Invariant Subspaces of Sobolev Disk Algebra

LIU Yi－qiang，WANG Zong－yao
（Dept．of Math．，East China University of Science and Technology，Shanghai 200237，China ）
（E－mail：zywang＠ecust．edu．cn）

Abstract

In this paper，we study the invariant subspaces of the operator M_{z} on the Sobolev disk algebra $R(\mathbf{D})$ and characterize the invariant subspace with finite codimension．

Key words：Invariant subspace；Sobolev disk algebra；multiplication operator．
MSC（2000）：47B38，47B37
CLC number：O177

1．Introduction

Let Ω be an analytic Cauchy domain in the complex plane and let $W^{2,2}(\Omega)$ denote the Sobolev space：$W^{2,2}(\Omega)=\left\{f \in L^{2}(\Omega, \mathrm{~d} m)\right.$ ：the distributional partial derivatives of first and second order of f belong to $\left.L^{2}(\Omega, \mathrm{~d} m)\right\}$ ，where $\mathrm{d} m$ denotes the planar Lebesgue measure．For $f, g \in W^{2,2}(\Omega)$ ，define $\langle f, g\rangle=\sum_{|\alpha| \leq 2} \int D^{\alpha} f \overline{D^{\alpha} g} \mathrm{~d} m$ ，then $W^{2,2}(\Omega)$ is a Hilbert space and a Banach algebra with identity under an equivalent norm．Let $\mathbf{D}=\{\mathbf{z} \in \mathbf{C}:|\mathbf{z}|<\mathbf{1}\}$ be the unit disk and $R(\mathbf{D})$ be the closure in the Sobolev space $W^{2,2}(\mathbf{D})$ of all rational functions with poles outside $\overline{\mathbf{D}}$ ．For $f \in R(\mathbf{D})$ ，the multiplication operator M_{f} on $R(\mathbf{D})$ is defined as follows：

$$
M_{f} g=f g, g \in R(\mathbf{D}) .
$$

We have the following properties of the space $R(\mathbf{D})$ and the multiplication operators on it ${ }^{[7,8,11]}$ ：
Proposition 1 ${ }^{[11, \text { Proposition1．3］}}$（i）Hilbert space $R(\mathbf{D})$ has an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ ，where

$$
e_{n}=\beta_{n} z^{n}, \beta_{n}=\left[\frac{n+1}{\left(3 n^{4}-n^{2}+2 n+1\right) \pi}\right]^{\frac{1}{2}}, n=0,1, \cdots ;
$$

（ii）If $f=\sum_{n=0}^{\infty} f_{n} z^{n}$ is analytic in \mathbf{D} ，then $f \in R(\mathbf{D})$ if and only if $\sum_{n=0}^{\infty} \frac{\left|f_{n}\right|^{2}}{\beta_{n}^{2}}<+\infty$ ．
For a separable Hilbert space H ，let $\mathcal{L}(H)$ be the algebra of all bounded linear operators on H ．If $T \in \mathcal{L}(H)$ ，then denote $\sigma_{e}(T)$ the essential spectrum of $T, \rho_{F}(T)=\mathbf{C} \backslash \sigma_{\mathbf{e}}(\mathbf{T})$ the Fredholm domain of T ．Denote ind $(T-\lambda)$ the index of T at λ ，where $\operatorname{ind}(T-\lambda)=\operatorname{nul}(T-\lambda)-\operatorname{nul}(T-\lambda)^{*}$ ， $\lambda \in \rho_{F}(T)$ ．

Proposition 1．2 ${ }^{[11], \text { Proposition 1．1］}}$（i）$M_{z}$ is an essentially normal weighted shift：$M_{z} e_{n}=$ $w_{n} e_{n+1}, w_{n}=\frac{\beta_{n}}{\beta_{n+1}}(n=0,1, \cdots)$ ；

Received date：2004－08－24
Foundation item：the National Natural Science Foundation of China（10471041）
(ii) $\mathcal{A}^{\prime}\left(M_{z}\right)=\left\{M_{f}: f \in R(\mathbf{D})\right\}$, where $\mathcal{A}^{\prime}\left(M_{z}\right)$ is the commutant algebra of M_{z}.

Proposition 1.3 ${ }^{[11, \text { Proposition1.5] }}$ If $f \in \mathbf{D}$, then $\sigma\left(M_{f}\right)=f(\overline{\mathbf{D}}), \sigma_{e}\left(M_{f}\right)=\sigma_{\text {lre }}\left(M_{f}\right)=f(\partial \mathbf{D})$. If $z_{0} \in \mathbf{D}, f\left(z_{0}\right) \notin f(\partial \mathbf{D})$, then

$$
\operatorname{ind}\left(M_{f}-f\left(z_{0}\right)\right)=-\operatorname{nul}\left(M_{f}-f\left(z_{0}\right)\right)^{*}=-n,
$$

where n is the number of zeros of $f(z)-f\left(z_{0}\right)$ in \mathbf{D} (including multiplicity).
Note that $f \in W^{2,2}(\Omega)$ implies that $f \in C(\bar{\Omega})$. Therefore, $R(\mathbf{D})$ is a subalgebra of the disk algebra $A(\mathbf{D})$, hence a subalgebra of H^{∞}. Because of the special definition of the inner product and the complex behavior of the boundary value, the structure of the space $R(\mathbf{D})$ is much different from H^{∞} or H^{2}.

2. Invariant subspace of M_{z}

A classical result on invariant subspace is the Beurling's theorem on Hardy space H^{2}. Beurling's theorem classifies the invariant subspace of H^{2} by virtue of inner functions, and it plays an important role in operator theory and function theory. However, it is only recently that progress has been made in proving analogues for the other space of analytic function in $\mathbf{D}^{[2]}$. Since a function in $R(\mathbf{D})$ must be continuous on $\overline{\mathbf{D}}$, it is not all inner functions that are in $R(\mathbf{D})$. But Blaschke products of finite factors are still important in characterizing the structure of invariant subspaces.

Proposition 2.1 Let $f \in R(\mathbf{D}), B_{a}(z)=\frac{z-a}{1-\bar{a} z}, a \in \mathbf{D}$, then $M_{f \circ B_{a}}$ is similar to M_{f}.
Proof It is easy to see that $f \circ B_{a} \in R(\mathbf{D})$. For this a, define an operator S_{a} as follows:

$$
S_{a} f=f \circ B_{a} \text {, for all } f \in R(\mathbf{D}) .
$$

Computations show that there are positive numbers M_{1}, M_{2}, M_{3} and M_{4} such that

$$
\begin{gathered}
\int\left|f \circ B_{a}\right|^{2} \mathrm{~d} m \leq M_{1} \int|f|^{2} \mathrm{~d} m \\
\int\left|\left(f \circ B_{a}\right)^{\prime}\right|^{2} \mathrm{~d} m \leq M_{2} \int\left|f^{\prime}\right|^{2} \mathrm{~d} m
\end{gathered}
$$

and

$$
\int\left|\left(f \circ B_{a}\right)^{\prime \prime}\right|^{2} \mathrm{~d} m \leq M_{3} \int\left|f^{\prime}\right|^{2} \mathrm{~d} m+M_{4} \int\left|f^{\prime \prime}\right|^{2} \mathrm{~d} m
$$

We can see $\left\|f \circ B_{a}\right\| \leq M\|f\|$ for some $M>0$, i.e., S_{a} is bounded.
For all $g \in R(\mathbf{D})$,

$$
S_{a} M_{f} g=S_{a}(f \cdot g)=f\left(B_{a}\right) g\left(B_{a}\right) .
$$

But

$$
M_{f \circ B_{a}} S_{a} g=M_{f \circ B_{a}} g\left(B_{a}\right)=f\left(B_{a}\right) g\left(B_{a}\right) .
$$

Thus $S_{a} M_{f}=M_{f \circ B_{a}} S_{a}$.

Since B_{a} is an invertible analytic function, S_{a} is one-to-one and onto. Therefore, S_{a} is invertible and $M_{f \circ B_{a}}=S_{a} M_{f} S_{a}^{-1}$.

Proposition 2.2 If $\varphi \in R(\mathbf{D})$, then M_{φ} is similar to M_{z} if and only if

$$
\varphi(z)=\lambda \frac{z-a}{1-\bar{a} z}, \text { for some } \lambda \text { and } a,|\lambda|=1, a \in \mathbf{D}
$$

Proof If $\varphi(z)=\lambda \frac{z-a}{1-\bar{a} z}$, then it is an immediate corollary of Proposition 2.1 that $M_{\varphi} \sim M_{z}$.
On the other hand, if $M_{f} \sim M_{z}$, it follows from Proposition 1.3 that

$$
f(\overline{\mathbf{D}})=\sigma\left(M_{f}\right)=\sigma\left(M_{z}\right)=\overline{\mathbf{D}}
$$

Thus $f(\mathbf{D}) \subset \overline{\mathbf{D}}$. Since f is continuous on $\overline{\mathbf{D}}$, by Maximum Modulus Theorem, f cannot take its maximum modulus 1 in \mathbf{D}. Therefore, $f(\mathbf{D}) \subset \mathbf{D}$. But for $\lambda \in \mathbf{D}$,

$$
\lambda \in \sigma\left(M_{z}\right) \backslash \sigma_{e}\left(M_{z}\right)=f(\overline{\mathbf{D}}) \backslash f(\partial \mathbf{D})
$$

Then $\lambda \in f(\mathbf{D})$, that is, $\mathbf{D} \subset \mathbf{f}(\mathbf{D})$. Consequently, f is a map from \mathbf{D} onto \mathbf{D}.
Notice that

$$
\operatorname{nul}\left(\lambda-\mathrm{M}_{\mathrm{f}}^{*}\right)=\operatorname{nul}\left(\lambda-\mathrm{M}_{\mathrm{z}}^{*}\right)=1, \quad \text { for all } \lambda \in \mathbf{D}
$$

which indicates that $f(z)-\lambda$ has a unique zero in \mathbf{D} for all $\lambda \in \mathbf{D}$. Therefore, f is a one-to-one map from \mathbf{D} onto \mathbf{D} and must be a Möbius transformation with a coefficient modulus one.

Recall that the class of Cowen-Douglas operator $B_{n}(\Omega)$ of index n is the set of all bounded linear operators $B \in \mathcal{L}(\mathcal{H})$ which satisfy:
(i) $\sigma(B) \supset \Omega$;
(ii) $\operatorname{ran}(\mathrm{B}-\lambda)=\mathrm{H}$ for all $\lambda \in \Omega$;
(iii) $\operatorname{nul}(\mathrm{B}-\lambda)=\mathrm{n}$ for all $\lambda \in \Omega$;
(iv) $\bigvee\{\operatorname{ker}(\mathrm{B}-\lambda): \lambda \in \Omega\}=\mathrm{H}$.

Lemma 2.3 ${ }^{[11, \text { Proposition1.6] }}$ Let $f \in R(\mathbf{D})$ and $f\left(z_{0}\right) \notin f(\partial \mathbf{D}), \mathbf{z}_{\mathbf{0}} \in \mathbf{D}$. Denote the component of the Fredholm domain $\rho_{F}\left(M_{f}\right)$ containing $f\left(z_{0}\right)$ as Ω, then $M_{f}^{*} \in B_{n}(\Omega)$, where n is the number of zeros of $f(z)-f\left(z_{0}\right)$ in \mathbf{D}.

Lemma 2.4 If $f_{1}, f_{2}, \cdots, f_{n}$ are functions in $R(\mathbf{D})$ with no common zeros in the closed disk $\overline{\mathbf{D}}$, then there exist $g_{1}, g_{2}, \cdots, g_{n} \in R(\mathbf{D})$ such that $f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{n} g_{n}=1$.

Proof Let

$$
J=\left\{g_{1} f_{1}+g_{2} f_{2}+\cdots+g_{n} f_{n}: g_{1}, \cdots, g_{n} \in R(\mathbf{D})\right\}
$$

It is easy to see that J is an ideal of $R(\mathbf{D})$. If J is a proper ideal, then J is contained in a maximal ideal. This is impossible since the maximal ideal space of $R(\mathbf{D})$ is $\overline{\mathbf{D}}$ but $f_{1}, f_{2}, \cdots, f_{n}$ have no common zeros in $\overline{\mathbf{D}}$. Thus J contains the constant 1 and so there exist $g_{1}, g_{2}, \cdots, g_{n} \in R(\mathbf{D})$ such that $f_{1} g_{1}+f_{2} g_{2}+\cdots+f_{n} g_{n}=1$.

Lemma 2.5 Let M be an invariant subspace of M_{z} with common zeros $z_{1}, z_{2}, \cdots, z_{n}$ in \mathbf{D} (including multiplicity), then $N:=\left\{g \in R(\mathbf{D}):\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) g \in M\right\}$ is a closed subspace of $R(\mathbf{D})$.

Proof Obviously, N is a subspace of $R(\mathbf{D})$. Suppose that $g_{k} \in N, g_{k} \rightarrow g_{0}$ in $R(\mathbf{D})(k \rightarrow \infty)$, let

$$
h_{k}=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) g_{k}
$$

and

$$
h_{0}=\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) g_{0} .
$$

Then $h_{k} \rightarrow h_{0}$ in $R(\mathbf{D})$. It follows from $h_{k} \in M$ that $h_{0} \in M$, which implies that $g_{0} \in N$. Therefore, N is closed.

Lemma 2.6 ${ }^{[11, \text { Proposition1.2] }}$ The set of all polynomials is dense in $R(\mathbf{D})$.
Proposition 2.7 Let M be a subspace of $R(\mathbf{D})$.
(i) M is an invariant subspace of M_{z} with common zeros $z_{1}, z_{2}, \cdots, z_{n}$ in \mathbf{D} (including multiplicity) if and only if $M=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})$;
(ii) If M is an invariant subspace in (i), then the projection from $R(\mathbf{D})$ onto M is

$$
P_{M}=M_{\chi}\left(M_{\chi}^{*} M_{\chi}\right)^{-1} M_{\chi}^{*}
$$

where

$$
\chi=\prod_{i=1}^{n} \frac{z-z_{i}}{1-\overline{z_{i}} z}
$$

Proof (i) Clearly, if $M=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})$, then M is an invariant subspace of M_{z}.

On the other hand, as defined in Lemma 2.5, let

$$
N=\left\{g \in R(\mathbf{D}):\left(z-z_{1}\right) \cdots\left(z-z_{n}\right) g \in M\right\}
$$

then N is a closed subspace of M_{z}. For each $w \in \overline{\mathbf{D}}$, since $z_{1}, z_{2}, \cdots, z_{n} \in \mathbf{D}$, there exists a function $f_{w} \in N$ such that $f_{w}(w) \neq 0$. Observing f_{w} is continuous on $\overline{\mathbf{D}}$, we can choose a neighborhood $U(w, \varepsilon)$ such that f_{w} does not vanish in $U(w, \varepsilon)$. Consequently, there exists a finite covering $U\left(w_{1}, \varepsilon_{1}\right), \cdots, U\left(w_{k}, \varepsilon_{k}\right)$ of $\overline{\mathbf{D}}$ and functions $f_{w_{1}}, \cdots, f_{w_{k}} \in R(\mathbf{D})$ such that $f_{w_{i}}$ does not vanish in $U\left(w_{i}, \varepsilon_{i}\right), i=1, \cdots, k$. Note that $f_{w_{1}}, \cdots, f_{w_{k}}$ have no common zeros in $\overline{\mathbf{D}}$, otherwise, if $f_{w_{i}}\left(w_{0}\right)=0$ for all $1 \leq i \leq k$, then w_{0} must be in certain $U\left(w_{j}, \varepsilon_{j}\right)(1 \leq j \leq k)$, this contradicts to the fact $f_{w_{j}}(z) \neq 0$ in $U\left(w_{j}, \varepsilon_{j}\right)$. Now it follows from Lemma 2.4 that there exist functions $g_{1}, g_{2}, \cdots, g_{k} \in R(\mathbf{D})$ such that $f_{w_{1}} g_{1}+f_{w_{2}} g_{2}+\cdots+f_{w_{k}} g_{k}=1$, so that $1 \in N$. Thus $\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) \in M$. Since M is invariant under M_{z}, by Lemma 2.6 , $\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D}) \subset M$.

Conversely, it is obvious that,

$$
M \subset\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})
$$

Therefore,

$$
M=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})
$$

(ii) Since M_{χ}^{*} is a Fredholm operator and $\operatorname{ker} \mathrm{M}_{\chi}=\{0\}, M_{\chi}^{*} M_{\chi}$ is invertible. It is obvious that $M_{\chi}\left(M_{\chi}^{*} M_{\chi}\right)^{-1} M_{\chi}^{*}$ is an idempotent and self-adjoint operator, thus is a projection.

By Lemma 2.3, $M_{\chi}^{*} \in B_{n}(\mathbf{D})$, ran $M_{\chi}^{*}=R(\mathbf{D})$, we see that $P_{M}=\operatorname{ran} M_{\chi}=\chi R(\mathbf{D})$. But $M=\chi R(\mathbf{D})$, thus $\operatorname{ran} P_{M}=M$ and so P_{M} is the projection onto M.

It is well known that for each invariant subspace M of M_{z} in H^{2}, M_{z} is similar to its restriction on M. The following proposition shows that in Sobolev disk algebra, this property holds if and only if M has finite common zeros in \mathbf{D}.

Proposition 2.8 Let M be an invariant subspace of M_{z}, then M_{z} is similar to its restriction on M if and only if

$$
M=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})
$$

where $\left\{z_{i}\right\}_{i=1}^{n}$ are numbers in \mathbf{D}.
Proof If $M=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right) R(\mathbf{D})$, let

$$
p=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

Define $T_{p}: R(\mathbf{D}) \rightarrow M, T_{p} f=p f$ for $f \in R(\mathbf{D})$. It is easy to see that T_{p} is a one-to-one map from $R(\mathbf{D})$ onto M. Since $\left.T_{p}^{-1} M_{z}\right|_{M} T_{p} f=z f=M_{z} f$ for all $f \in R(\mathbf{D}), M_{z}=\left.T_{p}^{-1} M_{z}\right|_{M} T_{p}$.

On the other hand, if there exists $W: R(\mathbf{D}) \rightarrow M$ such that $M_{z}=\left.W^{-1} M_{z}\right|_{M} W$, then $W M_{z}=\left.M_{z}\right|_{M} W$. Denote $h=W 1$, then computations show that $W z^{n}=z^{n} h$, and so $W p_{n}=$ $p_{n} h=M_{h} p_{n}$ for all polynomials. By Lemma 2.6, $W f=M_{h} f$ for all $f \in R(\mathbf{D})$, which implies $W=M_{h}$ and the range of M_{h} is closed. It follows from Proposition 1.3 that $h(\partial D) \neq 0$. Since h is analytic, it must have only finite zeros in \mathbf{D}. The proof is completed by Proposition 2.7 .

Given a set M, let $[M]$ be the smallest invariant subspace of M_{z} generated by M. If $M \neq\{0\}$ is an invariant subspace of H^{2}, it follows from Beurling's theorem that

$$
\operatorname{dim}[M \ominus z M]=1
$$

It also has been known that the invariant subspace of Bergman Space L_{a}^{2} is very complicated. In [3], C. Apostol, H. Bercovici, C. Foias and C. Pearcy showed that if n is any positive integer or ∞, then there is an invariant subspace M of L_{a}^{2} such that $\operatorname{dim}[M \ominus z M]=n$.

In [10], S. Richter studied a class of Banach spaces of analytic functions \mathcal{B} such that:
(i) The functional of evaluation at λ is continuous for all $\lambda \in \mathbf{D}$.
(ii) If $f \in \mathcal{B}$, then $z f \in \mathcal{B}$.
(iii) If $f \in \mathcal{B}$ and $f(\lambda)=0$, then $f=(z-\lambda) g$ for some $g \in \mathcal{B}$.

Lemma 2.9 ${ }^{[10, \text { Theorem5.3] }}$ Let \mathcal{B} be a Hilbert space satisfies the above conditions.
(i) If \mathcal{B} is an algebra and I is a closed ideal of \mathcal{B}, then $\operatorname{dim}[I \ominus z I]=1$.
(ii) Suppose $\sigma\left(M_{z}\right)=\overline{\mathbf{D}}$ and $\left\|M_{z} f\right\| \geq\|f\|$ for all $f \in \mathcal{B}$. If M is an invariant subspace of M_{z} and $\operatorname{dim}[M \ominus z M]=1$, then $M \subset H^{2} f_{0} \cap \mathcal{B}$, where $f_{0} \in[M \ominus z M]$.

Corollary 2．10 Let $M \neq\{0\}$ be an invariant subspace of M_{z} in $R(\mathbf{D})$ ，then

$$
\operatorname{dim}[M \ominus z M]=1
$$

and for each $f \in M, f=\varphi f_{0}$ ，where $\varphi \in H^{2}$ and $f_{0} \in[M \ominus z M]$ ．
Proof Since an invariant subspace of M_{z} in $R(\mathbf{D})$ is also a closed ideal，we have $\operatorname{dim}[M \ominus z M]=1$ ． To show that $f=\varphi f_{0}$ ，we need only to verify that $\left\|M_{z} f\right\| \geq\|f\|$ for all $f \in R(\mathbf{D})$ ．In fact，if $f=\sum_{n=0}^{\infty} f_{n} z^{n}$ ，then

$$
\left\|M_{z} f\right\|^{2}=\sum_{n=0}^{\infty} \frac{\left|f_{n}\right|^{2}}{\beta_{n+1}^{2}}
$$

Thus

$$
\left\|M_{z} f\right\|^{2}-\|f\|^{2}=\sum_{n=0}^{\infty} \frac{9 n^{4}+30 n^{3}+29 n^{2}+12 n+3}{(n+2)(n+1)} \pi\left|f_{n}\right|^{2}>0
$$

Remark As we know that in both the Hardy space and Bergman space，an invariant subspace M is just equal to the subspace generated by $M \ominus z M$ ，that is，$M=[M \ominus z M]$ ．We may expect that this property holds in $R(\mathbf{D})$ ，while this problem is still open．

References：

［1］ADAMS R A，Sobolev Spaces［M］．Academic Press，New York－San Francisco－London， 1975.
［2］ALEMAN A，RICHTER S，SUNDBERG C．Beurling＇s Theorem for the Bergman space［J］．Acta Math．，1996， 177：275－310．
［3］APOSTOL C，BERCOVICI H，FOIAS C．et al．Invariant subspaces，dilation theory，and the structure of the predual of a dual algebra［J］．J．Funct．Anal．，1985，63：369－404．
［4］COWEN M J，DOUGLAS R G，Complex geometry and operator theory［J］．Acta Math．，1978，141： $187-261$.
［5］DOUGLAS R G．Banach Algebra Techniques in Operator Theory（Second Edition）［M］．Springer－Verlag， 1998.
［6］GARNETT J B．Bounded Analytic Functions［M］．Academic Press，Inc．， 1981.
［7］JIANG Chun－lan，WANG Zong－yao．Strongly Irreducible Operators on Hilbert Space［M］．Pitman Research Notes in Mathematics Series，389．Longman，Harlow， 1998.
［8］LIU Yi－qiang，WANG Zong－yao．The commutant of the multiplication operators on Sobolev disk algebra［J］． J．Anal．Appl．，2004，2（2）：65－86．
［9］SHIELDS A L．Weighted Shift Operators and Analytic Function Theory［M］．Topics in operator theory，pp． 49－128．Math．Surveys，No．13，Amer．Math．Soc．，Providence，R．I．， 1974.
［10］RICHTER S．Invariant subspaces in Banach spaces of analytic functions［J］．Trans．Amer．Math．Soc．，1987， 304：585－618．
［11］WANG Zong－yao，LIU Yi－qiang．Multiplication operators on Sobolev disk algebra［J］．Science in China，Ser．A Mathematics，2005，48（10）：1395－1410．

Sobolev 圆盘代数的不变子空间

刘义强，王宗尧
（华东理工大学数学系，上海 200237）
摘要：本文研究了 Sobolev 圆盘代数 $R(D)$ 上的乘法算子 M_{z} 的不变子空间，完全刻画了余维有限的不变子空间的结构．

关键词：不变子空间；Sobolev 圆盘代数；乘法算子．

