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1. Introduction

Let Ω be an analytic Cauchy domain in the complex plane and let W 2,2(Ω) denote the

Sobolev space: W 2,2(Ω) = {f ∈ L2(Ω, dm): the distributional partial derivatives of first and

second order of f belong to L2(Ω, dm)}, where dm denotes the planar Lebesgue measure. For

f, g ∈ W 2,2(Ω), define 〈f, g〉 =
∑

|α|≤2

∫
DαfDαgdm, then W 2,2(Ω) is a Hilbert space and a

Banach algebra with identity under an equivalent norm. Let D = {z ∈ C : |z| < 1} be the unit

disk and R(D) be the closure in the Sobolev space W 2,2(D) of all rational functions with poles

outside D. For f ∈ R(D), the multiplication operator Mf on R(D) is defined as follows:

Mfg = fg, g ∈ R(D).

We have the following properties of the space R(D) and the multiplication operators on it[7,8,11]:

Proposition 1[11,Proposition1.3] (i) Hilbert space R(D) has an orthonormal basis {en}
∞
n=0, where

en = βnzn, βn = [
n + 1

(3n4 − n2 + 2n + 1)π
]
1
2 , n = 0, 1, · · · ;

(ii) If f =
∑∞

n=0 fnzn is analytic in D, then f ∈ R(D) if and only if
∑∞

n=0
|fn|2

β2
n

< +∞.

For a separable Hilbert space H , let L(H) be the algebra of all bounded linear operators on

H . If T ∈ L(H), then denote σe(T ) the essential spectrum of T , ρF (T ) = C\σe(T) the Fredholm

domain of T . Denote ind(T −λ) the index of T at λ, where ind(T −λ) = nul(T −λ)−nul(T −λ)∗,

λ ∈ ρF (T ).

Proposition 1.2[11],Proposition 1.1] (i) Mz is an essentially normal weighted shift: Mzen =

wnen+1, wn = βn

βn+1
(n = 0, 1, · · ·);

Received date: 2004-08-24
Foundation item: the National Natural Science Foundation of China (10471041)



234 Journal of Mathematical Research and Exposition Vol.26

(ii) A′(Mz) = {Mf : f ∈ R(D)}, where A′(Mz) is the commutant algebra of Mz.

Proposition 1.3[11,Proposition1.5] If f ∈ D, then σ(Mf ) = f(D), σe(Mf ) = σlre(Mf ) = f(∂D).

If z0 ∈ D, f(z0) /∈ f(∂D), then

ind(Mf − f(z0)) = −nul(Mf − f(z0))
∗ = −n,

where n is the number of zeros of f(z) − f(z0) in D (including multiplicity).

Note that f ∈ W 2,2(Ω) implies that f ∈ C(Ω). Therefore, R(D) is a subalgebra of the

disk algebra A(D), hence a subalgebra of H∞. Because of the special definition of the inner

product and the complex behavior of the boundary value, the structure of the space R(D) is

much different from H∞ or H2.

2. Invariant subspace of M
z

A classical result on invariant subspace is the Beurling’s theorem on Hardy space H2.

Beurling’s theorem classifies the invariant subspace of H2 by virtue of inner functions, and it

plays an important role in operator theory and function theory. However, it is only recently

that progress has been made in proving analogues for the other space of analytic function in

D[2]. Since a function in R(D) must be continuous on D, it is not all inner functions that are in

R(D). But Blaschke products of finite factors are still important in characterizing the structure

of invariant subspaces.

Proposition 2.1 Let f ∈ R(D), Ba(z) = z−a
1−az

, a ∈ D, then Mf◦Ba
is similar to Mf .

Proof It is easy to see that f ◦ Ba ∈ R(D). For this a, define an operator Sa as follows:

Saf = f ◦ Ba, for all f ∈ R(D).

Computations show that there are positive numbers M1, M2, M3 and M4 such that
∫

|f ◦ Ba|
2dm ≤ M1

∫
|f |2dm,

∫
|(f ◦ Ba)′|2dm ≤ M2

∫
|f ′|2dm,

and ∫
|(f ◦ Ba)′′|2dm ≤ M3

∫
|f ′|2dm + M4

∫
|f ′′|2dm.

We can see ‖f ◦ Ba‖ ≤ M‖f‖ for some M > 0, i.e., Sa is bounded.

For all g ∈ R(D),

SaMfg = Sa(f · g) = f(Ba)g(Ba).

But

Mf◦Ba
Sag = Mf◦Ba

g(Ba) = f(Ba)g(Ba).

Thus SaMf = Mf◦Ba
Sa.
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Since Ba is an invertible analytic function, Sa is one-to-one and onto. Therefore, Sa is

invertible and Mf◦Ba
= SaMfS−1

a .

Proposition 2.2 If ϕ ∈ R(D), then Mϕ is similar to Mz if and only if

ϕ(z) = λ
z − a

1 − az
, for some λ and a, |λ| = 1, a ∈ D.

Proof If ϕ(z) = λ z−a
1−az

, then it is an immediate corollary of Proposition 2.1 that Mϕ ∼ Mz.

On the other hand, if Mf ∼ Mz, it follows from Proposition 1.3 that

f(D) = σ(Mf ) = σ(Mz) = D.

Thus f(D) ⊂ D. Since f is continuous on D, by Maximum Modulus Theorem, f cannot take

its maximum modulus 1 in D. Therefore, f(D) ⊂ D. But for λ ∈ D,

λ ∈ σ(Mz) \ σe(Mz) = f(D) \ f(∂D).

Then λ ∈ f(D), that is, D ⊂ f(D). Consequently, f is a map from D onto D.

Notice that

nul (λ − M∗
f ) = nul (λ − M∗

z) = 1, for all λ ∈ D,

which indicates that f(z)− λ has a unique zero in D for all λ ∈ D. Therefore, f is a one-to-one

map from D onto D and must be a Möbius transformation with a coefficient modulus one.

Recall that the class of Cowen-Douglas operator Bn(Ω) of index n is the set of all bounded

linear operators B ∈ L(H) which satisfy:

(i) σ(B) ⊃ Ω;

(ii) ran (B − λ) = H for all λ ∈ Ω;

(iii) nul (B − λ) = n for all λ ∈ Ω;

(iv)
∨
{ker (B − λ) : λ ∈ Ω} = H.

Lemma 2.3[11,Proposition1.6] Let f ∈ R(D) and f(z0) /∈ f(∂D), z0 ∈ D. Denote the component

of the Fredholm domain ρF (Mf ) containing f(z0) as Ω, then M∗
f ∈ Bn(Ω), where n is the number

of zeros of f(z) − f(z0) in D.

Lemma 2.4 If f1, f2, · · · , fn are functions in R(D) with no common zeros in the closed disk D,

then there exist g1, g2, · · · , gn ∈ R(D) such that f1g1 + f2g2 + · · · + fngn = 1.

Proof Let

J = {g1f1 + g2f2 + · · · + gnfn : g1, · · · , gn ∈ R(D)}.

It is easy to see that J is an ideal of R(D). If J is a proper ideal, then J is contained in a maximal

ideal. This is impossible since the maximal ideal space of R(D) is D but f1, f2, · · · , fn have no

common zeros in D. Thus J contains the constant 1 and so there exist g1, g2, · · · , gn ∈ R(D)

such that f1g1 + f2g2 + · · · + fngn = 1.
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Lemma 2.5 Let M be an invariant subspace of Mz with common zeros z1, z2, · · · , zn in D

(including multiplicity), then N := {g ∈ R(D) : (z − z1) · · · (z − zn)g ∈ M} is a closed subspace

of R(D).

Proof Obviously, N is a subspace of R(D). Suppose that gk ∈ N , gk → g0 in R(D) (k → ∞),

let

hk = (z − z1) · · · (z − zn)gk

and

h0 = (z − z1) · · · (z − zn)g0.

Then hk → h0 in R(D). It follows from hk ∈ M that h0 ∈ M , which implies that g0 ∈ N .

Therefore, N is closed.

Lemma 2.6[11,Proposition1.2] The set of all polynomials is dense in R(D).

Proposition 2.7 Let M be a subspace of R(D).

(i) M is an invariant subspace of Mz with common zeros z1, z2, · · · , zn in D (including

multiplicity) if and only if M = (z − z1)(z − z2) · · · (z − zn)R(D);

(ii) If M is an invariant subspace in (i), then the projection from R(D) onto M is

PM = Mχ(M∗
χMχ)−1M∗

χ,

where

χ =

n∏
i=1

z − zi

1 − ziz
.

Proof (i) Clearly, if M = (z − z1)(z − z2) · · · (z − zn)R(D), then M is an invariant subspace of

Mz.

On the other hand, as defined in Lemma 2.5, let

N = {g ∈ R(D) : (z − z1) · · · (z − zn)g ∈ M},

then N is a closed subspace of Mz. For each w ∈ D, since z1, z2, · · · , zn ∈ D, there exists a

function fw ∈ N such that fw(w) 6= 0. Observing fw is continuous on D, we can choose a

neighborhood U(w, ε) such that fw does not vanish in U(w, ε). Consequently, there exists a

finite covering U(w1, ε1), · · · , U(wk, εk) of D and functions fw1
, · · · , fwk

∈ R(D) such that fwi

does not vanish in U(wi, εi), i = 1, · · · , k. Note that fw1
, · · · , fwk

have no common zeros in D,

otherwise, if fwi
(w0) = 0 for all 1 ≤ i ≤ k, then w0 must be in certain U(wj , εj) (1 ≤ j ≤ k),

this contradicts to the fact fwj
(z) 6= 0 in U(wj , εj). Now it follows from Lemma 2.4 that

there exist functions g1, g2, · · · , gk ∈ R(D) such that fw1
g1 + fw2

g2 + · · · + fwk
gk = 1, so that

1 ∈ N . Thus (z − z1)(z − z2) · · · (z − zn) ∈ M. Since M is invariant under Mz, by Lemma 2.6,

(z − z1)(z − z2) · · · (z − zn)R(D) ⊂ M .

Conversely, it is obvious that,

M ⊂ (z − z1)(z − z2) · · · (z − zn)R(D).
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Therefore,

M = (z − z1)(z − z2) · · · (z − zn)R(D).

(ii) Since M∗
χ is a Fredholm operator and ker Mχ = {0}, M∗

χMχ is invertible. It is obvious

that Mχ(M∗
χMχ)−1M∗

χ is an idempotent and self-adjoint operator, thus is a projection.

By Lemma 2.3, M∗
χ ∈ Bn(D), ran M∗

χ = R(D), we see that PM = ranMχ = χR(D). But

M = χR(D), thus ranPM = M and so PM is the projection onto M .

It is well known that for each invariant subspace M of Mz in H2, Mz is similar to its

restriction on M . The following proposition shows that in Sobolev disk algebra, this property

holds if and only if M has finite common zeros in D.

Proposition 2.8 Let M be an invariant subspace of Mz, then Mz is similar to its restriction

on M if and only if

M = (z − z1)(z − z2) · · · (z − zn)R(D),

where {zi}
n
i=1 are numbers in D.

Proof If M = (z − z1)(z − z2) · · · (z − zn)R(D), let

p = (z − z1)(z − z2) · · · (z − zn).

Define Tp : R(D) → M , Tpf = pf for f ∈ R(D). It is easy to see that Tp is a one-to-one map

from R(D) onto M . Since T−1
p Mz|MTpf = zf = Mzf for all f ∈ R(D), Mz = T−1

p Mz|MTp.

On the other hand, if there exists W : R(D) → M such that Mz = W−1Mz|MW , then

WMz = Mz|MW . Denote h = W1, then computations show that Wzn = znh, and so Wpn =

pnh = Mhpn for all polynomials. By Lemma 2.6, Wf = Mhf for all f ∈ R(D), which implies

W = Mh and the range of Mh is closed. It follows from Proposition 1.3 that h(∂D) 6= 0. Since

h is analytic, it must have only finite zeros in D. The proof is completed by Proposition 2.7.

Given a set M , let [M ] be the smallest invariant subspace of Mz generated by M . If M 6= {0}

is an invariant subspace of H2, it follows from Beurling’s theorem that

dim[M 	 zM ] = 1.

It also has been known that the invariant subspace of Bergman Space L2
a is very complicated.

In [3], C. Apostol, H. Bercovici, C. Foias and C. Pearcy showed that if n is any positive integer

or ∞, then there is an invariant subspace M of L2
a such that dim[M 	 zM ] = n.

In [10], S. Richter studied a class of Banach spaces of analytic functions B such that:

(i) The functional of evaluation at λ is continuous for all λ ∈ D.

(ii) If f ∈ B, then zf ∈ B.

(iii) If f ∈ B and f(λ) = 0, then f = (z − λ)g for some g ∈ B.

Lemma 2.9[10,Theorem5.3] Let B be a Hilbert space satisfies the above conditions.

(i) If B is an algebra and I is a closed ideal of B, then dim[I 	 zI ] = 1.

(ii) Suppose σ(Mz) = D and ‖Mzf‖ ≥ ‖f‖ for all f ∈ B. If M is an invariant subspace of

Mz and dim[M 	 zM ] = 1, then M ⊂ H2f0 ∩ B, where f0 ∈ [M 	 zM ].
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Corollary 2.10 Let M 6= {0} be an invariant subspace of Mz in R(D), then

dim[M 	 zM ] = 1,

and for each f ∈ M , f = ϕf0, where ϕ ∈ H2 and f0 ∈ [M 	 zM ].

Proof Since an invariant subspace of Mz in R(D) is also a closed ideal, we have dim[M	zM ] = 1.

To show that f = ϕf0, we need only to verify that ‖Mzf‖ ≥ ‖f‖ for all f ∈ R(D). In fact, if

f =
∑∞

n=0 fnzn, then

‖Mzf‖
2 =

∞∑
n=0

|fn|
2

β2
n+1

.

Thus

‖Mzf‖
2 − ‖f‖2 =

∞∑
n=0

9n4 + 30n3 + 29n2 + 12n + 3

(n + 2)(n + 1)
π|fn|

2 > 0.

Remark As we know that in both the Hardy space and Bergman space, an invariant subspace

M is just equal to the subspace generated by M 	 zM , that is, M = [M 	 zM ]. We may expect

that this property holds in R(D), while this problem is still open.
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