
A Framework for Game Engine Based Visualisations
Burkhard C. Wünsche, Blazej Kot, Andrew Gits, Robert Amor, John Hosking and John

Grundy

University of Auckland, Dept. of Computer Science, Private Bag 92019, Auckland, New Zealand.

Email: burkhard@cs.auckland.ac.nz

Abstract
Game engines are the core software component of video games and typically handle tasks such as
rendering, game AI and collision detection between game objects. Due to the popularity of computer
games, a huge amount of research has been devoted towards the development of game engines. In
this paper we analyse the suitability of game engines for visualisation research. We present a software
architecture and a visualisation framework which facilitates this task and we evaluate the suitability
of a number of popular engines. We conclude with a summary of our experiences from several case studies.

Keywords: game engines, visualisation, human-computer interfaces, collaborative interfaces

1 Introduction

Modern computer games make use of technologies
from many areas of computer science: graphics,
artificial intelligence, network programming,
operating systems, languages and algorithms. A
modern computer game engine, such as Doom 3 [1]
or Unreal Tournament 2004 [2] contains efficient,
well-tested implementations of a wide range of
powerful rendering and interaction techniques.
These are generally focused on displaying realistic
3D ”worlds” and supporting navigation within
and interaction with elements in the visualisation.
Given the power, flexibility and maturity of these
game engines it makes sense to investigate ways
of reusing such engines for other visualisation
tasks, thus potentially saving large amounts of
development time.

In this paper we focus on utilising computer game
implementations for more general visualisation
tasks such as information visualisation and
scientific and biomedical visualisation. We
present a framework for developing game engine
based visualisation applications and we illustrate
the necessary software architecture and its
relationship to the data mapping process. An
analysis of game engines is followed by a summary
of our experiences obtained from several case
studies.

2 Related Work

Computer game implementations have been
successfully applied to visualisation related tasks
such as architectural design critique [3], military
simulations [4], and landscape planning [5]. Game

engines have also been used for more abstract
visualisation tasks. One innovative example
is PSDoom [6], which is a utility for process
visualisation and management, implemented as
a modification of the Doom computer game.
It provides the functionality of the Unix ps

command via a 3D user interface. Running
processes are represented as monsters (enemies),
which can be shot and killed, thereby terminating
the associated process. Monsters can fight back,
and more important processes are represented by
bigger monsters (which are more difficult to kill),
thereby reducing the chance that they will be
terminated. Interestingly, when many processes
are running, and the 3D space becomes crowded
with monsters, the monsters start attacking each
other (a normal Doom behaviour). This provides
a natural control mechanism for processes in a
heavily loaded system - less important processes
will be killed first, since the important processes
are represented by stronger monsters.

3 Game Engines

3.1 Game Genres

Out of the computer game genres which use graph-
ics (as opposed to text-based games) the main ones
are First Person Shooter (FPS), Real Time Strat-
egy (RTS) and Role Playing Game (RPG). Com-
puter games can be classified further into single
player, multi-player, or both.

In a FPS game, the player travels around in a three
dimensional world, shooting enemies. In a RTS
game, the player views a two dimensional map with
many units (for example, of an army) on it. Players



control their own units and use them to attack and
defeat their opponents. A RPG is similar, except
the player controls only one unit, their ”character”,
via which they explore a 2D or 3D world.

3.2 Game Engine Design

The typical high-level design of an engine is il-
lustrated in figure 1. Most modern engines use
a client-server architecture which supports multi
player capabilities and distributes computing re-
sources as follows [7]:

Server side: network scene management,
server game play code, AI, static file I/O, world
construction and layout, scripted content creation,
database analysis and recovery, persistent storage.

Shared: low-level networking, collision
detection/intersection, simulation/physics,
entity layer, spatial partitioning and search, 3D
animation (skeletal), script evaluator, geometry
and animation exporters, game master tools.

Client side: network prediction/correction,
client game play code, 3D animation (full), sound
manager, streaming file I/O, physically-based
audio/animation arrangement, 3D rendering/scene
management, low-level 3D rendering.

Figure 1: The high-level design of a game engine.

3.3 Game Architecture

Most modern computer games can be split into
three parts: the game engine, the game logic
and the game art. The game engine is the main
executable program which runs on the computer.
It provides an environment within which the
game logic runs, as well as basic mathematics,
graphics, audio, user input and network functions.
The game logic may take the form of scripts,
byte code for a virtual machine, or a library (a
DLL for example). It controls the game play
and uses the game engine to display the game
art as appropriate. The game content (game
art) incorporates the game play and media files

such as pictures (textures in game parlance),
maps (layouts of virtual worlds), models (3D
representations of objects inhabiting the world,
such as players and weapons) and sounds. Many
developers incorporate their own proprietary
formats for data, in particular 3D data, which has
been optimised for use with the engine. The main
benefit of utilising this type of game architecture is
flexibility. It enables the developer to open-source
the game code, letting users create modifications
(“Mods”) - anything from small weapon additions
to an entire game - without the need to access the
engine source code.

3.4 Available Game Engines

Game engines can be divided into two categories:
open source and closed source. Open-source game
engines are usually either written by amateurs or
are older commercial engines. In the former cate-
gory, some of the more popular engines are: OGRE
[8], Crystal Space [9], Irrlicht [10], and The Nebula
Device 2 [11]. In addition to these, there are the
Doom, Doom 2, Quake and Quake 2 engines which
have been open sourced by id Software [1] and use
the OpenGL library for rendering. Since they are
old commercial engines they include support for
all gaming features such as physics, audio, network
and GUI. None of the four amateur engines men-
tioned above have as much functionality as the id
Software engines, however they may be combined
with external libraries to provide the missing func-
tions. The id Software engines suffer from being
older, providing poorer rendering quality than the
newer open source engines.

There are currently three main closed-source game
engine families in the FPS genre, each from a differ-
ent developer: Doom 3 and Quake 3 engines from
id Software, Half Life and Half Life 2 engines from
Valve Software [12] and Unreal Tournament (UT),
Unreal Tournament 2004 (UT2004), and Unreal 3
engines by Epic Games [2]. Doom 3, Half Life 2 and
Unreal 3 represent the latest generation from each
developer, and are the best game engines avail-
able. All of these closed-source engines are fully-
featured, and there exist one or more complete
games based on each of these engines. This is in
contrast to most of the amateur engines mentioned
above, which usually need to be combined with
other libraries and toolkits to create a playable
game. Quake 3 deserves special mention as id Soft-
ware has released the source code for this engine
recently [13]. This means that, unlike the other
engines here, extensive modifications to the game
engine are possible (“Mods” for the other ones are
restricted to altering the game logic and art).



4 Game Engines for Visualisation

Visualisation aims to represent complex data by
graphical representations which convey informa-
tion and understanding. Visualisation research is
often divided into the fields of information, scien-
tific, biomedical and software and algorithm visu-
alisation.

4.1 The Visualisation Process

The visualisation process can be represented by a
pipeline which performs data encoding and data
decoding as shown in figure 2. The first stage of
the data encoding step is the data transformation
stage that converts information into a form more
suitable for visualisation. This can involve creation
of new quantities and subsets, data type changes,
and modelling operations (e.g., model a directory
structure as a tree). The subsequent visualisation
mapping converts the transformed data into graph-
ical representations which the rendering stage then
displays. Some authors prefer to subdivide the
mapping stage further into visual transformation
(or data modelling) and visual mapping [14, 15].
However, in many applications these two stages
are combined: the available models are fixed and
the parameters of a model (shape, size, colour, tex-
ture) represent the encoded information. The data
decoding step describes how visual information is
perceived and processed and consists of visual per-
ception and cognition.

encoding decoding

=visualization =visual interpretation
Information

mappingdata
transformation

display perception cognition

Visual attributes

Figure 2: The visualisation process.

The encoding and decoding step of this schema
are connected via visual attributes such as shape,
position, and colour, and textual attributes such as
text and symbols which themselves are represented
by simple visual attributes. A visualisation is ef-
fective if the decoding can be performed efficiently
and correctly. “Correctly” means that perceived
data quantities and relationships between data re-
flect the actual data. “Efficiently” means that a
maximum amount of information is perceived in a
minimal time. The challenge is to achieve these
goals while making the best use of the capabilities
provided by the game engine without redesigning
the engine source code.

4.2 A Framework for Game Engine Based
Visualisation

There are two main ways in which a FPS game
engine can be used for visualisation. One way is
to modify an existing game which is implemented
on top of the engine, and only add the features
necessary for the visualisation, leaving the basic
style of interaction with the 3D world intact. The
other way is to write totally new code for the game
logic, and only make use of the graphics, audio
and networking functionality provided by the en-
gine itself. While this approach is more flexible,
it requires a lot more work on the part of the
developer. In fact, this approach is similar to using
a visualisation toolkit or engine, such as OpenSG
[16]. Hence this approach may contradict the main
purposes of using a game engine, such as code
reuse, application of an intuitive interface, and use
of a widely-used, growing, freely available software
environment.

4.2.1 Software Architecture

It can be seen from figure 1 that game engines do
not support the data transformation and mapping
process. These tasks must be performed by a mod-
ule sitting on top of the engine. Many data sets are
extremely complex and in order to achieve inter-
activity the visualisation pipeline must be spread
over the client-server architecture as illustrated in
figure 3.

Server side Client side

Game Engine

Data processing and mapping

Data

Inter-
mediate
Data

Images/
Textures

Inter-
mediate
Data

Game World Game Objects

Game play

Feedback

Data Transformation

In
te

ra
c
ti
o
n

M
e
ta

p
h
o
r

Simple graphical
entities

Data mapping

Data mapping

Visualisation

Display

Interaction

Figure 3: Software architecture for a game engine
based visualisation tool.

If the data set is very large it should be processed
on the server side and mapped to graphical entities
which are then displayed on the client side of the
game engine. Vice versa, if the original data set is
relatively compact, but the graphical representa-
tion is very complex it will be more efficient to do
the transformation and mapping stage on the client
side. Note that the game world is usually stored on



the game server. Hence it might be useful to split
visualisations into static components represented
by the game world and dynamic components which
are stored on the client side. Care must be taken
to allow suitable interaction mechanism so that
the user can go back from the visualisation to the
corresponding data.

4.2.2 Data Mapping

In an FPS game, there are two primary types
of elements: a static, or almost static, map
(3D layout of rooms) and dynamic, interactive
entities occupying positions in this map. The
main challenge met when using a game engine
for visualisation is that the set of available visual
attributes, textual attributes and interaction
techniques is limited. Hence creative approaches
are required when transforming and mapping
the raw data into graphical representations.
The particular mapping chosen depends on
the particular visualisation. For example, in a
visualisation of a file hierarchy, the layout of
directories can be represented by the layout of the
rooms (that is, the map), while files are entities
occupying positions within these rooms.

Limitations imposed by game engines must be
taken into consideration when designing this
mapping. One example is that in most current
FPS games (specifically, Quake 3), the map
can not be altered during a game session. This
could be partly worked-around by altering maps
while the players are in another map, creating
the illusion of a dynamic world. This has the
disadvantage that the game will pause while
switching maps. Additionally, Quake 3 maps
are limited in size. A solution is to split a large
map into several smaller maps, but with the
same problem of the game pausing between map
changes.

Another limitation of FPS games is that they are
designed for a relatively low number of entities;
Quake 3 only allows a maximum of 1024 entities
in a map. Thus, in some cases it may make more
sense to represent parts of the visualisation as dy-
namically generated textures (e.g., a diagram of a
graph structure) rather than as separate entities.
An alternative solution is to use multiple maps
with the disadvantages discussed above.

Yet another peculiarity of game engines is that
they are designed to only support one style of inter-
action defined by the game logic. For example, in
Quake 3 each entity usually has a fixed appearance,
and a fixed behaviour throughout a game session.
(It is actually possible to alter these during a game
session by programming the game logic, if desired.)

The problem is that the engine does not provide
any ”multiple view types” support. So, if the vi-
sualisation to be implemented relies on multiple
view types, one must code a framework on top
of the engine which keeps track of what view is
being currently used, and tell the game logic which
representations and behaviours to use for which
entity.

4.3 Analysis of Game Engines

In order to create an easy-to-use, collaborative
visualisation tool the utilised game engine must
be freely available, multi-user capable, stable, well
tested and feature rich. Furthermore we want
to avoid modifying the source code, hence the
game engine needs a powerful, flexible scripting
language and there must be a well-tested, open-
source, implementation of a game for it available.

We have evaluated multiple game engines [17, 18]
and found that the Quake 3 engine, with the
game implementation Quake 3 Arena [19, 20],
meets these requirements best. The Quake 3
Arena source code is available, under a limited
licence (which does appear to permit modifying
the source code and distributing the modified
game virtual machine byte code).

Several open source game engines, such as OGRE,
Crystal Space and Irrlicht, were investigated, how-
ever most of them lacked crucial features (such as
networking support), or had no well-tested game
implemented using them. Quake 3 uses the stan-
dard FPS game control system: mouse and key-
board. Moving the mouse around changes the di-
rection the player looks in. The mouse buttons are
typically used for walking forwards and for shoot-
ing. Various keys on the keyboard are used for
crouching, jumping, moving backwards, strafing
and switching weapons. The keys can be remapped
to different in-game functions via a process known
as key binding. Quake 3 is by design a network-
oriented (LAN or Internet) game, using the client-
server model of communications. Each computer
running Quake 3 runs an instance of quake3.exe,
the game engine. This executable is capable of run-
ning byte code for three virtual machines: game,
cgame and UI. These are referred to as QVMs,
for Quake Virtual Machine. The game qvm is
the server part of the game. It is responsible for
maintaining the state of the game world, such as
positions of all entities, and sending messages to
the clients. It also has the final say on issues such
as whether a certain bullet hit a certain player or
not. game does not do any rendering; it only com-
municates with clients. cgame is the client QVM -
there is one running on each computer connected
to a particular game. The client is responsible for



rendering the map and entities, according to data
sent by the server. Finally, the UI qvm is respon-
sible for displaying the in-game menus. Within
the QVM environment there are several available
system calls or traps. These are functions that
can be called within the code of the QVM, to pass
control into the main quake3.exe executable. This
is how tasks such as drawing on the screen, file
and network access are carried out. Internally, the
main message passing mechanism (or rather, the
most easily accessible and modifiable one) is based
on passing variable-length, null-terminated strings.

5 Results

We found that Quake 3 is a good choice for imple-
menting game engine based visualisation applica-
tions and we successfully implemented a software
visualisation tool [17] and a biomedical visualisa-
tion tool [18] which are depicted in figure 4.

Figure 4: A software comprehension tool (bottom)
and a biomedical visualisation tool (top) imple-
mented with the Quake 3 engine.

Learning to modify the game engine took time, and
was mostly done through trial and error. There is
no documentation of the code provided by id Soft-
ware and it was often necessary to walk through
the existing code by hand. The game code which
runs on the VMs is written in C. This has the

usual side-effect of having the implementation of
a particular entity split across many different files.
This is not necessarily a bad thing in itself, but
sometimes this leads to subtle bugs where some
other part of the code in another file unexpectedly
alters the state of an entity.

An extremely useful feature in Quake 3 is the ex-
tensive shader system. The shaders in Quake 3
allow the creation and application of dynamic ma-
terials in-game. There are numerous effects, in-
cluding 2D translation, alpha blending, and en-
vironment mapping, all of which are configurable
by editing a .shader script file. This comes in
handy when implementing graphical glyphs in the
visualisation. An added bonus is that several tools
exist to visually create these shader file.

Another benefit of the Quake 3 engine is the con-
sole. This is an area in-game which allows the
user to input commands, or adjust variables. Com-
mands can be useful functions such as screenshot,
allowing the user to capture the current screen,
whereas variables can have instant feedback in the
engine - for example, setting r showtris to 1 al-
lows us to see every triangle drawn on screen.

The most significant problem for visualisation pur-
poses is that the MD3 model data format used in
Quake 3 seems to limit the maximum number of
vertices of a surface mesh to 4096. This made it
necessary to split complex biomedical models, such
as the pelvis in figure 4 (top), into separate meshes
which were then exported as a single MD3 file.

Another problem is that the network protocol is
fixed. New character string messages can be added
easily, but these need to be assembled at one end,
and parsed at the other. In addition, these mes-
sages are not associated with any particular en-
tity, which makes it difficult to communicate data
specific information from the server to the clients.
Fortunately, a field in the existing packet structure
was found which was rarely used, and so was reused
to transmit the itemid. While this worked for this
particular tool, the available space is very limited,
and may not be sufficient for other visualisation
tools.

6 Conclusion

It is possible to use a game engine as the basis
for a visualisation tool, and thereby save a lot of
implementation time by reusing the functionality
already implemented in the game engine. The
biggest benefit is obtained by creating a mod
rather than rewriting the source code. Modern
game engines offer a high speed, rendering quality
and interactivity and multi-user support which



is difficult to obtain using existing visualisation
tools.

In order to simplify the implementation process,
it is important to find a suitable visualisation and
interaction metaphor which often requires consid-
erable creativity. Due to the limitation of most
engines the visualisation might have to be split
into a static 3D world and dynamic entities that
the users can interact with (e.g., obtain feedback
from). There should typically be much less than
500 of these entities, but this limit depends on
the game engine chosen, the amount of modifica-
tions needed, and the performance and hardware
requirements. There typically is also a limitation
on the maximum allowed map (3D world) size and
the size of surface meshes, although this can be
usually worked around by stitching together sev-
eral smaller maps and meshes, respectively.

Developing visualisation applications using game
engines requires considerable more work than when
using a visualisation library such as VTK [21]. We
hope that this research will enable the reader to
design visualisation tools which sit on top of a
game engine and combine the advantages of stand-
alone visualisation applications with that of game
engines.

References

[1] “id Software.” URL: www.idsoftware.com.

[2] “Epic Games.” URL: www.epicgames.com.

[3] J. Moloney, R. Amor, J. Furness, and
B. Moores, “Design critique inside a multi-
player game engine,” in Proceedings of the
CIB W78 Conference on IT in Construction,
pp. 255–262, 2003. Waiheke Island, New
Zealand, 23-25 April.

[4] J. Manojlovich, P. Prasithsangaree,
S. Hughes, J. Chen, and M. Lewis,
“UTSAF: A multi-agent-based framework
for supporting military-based distributed
interactive simulations in 3d virtual
environments,” in Proceedings of the Winter
Simulation Conference, pp. 960–968, 2003.
New Orleans, 7-10 December.

[5] A. Herwig and P. Paar, Trends in GIS and
Virtualization in Environmental Planning and
Design, ch. Game Engines: Tools for Land-
scape Visualization and Planning?, pp. 161–
172. Wichmann Verlag, Heidelberg, 2002.

[6] D. Chao, “Doom as an interface for process
management,” in Proceedings of SIGCHI’01,
pp. 152–157, 2001. Seattle, WA, 31 March-1
April.

[7] J. Blow, “Game development: Harder than
you think,” ACM Queue, vol. 1, no. 10,
pp. 58–65, 2004.

[8] “OGRE Object-oriented Graphics Rendering
Engine.” URL: www.ogre3d.org.

[9] “Crystal Space 3D.” URL: crystal.

sourceforge.net.

[10] “Irrlicht Engine - A free open source 3d
engine.” URL: irrlicht.sourceforge.net.

[11] “The Nebula Device 2.” URL: nebuladevice.
cubik.org.

[12] “Valve Corporation.” URL: www.

valvesoftware.com.

[13] “Quake 3 1.32 Source Code,” Aug. 2005.
URL: http://www.fileshack.com/file.x?

fid=7547.

[14] E. H. Chi, “A taxonomy of visualization tech-
niques using the data state reference model,”
in Proceedings of the Symposium on Informa-
tion Visualization (InfoVis ’00), pp. 69–75,
IEEE Press, Oct. 2000.

[15] C. Ware, E. H. Chi, and R. Gossweiler, “Vi-
sual perception for data visualization (tutorial
for CHI 2000),” in Tutorial for the Human
Factor in Computing Systems Conference
(CHI 2000), (Amsterdam, Netherlands), Apr.
2000. URL: http://www-users.cs.umn.

edu/~echi/tutorial/perception2000/.

[16] “OpenGS Homepage.” URL: www.opensg.

org.

[17] B. Kot, “Information visualisation utilis-
ing 3d computer game engines,” FoS Schol-
arship report, Dept. of Computer Sci-
ence, University of Auckland, Feb. 2005.
URL: www.cs.auckland.ac.nz/~burkhard/

Reports/SS2004_BlazejKot.pdf.

[18] A. Gits, “Using game engines for visu-
alising biomedical data sets,” 780 Gradu-
ate Project report, Dept. of Computer Sci-
ence, University of Auckland, June 2005.
URL: www.cs.auckland.ac.nz/~burkhard/

Reports/2005_S1_AndrewGits.pdf.

[19] “Code3Arena.” URL: www.planetquake.

com/code3arena/.

[20] “Quake III: Arena, baseq3 mod commen-
tary.” URL: www.icculus.org/~phaethon/

q3mc/q3mc.html.

[21] “VTK Home Page.” URL: public.kitware.
com/VTK.


