾压密实,将长钢钉固定在角钢条或钢 板上插实土壤,土壤压实后土壤孔隙依然保持一定的结构。为了保证土壤均一性,土槽装土后用塑料薄膜进行密闭覆盖处理,防止空气湿度对表层土壤的影响,使土壤水分进一步均匀。

试验时坡度 $S=0^{\circ}$,产流面与入渗面长度比(覆 盖比)C=1,雨强 p分别为 20、40 和 60 mm/h。3 种 雨强下的试验数据与双环法测量数据比较如图 3 所 示。

图 3 产渗流入渗仪与双环入渗仪测量的入渗率曲线

由图可知,降雨入渗初期,随着雨强的增大土壤 入渗性能同期降低速度加快。由于雨强越大,雨滴对 地表的打击溅蚀作用更大,溅蚀的细小土颗粒堵塞 土壤孔隙,使土层密实,形成地表结皮^[10],降低土壤 入渗能力。双环入渗仪测得的土壤初始入渗率明显 小于产渗流入渗仪3种雨强下得出的初始入渗率。 这是由于双环入渗仪在试验开始时,向内、外环加水 的过程中土壤快速湿润引起土壤结构崩解,细小土 壤颗粒大量悬浮在水中形成浑水入渗,堵塞土壤孔 隙,大大降低了土壤的入渗能力。另外,双环法在试 验初始阶段受马氏瓶出水口或供水管道供水能力的 限制,掩盖了数值较大的土壤初始入渗性能,属于非 充分供水状态下土壤入渗,未真实反映土壤入渗性 能变化全过程。

4 结束语

产渗流入渗仪能够测量出降雨初期数值较大的 土壤初始入渗性能,而且不受地形限制,反映了降 雨、侵蚀和径流综合影响下土壤入渗性能的动态变 化过程,人工观测及拍摄影像处理对试验数据的准 确获取提供了多种便捷观测手段。提供了一种测量 降雨、侵蚀和径流影响下土壤入渗性能动态变化过 程新途径。

参考文献

- 1 Bouwer H. Intake rate: cyliner infiltrometer [C] // Klute A. Methods of Soil Analysis, Monograph, Am. Soc. Agron. Madison, 1986(9):825~843.
- 2 Magette W L, Stanholz V O, Cair J G. Estimating selected parameters for the Kentucky watershed from watershed characteristics [J]. Water Resour. Res., 1976, 12(3):472~476.
 (下转第 210 页)

参考文献

- 1 李敏,李惠东,李惠琪,等.等离子体表面改性技术的发展[J].金属热处理,2004,29(7):5~9.
- 2 赵铁军.等离子体表面淬火技术试验研究[D]. 沈阳:沈阳工业大学,1998.
- 3 Selivanov M V, Syropyatov V Ya. Plasma hardening parts[J]. Izobret. Mashinostr., 1990(8):126~132.
- 4 刘景灏.齿轮齿面激光淬火技术研究[D].北京:北京科技大学,2004.
- 5 Grishanov V V, Mordasov V L. Combination of laser and plasma processes for metal treatment[J]. Izv. Ross. Akad. Nauk, Met., 1999(4):56~62.
- 6 Dombrovskii Y M, Brover A V. Treatment of steel by an air-plasma arc with scanning [J]. Hetal Science and Heat Treatment, 1999, 41(12): 213~220.

(上接第 189 页)

- 3 Rawitz E, Margolin M, Hillel D. An improved variable-intensity sprinkling infiltrometer [J]. Soil Sci. Soc. Am. Proc., 1972, 36(3):533~535.
- 4 Peterson A E, Bubenzer G D. Intake rate: sprinkler infiltrometer [C] // Klute A. Methods of Soil Analysis, Monograph. Am. Soc. Agron. Madison, 1986(9):845~870.
- 5 Ogden C B, Van Es H M, Schindelbeck R R. Miniature rain simulator for measurement of infiltration and runoff[J]. Soil Sci. Soc. Am. J., 1997, 61(4): 1 041~1 043.
- 6 袁建平,蒋定生,文妙霞. 坡地土壤降雨入渗试验装置研究[J]. 水土保持通报, 1999, 19 (1):24~27.
- 7 Lei Tingwu, Liu Han, Pan Yinghua, et al. Run off-on-out method and models for soil infiltrability on hill-slope under rainfall conditions[J]. Science in China Series D, 2006, 49(2):193~201.
- 8 Marshall T S, Palmer W M. The distribution of raindrops with size[J]. J. Meteor. ,1948, 5(1):165~166.
- 9 姚文艺,汤立群.水力侵蚀产沙过程及模拟[M].郑州:黄河水利出版社,2001.
- 10 Morin J, Van Winkel J. The effect of raindrop impact and sheet erosion on infiltration rate and crust formation [J]. Soil Sci. Soc. Am. J., 1996, 60(4): 1 223~1 227.