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Abstract. In this paper, we study the complexity of deciding which player has a winning strategy in
certain types of McNaughton games. These graph games can be used as models for computational
problems and processes of infinite duration. We consider the cases (1) where the first player wins
when vertices in a specified set are visited infinitely often and vertices in another specified set are
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of specified disjoint sets are visited infinitely often, and (3) a generalization of these first two cases.
We give polynomial time algorithms to determine which player has a winning strategy in each of the
games considered.
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1. Introduction and Basic Definitions

Motivated by the work of Gurevich and Harrington [3], McNaughton [5] introduced a type of infinite
games played on finite graphs. These games can be used as models for certain computational problems
and can provide game-theoretic foundations for studying infinite duration processes such as operating
systems, networks, communication systems and concurrent computations. For example, Nerode et al.
[7, 6] introduce the idea of investigating and identifying distributed concurrent programs as strategies in
Gurevich-Harrington and McNaughton type of games. We also mention a related paper [4] that uses a
modal logic version of these games as a model for problems in control theory.

Assume we have an infinite duration system. A run of the system can be thought as an infinite
sequence ��������������	
�������
�
�
� of states. The state ��� is the initial state. The state ������� is obtained by the
execution of a certain command at � � . The success of the run depends on whether or not the run satisfies
certain specifications given by (or inherited from) software or hardware of the system. One can look
at this run as a play between two players, Survivor and Adversary. The goal of one of the players, say
Survivor, is to satisfy the specifications, while the goal of the opponent (in this case Adversary) is not to
allow the specifications to be satisfied. During the play there is no termination point. Instead there are
some special events that may happen continually. If some combination of these events happens infinitely
often then one player wins, otherwise the other player wins. We now formalize these games, as was first
given in [5].

Definition 1.1. A game
�

is a seven tuple ��� ��������������� � �� !��"$# , where:

1. � is the set of nodes called positions.

2. � and � are subsets of � such that �&%'�)()* and �&+'�,( � . The nodes of � are positions of
Survivor, and the nodes of � are positions of Adversary.

3. �.-/�102�3+4�,05� is a set of directed edges between � and � such that

(a) for each �768� there exists at least one 9 6'� with � ��� 9 #:62� , and

(b) for each 9 6'� there exists at least one ��68� with �;9 ���
#:62� .

4. � � is the initial position of the game.

5.  is a subset of � called the set of special positions.

6. Finally, " is a set of some subsets of  . These are called winning sets or winning conditions for
Survivor.

For the game
�

the graph of the game is the graph � �<+=�>���?# . All plays of
�

occur in the graph
of the game. To visualize a play we describe it informally as follows. There is a placemarker, that is
initially placed on node �@� . At any given time the placemarker is placed on a node. If the node is in � ,
then it is Survivor’s turn to move the placemarker. Otherwise it is Adversary’s turn. The placemarker
is always moved along the edges of the game graph determined by � . There is always a possibility to
move the placemarker as stipulated by conditions A
9 # and ACB # of the definition.
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Let ��� be a position, say of Survivor. Assume that Survivor begins its move by putting the place-
marker on 9 � (so � � � � 9 � #D62� ). Adversary responds by putting the placemarker on a � � (so �;9 � ��� � #:65� ).
This procedure repeats and the players’ actions produce an infinite sequence:

E (F� � � 9 � ��� � � 9 � �
�
�
�
called a play that begins from position � � . In the play E consider the set of all nodes G that have the
following properties:

1. G belongs to  , and

2. G occurs in the play E infinitely often.

We denote this set by H�IJ� E # and call it the infinity set of E . Survivor wins the play if H@IJ� E #26)" .
Otherwise Adversary wins the play. Thus, every play is won by one of the players.

The histories of the play E (LK � ��K � ��K 	 �
�
�
� are the finite prefixes of E . The set M1� �N# consists of
all histories whose last positions are positions where Survivor makes move. The set MO� �P# is defined
similarly. A strategy for Survivor is a function Q that maps MO� �J# into � such that for all R (SK � �
�
��K
TU6
MO� �J# , � K
TV� QW�XR #�#:62� . A strategy for Adversary is defined similarly.

Let Q be a strategy for a player. Let K be a position in the game. Consider all the plays that begin
from K which are played when the player follows the strategy Q . We call these plays consistent with Q
from K .
Definition 1.2. The strategy Q of a player is a winning strategy if all plays consistent with Q from � �
are won by the player. In this case we say that the player wins the game.

McNaughton [5] proved that for every McNaughton game, it is decidable who has a winning strategy.
However, his algorithm is by no means an efficient one. Thus, it is natural to ask for which type of
McNaughton games it can be decided in polynomial time which player has a winning strategy. Some
polynomial time solvable instance were given by Dinneen and Khoussainov in [2] and Nerode et al. in
[6]. In [2] games with  Y( � and "Z(\[ �^] , called update network games are studied and it is shown
that there is an _���`a�4`b` � ` # time algorithm to determine if Survivor wins these games. In this paper, we
extend this result. First, we consider for networks with a partition of the set of nodes into three sets
� ( H +8cS+5d , games of the form ��� ���>���7���^���@��� H +5ce��[ Hf] # . I.e., Survivor wins if every node in H
is visited infinitely often, and every node in c is visited finitely often. Thus, each play in such games is
indifferent whether or not the nodes in dg( �Sh  are visited finitely or infinitely often. Therefore we
call the nodes d don’t care nodes. We provide a _^��`a�4`b` � ` # time algorithm to decide which player has
a winning strategy in such games. Secondly, we consider the games where  i( � and " is a collection
of pairwise disjoint winning sets. We show that there exists a polynomial time algorithm to decide who
wins such games. Finally, we combine these results, and allow  to be a proper subset of � , with " a
collection of pairwise disjoint non-empty winning sets.
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Example 1.1. We now illustrate two of these network games with the following bipartite graph and� � (,j .
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k With H (g[@j
��l ] , cm(g[ A ��no��p ] and dq(L[�r ] , we have a relaxed update game where Survior’s
winning strategy is achievable by avoiding vertex 5.

k With  s( � partitioned into the set "Z(\[C[@j
��l ] ��[�ro� A ��no��p ]@] , we have a game where Adversary
wins by avoiding both vertices 1 and 2, as appropriate.

2. Preliminary Results

Given a McNaughton game
�

and a subset of the nodes t - � , a node � is in the set REACH( �>� t )
if Survivor can force every play starting at � into a node in t after a finite number of steps. Note that
REACH � �>��*�# is assumed to be * which is consistent with the definition.

Lemma 2.1. The set REACH( �>� t ) can be computed in _^��`a�4`
uv` � ` # time.

Proof:
We build a set w , that will eventually be REACH( �>� � ). Initially, we take w ( t . If a node x , owned
by Survivor, has an edge to a node in w , then x is added to w . If a node x , owned by player Adversary,
has only edges to nodes in w , then x is added to w . One can note that from every node in w Survivor
can always force a play to go to a node in t . Moreover, when no nodes can be added to w anymore,
then w ( REACH( �>� t ). Adversary has a strategy such that only nodes in �yh$w are visited. Indeed,
Adversary has a strategy to always stay inside of �Fh$w when game begins in a node from �vh$w . The
procedure of constructing REACH( �>� t ) can be implemented in _^��`a�4`zu!` � ` # time, by giving each node
not in t a counter, that is initially j for nodes owned by Survivor and its outdegree for nodes owned by
Adversary. Whenever we add a node � to w , we subtract 1 from the counters of each node with an edge
to � ; when a counter becomes 0 then the node is also added to w . {|

Let �~}6 REACH( �>� t ) be an Adversary’s node. We iteratively define the set AVOID( �V���7� t )
as follows. Initially, we take AVOID( �V���7� t )= [�� ] . If a node x is owned by Adversary and x 6
AVOID( �V���7� t ) then we add a neighbor � into AVOID( �V���7� t ) if �Xx � � #�6&� and � }6 REACH( �>� t ).
If a node x is owned by Survivor and x 6 AVOID( �V���7� t ) then we add all � into AVOID( �V���7� t ) for
which �Xx � � #e62� .

From Lemma 2.1 we obtain the following lemma.
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Lemma 2.2. Given t and �8}6 REACH( �>� t ) the set AVOID( �V���7� t ) has the following properties:

1. The set AVOID( �V���7� t ) can be constructed in _���`a�4`�uF` � ` # time.

2. AVOID( �V���7� t ) % REACH( �>� t ) = * .
3. Adversary has a strategy, such that when the game visits a node in AVOID( �V���7� t ) then all nodes

visited afterwards also belong to AVOID( �V���7� t ).

4. For all � in AVOID( �V���7� t ) %&� and all 9 62� if � ��� 9 #:62� then 9 is in AVOID( �V���7� t ).

If the game starts at � , then a strategy for Adversary not to play to a node in t is to always play to
a node in AVOID( ������� t ). Note that the sets REACH( �7� t ) and AVOID( �V���>� t ) can be defined in a
similar matter. The two lemmas above hold true for these sets too.

3. Relaxed Update Networks

In [2] the games where  ( � and "�(m[ ��] are studied. These games are called update network
games. An update network game is an update network if Survivor wins the game. We generalize these
games in the following definition.

Definition 3.1. A game
�

is relaxed update network game if " consists of a fixed subset H of  . We
say that a relaxed update network game from a position K is a relaxed update network if Survivor has a
winning strategy from K .

Thus, in a relaxed update network the set of nodes is partitioned into three sets � ( H +=c\+=d ,
where H is a given subset of  , c�(� h�H , and dm( �Fh  . Survivor wins a play if every node in H
is visited infinitely often, and every node in c is visited finitely often. Thus, each play in such games is
indifferent whether or not the nodes in d are visited finitely or infinitely often. Therefore we can call the
nodes in d don’t care nodes.

3.1. The Case �2���
Let

�
be a relaxed update game. Here we consider the case that H ()* , i.e., we have nodes that must be

visited only finitely often ( c ) and don’t care nodes. Of course, the problem is trivial when c�(�* and
H (F* . So we assume that cg}(S* .

Let � � ( �)h REACH � �7��c7# . If � � is empty, then Adversary has a winning strategy: from every
node, Adversary has a forced play into a node in c . Thus, Adversary can force some of the nodes in c
to be visited infinitely often.

If Survivor begins the game from a node � in � � , then Survivor has a winning strategy: he plays
always inside the set AVOID( �V���>��c ) which is possible by Lemma 2.2.

If neither � � is empty nor the game starts at a node in � � , then we start with an iterative process. In
order to describe the process we make the following notes.

Consider REACH( �>� � � ). Note that for each node in REACH( �>� � � ), Survivor has a winning strategy
when the game starts at that node. Survivor can force all plays from the node into � � . When a node in
� � is reached Survivor has a strategy such that no node in c is visited anymore. Thus, Adversary
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should not play into a node in REACH( ��� � � ). In particular, Adversary should not play to nodes inc/% REACH � �>� � � # .
Let us consider c � (Sc h REACH � �>� � � # and � � ( �Uh REACH � �7��c � # . Note that � � - � � . Survivor

has a winning strategy when the game starts at a node of � � . Survivor can always play inside � � again
by Lemma 2.2, and hence no nodes in c � are visited. So the only nodes in c Adversary can possibly
direct the plays to are those in REACH( �>� � � ). But from these nodes Survivor can force all plays into
� � . Hence nodes in c are visited in total a finite number of times.

Thus, when the game starts at a node in � � we are done: Survivor has a winning strategy. When
� � ( � � and the game starts at a node in �\h7� � , then we are also done as Adversary has a winning
strategy; Adversary always forces all the plays into c � (Fc staying in �She� � .

The step above can be repeated which leads us to an iterative procedure. Thus, let c � (�c and
� � ( �/h REACH � ����c � # . For each ��� j , let

c���(Sc��X��� h REACH � �>� � ������# and � ��( �Sh REACH � �7��c���#��
With arguments similar as above, we can show that Survivor has a winning strategy in all nodes in � � .

As each � � - � ����� , the process stops when we have an � with � � ( � �b��� . In that case, there is a
winning strategy for Survivor if and only if the game starts at a node in � � . Suppose the game starts at
a node in �yh�� � and � � ( � ����� . Then, Adversary can force a play to a vertex in c ����� ; and either it is
owned by Survivor and has all outgoing edges to a vertex in �yh�� � or is owned by Adversary and has
one outgoing edge to �Sh�� � , (as follows from Lemma 2.2), hence Adversary can force the game to stay
in �Sh�� � .

This gives a polynomial time algorithm for the problem with H (v* . The algorithm takes _^��`a�4`b` � ` #
time, as there are _���`a��` # iterations, each taking _���`a�U`
uy` � ` # time.

3.2. Reducing to the Case �����
Now assume H }(m* . In this section, we show that an instance with c�}(m* can be transformed to an
equivalent instance with c\(F* , assuming H }(v* .

We may assume that the initial position belongs to REACH( �>� H ); if not, then clearly Adversary has
a winning strategy from Lemma 2.2. (Adversary forces that no node in H is ever reached.) Now, Survivor
can start the game by forcing to go to any node in H , and, as all nodes in H have to be visited infinitely
often, it is not important for the analysis to which node in H the game goes first.

There are two cases:

REACH � ����c7#�% H }(�* . This means that there is a node � 6 H , such that Adversary has a strategy that
forces all the plays of the game (consistent with the strategy) to visit a node in c after a finite number of
steps. If this is the case, then Adversary has a winning strategy for the game. Here either � is not visited
infinitely often, or he can force after every visit to � a play to a node in c , in which case at least one node
in c is visited infinitely often.

REACH � ����c7#�% H (�* . This means that for all nodes � 6 H , Adversary can not force any play of
the game visit a node in c . Therefore if Survivor has a winning strategy then he has one that prevents
movement to a node in c after the first node in H has been reached.

Once a node in H has been reached, Survivor wants to avoid the plays reaching nodes in c . (Any
play to a node in c now could possibly be repeated by Adversary.) So if Survivor can avoid reaching a
node in c infinitely many times, he can avoid visiting it once.
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So, what we can do is compute REACH( �7��c ), and remove all nodes in REACH( ����c ) from the
graph, and obtain an equivalent instance, but now with c,(F* .
3.3. Case with Infinite-Visit Nodes

In this section, we consider the game with c)(F* and H }(v* . Suppose the game starts at node � � .
Lemma 3.1. There is a winning strategy for Survivor if and only if � � 6 REACH � �>� H # and H -
REACH � �>��[�� ] # for all �46 H .
Proof:
Suppose � 6 H , � }6 REACH � �>��[�� ] # . Then Adversary has a winning strategy. If � is never visited in
the game, then Survivor loses. If � is visited, then after � has been visited, Adversary has a strategy that
avoids � , so Adversary again wins.

If � � }6 REACH � �>� H # , then Adversary can prevent any node in H to be visited as follows from
Lemma 2.2.

Now suppose for all �/6 H , H - REACH � �>��[�� ] # , and � � 6 REACH � �>� H # . The latter condition
makes that Survivor can start by forcing all plays from ��� into H . The former condition means that for
every pair of nodes ��� � 6 H , Survivor has a strategy that forces, after � has been visited, that in a finite
number of moves � will be visited. This enables Survivor to force that every vertex in H to be visited
infinitely often. {|

The condition of Lemma 3.1 can be checked in _^��`a�4`b` � ` # time. Thus we have proved the following
theorem.

Theorem 3.1. There is a _^��`a�4`b` � ` # time algorithm to decide whether a given game is a relaxed update
network.

3.4. P-Completeness

The previous section shows that we can decide in polynomial time if a relaxed update game is a relaxed
update network. Let’s call this the RELAXEDNETWORK problem. Here we show that this problem is
P-complete and hence any decision algorithm for it is inherently sequential.

Proposition 3.1. The RELAXEDNETWORK problem is P-complete.

Proof:
All that remains to see is that RELAXEDNETWORK is log-space hard for the complexity class P. To do
this, we reduce the AGAP (And/Or Graph Accessibility Problem), which is known to be � -complete [1],
to RELAXEDNETWORK. An instance of AGAP is an and/or graph dm( ��� ���P# with two vertices � and
G . The problem is to decide whether G is reachable from � . We say that G is reachable from � in an and/or
graph d ( ��� ���P# if a pebble can be placed on the specified vertex G by using the following rules:

1. We can place a pebble on � .
2. For an AND vertex � , a pebble can be placed if all in-neighbors of � are pebbled.
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3. For an OR vertex � , a pebble can be placed if at least one in-neighbor is pebbled.

We can transform this instance into an instance of RELAXEDNETWORK as follows. We map an instance
� d8����� G # of AGAP into a game instance ��� ��������������� � � H +8ce��[ Hf] # . First let dU¡ be a bipartite version
of d where we subdivide any arcs with two end-points of the same type (the new vertex is the opposite
type). Then declare � ( �U� d4¡b#:+3[ G ¡ ] , � equal to the OR vertices, � equal to the AND vertices,��(S� � d ¡ #�+U[ �XG � G ¡ #�� �XG ¡ � G # ]Nh [ �XG ����# ` �U6 ��� d ¡ # ] , � � (F� , H (\[ G � G ¡ ] , c\( �3hWH . There is a pebbled
path from � to G in d if and only if Survivor wins the game defined. This transformation is clearly doable
in log space. {|
3.5. A Dual Case

This case is obtained when we interchange the players of games. Let us consider the case when H (F* in
a relaxed update game and interchange the roles of the players. Thus, now Survivor’s winning conditions
are nonempty subsets of c . Then Subsection 3.1 can be explained as follows. Consider the following
sequence:

c � ( REACH � �>��c7#��Wc ����� (\[ x!`�x 6 REACH � �>��c � h [ x�] # and x 62c � ] �
The iteration guarantees that c�� consists of all nodes from which Survivor can visit the set c at least ��u j
times. Note that c ����� -<c � for all � . Let � be such that c � (yc �b��� . We can show that Survivor wins the
game from � if and only if ��6 REACH � �>��c � # . The proof is basically given in Subsection 3.1.

4. Partition Games and Partition Networks

In this section we study games where winning conditions are pairwise disjoint collections of nonempty
sets with  i( � . Formally, a partition network game is a game

�
of the form ��� ���>����������� � � � ��[� � ��
�
���� &T ] # , where  � �
�
�
�¢�� &T is a collection of pairwise disjoint nonempty winning sets. We say that

a partition network game is a partition network if Survivor is the winner of the game. An important
concept of closed winning conditions (sets) is defined as follows:

Definition 4.1. A winning condition  !� in a game
�

is � -closed if the following two conditions are
satisfied:

1. For any Survivor’s position �765 � there exists an 9 such that � �@� 9 #:65� and 9 68 � .
2. For any Adversary’s position 9 68 !� and all � such that �;9 ���
#:62� we have 9 6& £� .

Informally, if  £� is a closed winning set then Survivor can always stay inside of  ¤� no matter what
the opponent does. The next lemma gives a necessary condition for Survivor to win a partition network
game.

Lemma 4.1. If Survivor wins the partition network game
�

then one of the winning conditions must be� -closed.

Proof:
Suppose that each  � is not � -closed. Then for each  � one of the following cases hold:



H.L. Bodlaender, M.J. Dinneen and B. Khoussainov / Relaxed Update and Partition Network Games 1009

1. There exists a Survivor’s node �
��68 &� so that all the outgoing edges from � lead to nodes outside
of  � .

2. There exists an Adversary’s node 9 � 65 � such that �;9 � ��� � #:62� and � � }68 � .
We construct the following strategy ¥ for Adversary. For all Adversary’s positions 9 if 9 ( 9 �

then ¥¦�;9 #?(g� � ; in all other cases ¥¦�;9 # is the first node � for which �;9 ����#�6S� . We claim that ¥ is a
winning strategy for Adversary thus contradicting the assumption. Indeed let E (�§����;§¨���;§�	��
�
�
� be a
play consistent with ¥ . Consider the infinity set H�IJ� E # . Assume that H@IJ� E #?(© � . Then from some
stage ª in the play all nodes from  � and only those will appear infinitely often. Therefore  � does
not satisfy the first case listed above. Hence for  � there exists an Adversary’s node 9 � 6« � such that
�;9 � ��� � #¬6£� and � � }6! � . From the definition of ¥ , as 9 � must appear in E after point ª , we see that E
must contain a position from outside of  � after stage ª . This contradicts the choice of ª . Therefore
H�IJ� E #�}(v � for all winning sets  � . {|

For our next lemma we need the following concept. We say that a winning condition  is an update
component if  is � -closed and Survivor wins the update game played in  .

Lemma 4.2. If Survivor wins the partition network game
� ��� ���>����������� � � � ��[� � ���
�
���� &T ] # , then

one of the winning conditions is an update component.

Proof:
By the lemma above, one of the winning conditions  � must be � -closed. Without lost of generality
we may assume that  � �
�
�
�¢�� £­ are all the � -closed winning conditions among  � �
�
�
�¢�� &T , where®4¯ I .

In order to obtain a contradiction, assume that none of  � , �
�
� ,  £­ is an update component. Hence
for every G with j ¯ G ¯\® and every x 6¤ !° , Adversary has a winning strategy ¥ °;± ² to win the update
game �  ° � x # from x . Note that for each  � , �D³ ® , one of the following cases hold:

1. There exists a Survivor’s node � � 68 � so that all the outgoing edges from � lead to nodes outside
of  � .

2. There exists an Adversary’s node 9 � 65 � such that �;9 � ��� � #:62� and � � }68 � .
Now we define the following strategy ¥ for Adversary. Let 9 be an Adversary’s position. Consider

any finite history ´ (�§ � �
�
�
���;§�µ of a play that begins from � so that 9 (�§�µ . If 9 ( 9 � for some
��³ ® then ¥¦�z´ #�(,�¢� . Now assume 9 6¤ =° with j ¯ G ¯\® . Let §�¶ be a node in the history so that all§ ¶ �
�
�
���;§Vµ�6¤ ° and § ¶���� }6O ° . Then ¥¦�z´ #$( ¥ °;± ·�¸ � § ¶ �
�
�
�¢�;§�µ�# . In all other cases, ¥¦�z´ # is the first �
with �;9 ����#e62� .

We claim that ¥ is a winning strategy for Adversary. Indeed, let E (y§ � �;§ � �;§ 	 �
�
�
� be a play con-
sistent with ¥ . Consider the infinity set H�IJ� E # . Assume that H�IJ� E #�(m � . Then � ¯ G which can be
proved by using the reasoning similar to the proof of the previous lemma. Assume that � ¯ G . Let ª
be the first point in the the play E so that all nodes from  � and only those will appear infinitely often.
Then ¥ will always follow the strategy ¥ �X± ·�¹ . Hence H�IJ� E # can not be equal to  � . Again we have a
contradiction. {|

From these two lemmas we have the following result.
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Corollary 4.1. In a partition network game, if either (1) each winning conditions is not � -closed or (2)
each � -closed winning condition does not form an update component then Adversary wins the partition
game.

Now assume that one of the winning conditions of the partition network game is an update com-
ponent. Without loss of generality we can assume that it is  � . Consider the set REACH( �>�� � ). If� � 6 REACH � �>�� � # then Survivor clearly wins the game. Otherwise, we define the following game

� ¡ :
1. Set � ¡ ( AVOID( �������7�� ¤� ).
2. For each  � if  � % REACH � �>�� � #�}(F* then  � is not a winning set of the new game. Otherwise, � is a winning set of the new game.

3. The set � ¡ of edges is obtained by restricting � to � ¡ .
4. The initial position of the game is � � .

Lemma 4.3. Assume that  � is an update network component and � � }6 REACH � �>�� � # . Survivor
wins the original game if and only if Survivor wins the new game

� ¡ .
Proof:
Indeed, assume that Adversary wins the new game

� ¡ . Let ¥ ¡ be winning strategy. Then since ¥ ¡ is inside
the AVOID( � � ������ � ) strategy, we see that Adversary wins the whole game. Assume that Survivor wins
the new game. Let Q ¡ be winning strategy. Define a strategy Q as follows. If a play is inside the game

� ¡
then always follow Q ¡ . Otherwise, force the place into  � and win the update game  � . It is not hard to
see that Survivor wins the game. {|

We call the game
� ¡ obtained from

�
the reduced game at � � . Now consider the following procedure

that for any x 6 � proceeds by stages as follows.
Stage º . Set

� ��( � .
Stage ��u j . Consider

� � . If all of the winning conditions of
� � are not � -closed or all � -closed

winning conditions of
� � are not update components then declare Adversary the winner. Otherwise take

the first winning condition  which is an update network component. If x 6 REACH � �>�� ,# then
Survivor is the winner. If not, reduce

� � to
� ����� at node x .

Note that at some stage
®

the process stops at which the winner at x is found. The algorithm to decide
the game runs in _^��` � `b`a�U` 	 # time yielding:

Theorem 4.1. There is a _^��`a�4` 	 ` � ` # time algorithm to decide whether a given game is a partition net-
work.

5. Relaxed Partition Networks

In this section, we combine the results of Sections 3 and 4. We consider partition games where possibly }( � . We now have relaxed partition network games of the form

� ( ��� ���>����������� � �� !��[� � �
�
�
���� &T ] #��
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where  - � , and  O�
�
�
�
�¢�� T is a collection of pairwise disjoint nonempty winning sets, each a
subset of  . Again, the set of don’t care nodes is denoted by d�( �Sh  .

For sets t ��»�- � , t %¼»,(v* , define the set w � � �>� t ��»�# of nodes from which Survivor can force
a play that reaches, in a finite number of steps, a node in t by avoiding » . Thus, �&6 w � � �>� t ��»�# if
Survivor has a winning strategy in the game that starts at a � where Survivor wins as soon as a node in t
is visited; Adversary wins as soon as a node in » is visited or when infinitely many moves occur without
a visit to a node in t +4» .

Lemma 5.1. Given t , » , t %'»,(F* , w � �Xt ��»�# can can be computed in _���`a�U`b` � ` # time.

Proof:
The set w � � �>� t ��»^# can be computed as follows. Initially, set w ( t . If a node �56S� h » has an
edge � ��� 9 #¬6&� and 9 6 w , then add � to w . If a node 9 6=� h » has for all � with �;9 ����#¬6=� , ��6 w ,
then add � to w . Repeat this process until we cannot add nodes to w using these rules. One easily sees
with induction that w - w � � �>� t ��»^# . We also have, after no further nodes can be added to w , that
w ( w � � �>� t ��»^# ; any Adversary node in �/hDwZh » has an edge to a node in �/hDw , and any Survivor
node in �3hNwOh » has only edges to nodes in �3hWw . Thus, when Adversary follows a strategy to always
play to nodes in �Sh�w , he wins either by having the game moved to a node in » , or by an infinite play.
Finally, use the same data structure as in Lemma 2.1. {|
Definition 5.1. A winning condition  � in a game ½ is � -closed with respect to  , if the following two
conditions are satisfied:

1. For any Survivor’s position ��6& � , there exists an 9 such that � �@� 9 #:62� and 9 6 w � � �>�� � �� h &��# .
2. For any Adversary’s position ��68 «� and all 9 with � �@� 9 #:65� , we have 9 6 w � � �>�� £�¾�� h  &��# .
Note that the definition of � -closedness of the previous section is the same as � -closedness with

respect to � . Informally, when  � is an � -closed winning set with respect to  , then Survivor can force
a play that visits only nodes in  � and don’t care nodes in d . Similar to the Lemma 4.1, we can show:

Lemma 5.2. If Survivor wins the relaxed partition network game
�

then one of the winning conditions
must be � -closed with respect to  .

For a set of nodes t - � with for all �U6 t %=� , there is an 9 6 t %5� with � �@� 9 #¿6«� and for
all 9 6 t %'� , there is an ��6 t %5� with �;9 ����#�6£� , we can define the subgame, induced by t with
initial position � ¡ 6 t :

�Xt ���&% t ���À% t ���S% �Xt 0 t #���� ¡ �� Á% t ��"O%UÂ �Xt #�#��
where "=%^Â �Xt # is the collection of sets in " that are a subset of t . In other words, the game is similar
to the original game, but now only nodes in t are visited.

Lemma 5.3. If Survivor wins the relaxed partition network game
�

then for one of the winning condi-
tions  � , we have that  � is � -closed with respect to  , the subgame, induced by w � � �>�� � �� h  � # ,
with initial position an arbitrary �86« � has a winning strategy for Survivor, and the start node � � of

�
belongs to REACH( �>�� � ).
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The proof of this lemma is similar to (but somewhat more detailed as) the proof of Lemma 4.2.
The conditions of these lemmas can again be checked in _^��`a�4`b` � ` # time, as the game, induced by
w � � �>�� � �� h  � # is a relaxed update game.

Suppose the conditions of the preceding lemma is fulfilled for winning condition  � . If � � 6
REACH( �>�� � ), Survivor wins the game. Otherwise, game

� ¡ can be defined as in the previous sec-
tion, and we again have that Survivor wins the game, if and only if Survivor wins game

� ¡ . The time to
decide which player has a winning strategy is again bounded by _���` � `b`a�4` 	 # . Thus, we finally have the
following result.

Theorem 5.1. There is a _^��`a�U` 	 ` � ` # time algorithm to decide whether a given game is a relaxed parti-
tion network.

6. Conclusions

In this paper, we gave some types of McNaughton games where one can decide in polynomial time which
player has a winning strategy. The interest in these games is that they can be used as a model for infinite
processes.

Several directions for further research remain open. At one hand, one can try to design faster al-
gorithms for the problems solved in this paper. In addition, it would be interesting to see which kind
of conditions on the winning sets produce efficient algorithms to solve the games, and what conditions
turn this problem computationally intractable. Another problem is to pinpoint the precise complexity (in
terms of complexity class) of the question to decide if a given player has a winning strategy for a given
McNaughton game.
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