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A Kind of Context-aware
Computing Approach for

Proactive Service
ZHANG De-Gan1, 2 HUANG Xiao-Bin3

Abstract We focus on modeling and computing of aware con-
text with uncertainty for making dynamic decision during seam-
less mobile service. We re-examine formalism of random set,
which is not finite-set statistics (FISST), argue the limitations of
the direct numerical approaches, give new modeling mode based
on random sets theory (RST) for aware context, and propose
our computing approach of modeled aware context. In addition,
we extend classic D-S evidence theory after considering relia-
bility, time efficiency, relativity of context, and compare these
two kinds of relative computing methods for uncertain context.
By comparing, the validity of new context-aware computing ap-
proach based on improved random set theory (IRST) or extended
D-S evidence theory (EDS) for proactive service has been tested.

Key words Proactive service, context-aware, random set the-
ory, D-S evidence theory

1 Introduction
In order to realize seamless mobility of pervasive comput-

ing, context-aware process must be considered for attentive
seamless service, because context-aware information during
seamless transfer is helpful for reasoning, making decision,
and realizing service in time[1]. Random sets theory (RST)
is one theory of applied mathematics, which is not finite-set
statistics (FISST)[2]. We re-examine formalism of random
set, argue the limitation of the direct numerical approaches,
and propose our computing approach. D-S evidence theory
is another method for expressing and computing context.
In order to ensure the QoS of proactive service, we will
modify the computing method of evidence after considering
context′s reliability, time efficiency, and relativity. We call
the modified method extended D-S evidence theory (EDS),
which has improved the classic fusion rule of D-S evidence
theory.

2 Modeling based on IRST

Using the notion of the Janossy density[3], we can de-
fine the joint probability density of two random finite sets,
X and Y, and the conditional probability density such as
P (X|Y ) and P (Y |X). Suppose that X is a finite random
set modeling the unknown number of objects to be esti-
mated and Y is an observation with respect to X given as
another finite random set. If the Jonossy density is jointly
defined for the two random sets, X and Y, then we can
apply Bayes′ rule as

P (X|Y ) = P (Y |X)P (X)/P (Y ) (1)

which gives us the formal “answer” to the multi-object esti-
mation problem that is defined by the object model P (X )
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and the observation model P (Y |X). Assuming that, for
the moment, “objects” are all static, a typical model X for
objects is a Poisson point process with an intensity measure
G on the state space E. In order to define a multi-sensor,
multi-U scan problem, let us consider N observations that
are given as finite random sets, (Y1, Y2, · · · , YN ), in mea-
surement spaces, (E1, E2, · · · , EN ), each having σ finite
measure µk. We assume conditional independence of ob-
servations as

P ((Yk)N
k=1|X) =

N∏
i=1

P ((YK)|X) (2)

Then the problem can be defined completely when we
specify each measurement model P ((YK)|X). A typical
model, assuming: 1) object-wise independent detection, 2)
object-wise measurement mechanism, and 3) independent
Poisson point process modeling false alarms, can be written
as

P ((Yk)|X) = e−νk
∑

a(X,Yk)

(
∏

x(a)

pm (a(x)|x)pD(x))×

(
∏

(1− pD(x)))(
∏

(rk(y))) (3)

As a conditional Janossy density, where pm(y|x) is the
density of the object state to measurement transition prob-
ability, pD(x) is the probability of an object at state x ∈ E
being detected (included) in the observation Yk, Rk is the
density of the intensity measure of the Poisson point pro-
cess modeling false alarms in Yk with νk =

∫
Ek

rk(y)µk(dy),

and A(X, Yk) is the set of all the one-to-one functions de-
fined on a subset Dom(a) of X taking values in Yk, then,
for any integer k′ ≤ N , there is a collection Ek′ of a col-
lection λ, called data to data association hypotheses, of
tracks, each of which is a subset of the tagged cumulative

data sets, Uk′
k=1Yk × {k}.

3 Computing of modeled aware context
According to the modeling based on random set the-

ory for aware context, the solutions to the state estimation
problems of a general class of multi-object were developed
using the random finite sequences, i.e., random point pro-
cess formalism. Bayes′ equation (1) is solved numerically.
The state space I of the collection of finite sets is approxi-

mated or truncated as
⋃n′

n=0 En or equivalently

In′ = {X ∈ I| ω(x) ≤ n′} (4)

with a priori bound n′ on the number of objects. The space
E for each object state must be quantized in some efficient
way.

Without any approximation (truncation), the cardinality
of the collection I of all the finite sets in E, i.e., the system
state space, can be expressed as (By n = ω(A), we mean
that the cardinality of set A is n.)

ω(I) =

∞∑
n=0

(ω(E)n)/n! = exp(ω(E)) (5)

When repeated elements are not ignored but the orders
in sequences are ignored, we consider quotient spaces of
the direct product space En induced by permutations of
elements. When the object state space E is finite, we have
I = 2E , which is the power set of E, and hence, ω(I) =

2ω(E).
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In a sense, the direct numerical calculation approach in
fact replaces the curse of hypotheses explosion in (4) by the
curse of dimensional explosion. A solution to this problem
of dimensional explosion was proposed in [4], in which, for
each (hypothesized) number n(≤ n′) of objects, the den-
sity functions p′n1 , p′n2 , · · · , p′nn

of n a posteriori proba-
bility distributions on the object state space E, together
with the posteriori probability on the number of objects,
q′1, q′2, · · · , q′n, approximate the posteriori Jonassy density
function as

P (X|(Yk)k′
k=1) = q′ω (x) ·

∑

a∈A(x)

∏
x

p′ω (x)a(x)(x) (6)

where A(X) is the set of all the one-to-one functions de-
fined on set X in E taking values in the set {1, · · · , ω (X)}
of integers. For each (hypothesized) number n of ob-
jects, the joint probability of the states of n objects is
approximated by n independent probability distributions
in (6). In other words, for each n, all the associated hy-
potheses are “combined” and cross-correlation among n
objects are ignored, i.e., for a given n, a non-Gaussian
extension of the algorithm, known as joint probabilistic
data association (JPDA) algorithm is used. With this ap-
proximation, computational complexity can be bounded by
(n′(n′ + 1)/2)ω(E).

We can modify (4) to accommodate merged measure-
ment as

P{Y |{x1, x2, · · · , xn}} = pC(x1, x2) ·
∑

y

pCM (Y|(x1, x2))·

pCD(x1, x2)pFA(Y \{y}) + (1− pC(x1, x2)) ·
∑

a({1,2},Y )

·

(
∏

i(a)

pm(y|x)pD(x)) · (
∏

(1− pD(x))) · pFA(Y (a)) (7)

where pC(x1, x2) and pCD(x1, x2) are the probability of two
objects at x1 and x2 being merged and that of the merged
measurement being included in the data set Y , respectively,
pCM (·|·) is the density of joint-where-state-to-measurement
transition probability, and pFA(·) is the Janossy density of
the random set of false alarms. The object-wise detection
probability pD and the density of the state-to-measurement
transition probability pm are the same as [3].

Another interesting variation of the sensor model (3) may

be a predetection tracking model[5], such as

P (Y |X) = P ((y(j)j∈J)|X) =
∏
j∈J

1/(
√

2πσ(j))·

exp

(
−

[
(y(j)−∑

x∈X S(j|x)

σ(j)

]2

2

)
(8)

which is a conditional probability density of an observation
Y = (y(j))j∈J as a collection of intensity values integrated
within each quantized two or three dimensional cells, con-
ditioned by the collection of objects modeled by a random
finite set X. In (8), S(j|x) = s(x)

∫
j
O(η−h(x))dη is the in-

tegrated contribution of an object at x within a cell, where
s(x) is the signal strength part of the object state x, h(x) is
the projection of the object state onto a focal plane or mea-
surement space, Φ(·) is an appropriate point-spread func-

tion, and σ(j) is the standard deviation of the integrated
noise in cell J, given cell-wise independent noises.

In what follows, we will discuss a potential new approach
using random set formalism but without resorting to direct
numerical calculation. The basic concept is borrowed from
the stochastic clustering that Saha introduced in [6]. For
example, in a single data set Y of a random finite set, the
Choquet′s capacity functional of the random finite set X
of objects can be written as

T (K|Y ) = {X ∩K 6= ∅ | Y } = 1− e−
∫

E
(1−pD(x))µ(dx)·

∏
y∈Y

pFA(y) +
∫

E\K
pm(y|x)pD(x)G(dx)

pFA(y) +
∫

E
pm(y|x)pD(x)G(dx)

(9)

For each K, where pD and pm are detection probability and
transition probability density as described previously, and
G is the intensity measure of the poisson point process X.
(9) shows a cluster initialization process.

Now let us consider a cluster consisting of a set Ë of
hypotheses, each hypothesis ë ∈ Ë being a set of tracks
τ , according to the notion of clustering in [6]. For each
hypothesis λ, a posteriori probability p′(λ) is attached, and
for each track, a posteriori object state probability density
p′(x|τ) on E is given. Then consider the expected number
of objects in this cluster in the sense that

ν′ =
∑

λ∈Λ

ω(λ)p′(λ) (10)

Let T =
⋃

λ be the set of all the tracks in the cluster, and
consider the “mean” probability density in the following
sense.

p′(x) =

∑
τ∈T

q′(τ)p′(x|τ)

∑
τ∈T

q′(τ)
(11)

where q′(τ) =
∑{p′(λ)|τ ∈ λ ∈ Λ} is the track probabil-

ity for each track τ , defined using hypothesis probabilities
p′(λ)ë∈Ë . For example, if the posteriori distribution repre-
sented by p′(x|τ) for each track has a finite sufficient statis-
tics, e.g., each p′(x|τ) is Gaussian, then we may be able to
approximate (11) by a probability distribution with finite
sufficient statistics, e.g., mean vector and variance matrix.

4 Extended D-S evidence theory
Based on classic D-S evidence theory mentioned above,

we will discuss EDS in the following[7].
Let the function mass m(·) be a certain evidence infor-

mation (context-aware information). We can define the

exchange form Ê of this evidence E, where Θ is defined as
above, Ai is focus element m(Ai) > 0, and i is the number
of focus number which satisfies the conditions

m̂(Ai) = m(Ai), Ai 6= Θ (12)

m̂(Θ) = m(Θ) + (1− δ) (13)

where δ ∈ [0, 1] is context reliability factor after assessment
according to specified case,

∑
m̂(Ai) ≤ 1, with m̂ being the

basic probability assignment. Then, E is called the original

evidence, and Ê is mapped evidence of E.
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Let the function mass m(·) be a certain evidence infor-
mation (context-aware information) E at the time-point t0.
Then, we can define the exchange form of the function mass

m̂(Ai, t) = ξ(t− t0)m(Ai), Ai 6= Θ

m̂(Θ, t) = ξ(t− t0)m(Θ) + [1− ξ(t− t0)] (14)

where ξ(t − t0) = δf(t − t0), δ is reliability factor and
f(t − t0) is function of time efficiency which is provided
by the expert of the special field of the object of interest
and can be tuned after being assessed. The form of this
function of time efficiency is various and changeable. In
different fields, the description may be different, such as
subsection function and trigonometric function.

Let the energy function Ψ(E) of an evidence E be defined
as

Ψ(E) =

n(E)∑
i=1

m(Ai)/|Ai|, Ai 6= φ (15)

where Ai is the set of focus elements, |Ai| is the radix of
Ai, n(E) is the number of elements and their set of power,
m(Ai) = m̂(Ai, t)/ξ(t − t0), Ai 6= Θ, m(Θ) = m̂(Θ, t) −
[1− ξ(t− t0)]/ξ(t− t0), ξ(t− t0) 6= 0, m̂(Ai, t), m̂(Θ, t), and
ξ(t− t0) are as defined above.

If the function masses m1(·) and m2(·) are basic proba-
bility functions of two evidences E1 and E2, their focus el-
ements are Ai and Bj , respectively. Obviously, some focus
elements of E1 and E2 may be relative, and the relativity
degree is decided partly by the number of focus elements
and its basic probability assignment. So we define the rel-
ative degree as follows.

The coefficients of relativities µ12 (which ranges from E1

to E2) and µ21 (which ranges from E2 to E1) are defined,
respectively, as

µ12 = ϕ(E1, E2)Ψ(E2)/(2Ψ(E1))

µ21 = ϕ(E1, E2)Ψ(E1)/(2Ψ(E2))

where ϕ(E1, E2) is the relativity degree of evidences E1 and
E2, which can be computed as

ϕ(E1, E2) = 2Ψ(E1, E2)/(Ψ(E2) + Ψ(E1))

5 Computing based on EDS
Let the mass functions m1(·) and m2(·) be basic prob-

ability functions of two evidences E1 and E2 in the space
U , {Ai} and {Bj} are sets of focus elements. Then, the
context fusion computing method considering context rel-
ativity is as follows

m̂(A) =
∑

Ai∩Bj=A

m′
1(Ai)m

′
2(Bj), A 6= φ, Θ (16)

m̂(φ) = 0, m̂(Θ) =
∑

Ai∩Bj=Θ

(
m′

1(Ai)m
′
2(Bj)

)
+ η

where

m′
1(Ai) =

{
m1(Ai)(1− µ12) Ai 6= Θ

1−∑
Ai⊂Θ m1(Ai) Ai = Θ

m′
2(Bj) =

{
m2(Bj)(1− µ21) Bj 6= Θ

1−∑
Bj⊂Θ m2(Bj) Bj = Θ

η =
∑

Ai∩Bj=φ

m1(Ai)m2(Bj)

In the following, we give the fusion computing method
of n evidences under consideration of context reliability.

Similarly, suppose the function masses m1(·), m2(·), · · · ,
mn(·) are basic probability functions of n evidences in the
space U, and that the mapped functions are m̂1, m̂2, · · · ,
m̂n, respectively. Then, the context computing method m̂
is

m̂(A) = c−1
∑

∩Ai=A

∏

1≤i≤n

m′
i(Ai), A 6= φ (17)

m̂(φ) = 0, m̂(Θ) = (
∑

∩Ai=φ

∏

1≤i≤n

m′
i(Ai)) + η

where

m′
i(Ai) =

{
mi(Ai)(1− µi×(n−i)) Ai 6= Θ

1−∑
Ai⊂Θ mi(Ai) Ai = Θ

η =
∑

∩Ai=φ

∏

1≤i≤n

m′
i(Ai), c =

∑

∩Ai 6=φ

∏

1≤i≤n

m′
i(Ai)

6 Tests and evaluation
As an experimental example of our active space[7], we

want to identity a person based on computation of two
kinds of context tracked by face recognition agent and voice
recognition agent, and then track his/her activity. For 200
persons, the reliability factor of the voice recognition agent
δ1 = 0.8 and the reliability factor of the face recognition
agent δ2 = 1. According to the gathered voice of 200 per-
sons, the decision made by the voice recognition agent is
m1(S, Z) = 0.875, which is in accordance with the collected
image information of 200 persons, and the decision by the
face recognition agent is m2(S) = 0.9.

If we consider the approach ((16), (17)) based on EDS
mentioned above, we can get the mass for decision of the
person′s identity as follows:

m3(S) = m̂1

⊕
m̂2(S) = 0.63 + 0.27 = 0.9. Probability

of the person is S.

m3(S, Z) = m̂1

⊕
m̂2(S, Z) = 0.07. Probability of the

person is S or Z.

m3(Θ) = m̂1

⊕
m̂2(Θ) = 0.03. Probability of the person

is uncertain.

In the above m3(S) shows that the probability of the
person′s identity is S.

If we consider the approach ((7), (11)) based on RST
mentioned above, then we are generating aggregate statis-
tics for a group of objects in context-aware computing. Be-
cause there is addition probability in m3(S, Z) and m3(Θ),
which means the additional information about S or Z, for
both S and Z, the additional probability is 0.1. We can de-
termine that the probability of S is 0.9, so the probability
region of S is [0.9, 1]. The computation result is consistent
with our experiences, and there is no conflict of ideas be-
tween the two, so the efficiency of context-aware computing
approach based on RST can be relied upon.

In experimental examples, with the increase of random
finite sequence, the mean error ratio will decrease, which
ranges from 0.247% to 0.089%, but with evidence theory
method it ranges from 0.298% to 0.125%. By comparison,
the advantage of RST is apparent.
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7 Conclusion
In order to solve the attentive service problem of perva-

sive computing paradigm, we have studied context-aware
computing during seamless mobility based on RST and
EDS. We have argued the limitation of the direct numerical
approaches, proposed our computing approach of modeled
aware context based on IRST, and extended D-S evidence
theory after considering the context′s reliability, time ef-
ficiency, and relativity. The validity of our approach has
been successfully tested using the experimental example.
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