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Delay-dependent Robust Stabilization for Uncertain

Singular Systems with State Delay

WU Zheng-Guang1 ZHOU Wu-Neng2

Abstract This paper considers the problem of delay-dependent robust stabilization for uncertain singular delay systems. In terms
of linear matrix inequality (LMI) approach, a delay-dependent stability criterion is given to ensure that the nominal system is
regular, impulse free, and stable. Based on the criterion, the problem is solved via state feedback controller, which guarantees that
the resultant closed-loop system is regular, impulse free, and stable for all admissible uncertainties. An explicit expression for the
desired controller is also given. Some numerical examples are provided to illustrate the validity of the proposed methods.
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1 Introduction

Over the past decades, much attention has been fo-
cused on the problems of stability analysis and stabiliza-
tion for singular delay systems. Especially, with the de-
velopment of the robust control theory, many robust sta-
bilization methods have been proposed for uncertain sin-
gular delay systems. The existing results can be classified
into two types: delay-independent stabilization and delay-
dependent stabilization. Generally, the delay-independent
case is more conservative than the delay-dependent case,
especially when the time delay is comparatively small. The
delay-independent case has been extensively studied (see,
e.g. [1, 2] and the references therein); however, there
are only few papers on the delay-dependent case[3,4]. [3]
discussed the problem of delay-dependent robust stability
analysis, and a delay-dependent robust stability criterion
was obtained. But the considered system was assumed to
be necessarily regular and impulse free; moreover, a matrix
describing the relationship between fast and slow subsys-
tems was needed and an improper choice of the matrix
would make the results unreliable. In [4], the problem of
delay-dependent robust stabilization was solved via state
feedback controller, and an expression for the desired con-
troller was given by solving a set of nonlinear matrix in-
equalities with an equation constraint, which would result
in some numerical problems and make the design procedure
complex and unreliable. To the best of our knowledge, the
problem of delay-dependent robust stabilization for uncer-
tain singular delay systems has not been fully studied in
the literature and still remains open.

In this paper, we investigate the problem of delay-
dependent robust stabilization for uncertain singular sys-
tems with state delay. The considered systems are not
assumed to be necessarily regular and impulse free. The
considered problem is to design a state feedback controller
such that the resultant closed-loop system is robustly sta-
ble. In terms of two linear matrix inequalities (LMIs), a
sufficient condition for the solvability of the problem is de-
rived. When this condition is satisfied, the desired state
feedback controller is obtained.
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2 Problem formulation

Consider the uncertain singular system with state delay
described by
8
><
>:

Eẋxx(t) = (A + ∆A)xxx(t) + (Ad + ∆Ad)xxx(t− d)+

(B + ∆B)uuu(t),

xxx(t) = φφφ(t), t ∈ [−d̄, 0]

(1)

where xxx(t) ∈ Rn is the state, uuu(t) ∈ Rm is the control
input. d is an unknown but constant time delay and d̄
is a constant satisfying 0 ≤ d ≤ d̄. φφφ(t) is a compati-
ble vector valued initial function. The matrix E ∈ Rn×n

may be singular and rank E = r ≤ n is assumed. A, Ad,
and B are known real constant matrices with appropriate
dimensions. ∆A, ∆Ad, and ∆B are unknown matrices rep-
resenting norm-bounded parametric uncertainties and are
assumed to be of the form:
h

∆A ∆Ad ∆B
i

= MF (t)
h

N1 N2 N3

i
(2)

where M , N1, N2, and N3 are known real constant matri-
ces with appropriate dimensions, and F (t) ∈ Rq×k is an
unknown real and possibly time-varying matrix satisfying

FT(t)F (t) ≤ I (3)

The parametric uncertainties ∆A, ∆Ad, and ∆B are said
to be admissible if both (2) and (3) hold.

The nominal unforced singular delay system of (1) can
be written as

Eẋxx(t) = Axxx(t) + Adxxx(t− d) (4)

Definition 1[5].
1. The pair (E, A) is said to be regular if det(sE−A) is

not identically zero.
2. The pair (E, A) is said to be impulse free if

deg(det(sE −A)) = rank E.
Definition 2. For a given scalar d̄ > 0, the singular

delay system (4) is said to be regular and impulse free for
any constant time delay d satisfying 0 ≤ d ≤ d̄, if the pairs
(E, A) and (E, A + Ad) are regular and impulse free.

Remark 1. The regularity and the absence of impulses
of the pair (E, A) ensures the system (4) with time delay
d 6= 0 to be regular and impulse free, while the fact that
the pair (E, A+Ad) is regular and impulse free ensures the
system (4) with time delay d = 0 to be regular and impulse
free.
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Definition 3. The uncertain singular delay system (1) is
said to be robustly stable, if the system with uuu(t) = 0 is
regular, impulse free, and stable for all admissible uncer-
tainties ∆A and ∆Ad.

In this paper, we shall address the following problem.
Delay-dependent robust stabilization problem.

For a given scalar d̄ > 0, design a state feedback controller
uuu(t) = Kxxx(t), K ∈ Rm×n for system (1) such that the
resultant closed-loop system is robustly stable for any con-
stant time delay d satisfying 0 ≤ d ≤ d̄. In this case, the
system is said to be robustly stabilizable.

We conclude this section by presenting several prelimi-
nary results, which will be used in the proof of our main
results.

Lemma 1[6]. The singular system Eẋxx(t) = Axxx(t) is
regular, impulse free, and stable, if and only if there exists
a matrix P such that

PTE = ETP ≥ 0 (5)

PTA + ATP < 0 (6)

Lemma 2[7]. Given matrices Ω, Γ, and Ξ with appro-
priate dimensions and with Ω symmetrical, Ω + ΓFΞ +
ΞTFTΓT < 0 for any F satisfying FTF ≤ I, if and only if
there exists a scalar ε > 0 such that Ω+εΓΓT +ε−1ΞTΞ <
0.

Lemma 3[8]. For symmetric positive-definite matrix Q
and matrices P and R with appropriate dimensions, matrix
inequality PTR + RTP ≤ RTQR + PTQ−1P holds.

3 Main results

Initially, we present the following theorem for the singu-
lar delay system (4), which will play a key role in the proof
of our main results.

Theorem 1. For a prescribed scalar d̄ > 0, the singular
delay system (4) is regular, impulse free, and stable for any
constant time delay d satisfying 0 ≤ d ≤ d̄, if there exist
symmetric positive-definite matrices P1, Q, Z and matrices
S, P2, P3, X11, X12, X22, Y1, and Y2 such that

Ω =

2
64

Ω11 Ω12 PT
2 Ad − Y1E

∗ −P3 − PT
3 + d̄X22 + d̄Z PT

3 Ad − Y2E

∗ ∗ −Q

3
75

< 0 (7)

2
64

X11 X12 Y1

∗ X22 Y2

∗ ∗ Z

3
75 > 0 (8)

where R ∈ Rn×l is any matrix satisfying ETR = 0 and
Ω11 = PT

2 A + AT P2 + d̄X11 + Q + Y1E + ETY T
1

Ω12 = ETP1 + SRT − PT
2 + ATP3 + ETY T

2 + d̄X12

Proof. From (7), it is easy to show that

ẼTP̃ = P̃TẼ ≥ 0 (9)

ÃTP̃ + P̃TÃ + d̄X̃ + Q̃ + Ỹ Ẽ + ẼTỸ T+

(P̃TÃd − Ỹ Ẽ)Q̃−1(P̃TÃd − Ỹ Ẽ)T < 0 (10)

where

Ẽ =

"
E 0

0 0

#
, Ã =

"
0 I

A −I

#
, Ãd =

"
0 0

Ad 0

#

P̃ =

"
P1E + RST 0

P2 P3

#
, X̃ =

"
X11 X12

∗ X22

#

Ỹ =

"
Y1 0

Y2 0

#
, Q̃ =

"
Q 0

0 d̄Z

#

By Lemma 3, it follows from (10) that

0 > ÃTP̃ + P̃TÃ + d̄X̃ + Q̃ + Ỹ Ẽ + ẼTỸ T+

P̃TÃd − Ỹ Ẽ + (P̃TÃd − Ỹ Ẽ)T − Q̃ ≥
(Ã + Ãd)TP̃ + P̃T(Ã + Ãd)

(11)

According to Lemma 1, we can deduce from (9) and (11)
that the pair (Ẽ, Ã + Ãd) is regular and impulse free.

Since rank Ẽ = rank E = r ≤ n, there exist nonsingular
matrices M and N such that

Ê = MẼN =

"
Ir 0

0 0

#
(12)

Denote

Â = MÃN =

"
A11 A12

A21 A22

#

P̂ = M−T P̃N =

"
P11 P12

P21 P22

#

Ŷ = NT Ỹ M−1 =

"
Y11 Y12

Y21 Y22

#
(13)

From (9) and using the expressions of Ê and P̂ in (12) and
(13), it is easy to obtain P12 = 0, P11 ≥ 0; therefore,

P̂ =

"
P11 0

P21 P22

#

From (10), we get

ÃTP̃ + P̃TÃ + Ỹ Ẽ + ẼTỸ T < 0 (14)

Now, pre-multiplying and post-multiplying (14) by NT and
N , respectively, we can obtain AT

22P22 + PT
22A22 < 0. This

implies that A22 is nonsingular, and thus the pair (Ẽ, Ã) is
regular and impulse free.

Noting the fact that det (sE − A) = det (sẼ − Ã),
deg(det (sE − A))) = deg(det (sẼ − Ã))) = rank Ẽ =
rank E, det (sE − (A + Ad)) = det (sẼ − (Ã + Ãd)), and
deg(det (sE − (A + Ad))) = deg(det (sẼ − (Ã + Ãd))) =
rank Ẽ = rank E, we can easily see that the pairs (E, A)
and (E, A + Ad) are regular and impulse free, and thus
system (4) is regular and impulse free.

Next, we will show that system (4) is stable. To the end,
we propose the following function.

V (xxxt) = V1(xxxt) + V2(xxxt) + V3(xxxt)

where
V1(xxxt) = xxx(t)TETP1Exxx(t),
V2(xxxt) =

R 0

−d

R t

t+β
ẋxx(α)TETZEẋxx(α)dαdβ
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V3(xxxt) =
R t

t−d
xxx(α)TQxxx(α)dα

Differentiating V (xxxt) with respect to t, we have

V̇1(xxxt) = 2

"
xxx(t)

Eẋxx(t)

#T

P̃T

"
0 I

A −I

#"
xxx(t)

Eẋxx(t)

#
+

2

"
xxx(t)

Eẋxx(t)

#T

P̃T

"
0

Ad

#
xxx(t− d)

V̇2(xxxt) ≤ d̄ẋxx(t)TETZEẋxx(t)−
Z t

t−d

ẋxx(α)TETZEẋxx(α)dα

V̇3(xxxt) = xxx(t)TQxxx(t)− xxx(t− d)TQxxx(t− d)

It is clear that

Z t

t−d

2
64

xxx(t)

Eẋxx(t)

Eẋxx(α)

3
75

T 2
64

X11 X12 Y1

∗ X22 Y2

∗ ∗ Z

3
75

2
64

xxx(t)

Eẋxx(t)

Eẋxx(α)

3
75 dα ≥ 0

Thus,

V̇2(xxxt) ≤ d̄ẋxx(t)TETZEẋxx(t)−
Z t

t−d

ẋxx(α)TETZEẋxx(α)dα+

Z t

t−d

2
64

xxx(t)

Eẋxx(t)

Eẋxx(α)

3
75

T 2
64

X11 X12 Y1

∗ X22 Y2

∗ ∗ Z

3
75×

2
64

xxx(t)

Eẋxx(t)

Eẋxx(α)

3
75 dα ≤

d̄

"
xxx(t)

Eẋxx(t)

#T "
X11 X12

X21 X22

#"
xxx(t)

Eẋxx(t)

#
+

2

"
xxx(t)

Eẋxx(t)

#T "
Y1E

Y2E

#
[xxx(t)− xxx(t− d)]+

d̄ẋxx(t)TETZEẋxx(t).

Hence,
V̇ (xxxt) ≤ ξξξ(t)TΩξξξ(t)

where ξξξ(t) = [xxx(t)T (Eẋxx(t))T xxx(t−d)T]T. From (7), we get
V̇ (xxxt) < 0, and thus system (4) is stable. ¤

Remark 2. In the proof of Theorem 1, it is noted that
neither model transformation nor bounding technique for
cross terms, which are usually used in the existing results,
is required. Hence, the derivation procedure is simpler and
the condition of Theorem 1 is less conservative than those
of existing ones, which will be demonstrated by examples.

If the matrices, in (8), Y1 = 0, Y2 = 0, X12 = 0 and
X11 = X22 = Z = εI/d̄ (ε → 0), then Theorem 1 provides
the result on delay-independent stability analysis, which is
stated as follows.

Corollary 1. The singular delay system (4) is regular,
impulse free, and stable, if there exist symmetric positive-
definite matrices P1, Q, Z and matrices S, P2, and P3 such
that
2
64

PT
2 A + ATP2 + Q Π12 PT

2 Ad

∗ −P3 − PT
3 PT

3 Ad

∗ ∗ −Q

3
75 < 0 (15)

where R follows the same definition as that in Theorem 1
and Π12 = ETP1 + SRT − PT

2 + ATP3.
Remark 3. As we have seen above, the result of The-

orem 1 is powerful in the sense that it provides suffi-
cient conditions for both the delay-dependent and delay-
independent cases.

Since the solution of det (sE −A− e−sdAd) = 0 is same
as that of det (sET − AT − e−sdAT

d ) = 0, system (4) is
regular, impulse free, and stable, if and only if the system

ETζ̇ζζ(t) = ATζζζ(t) + AT
d ζζζ(t− d) (16)

is regular, impulse free, and stable. Hence, using
Theorem 1 for system (16) leads to the following theorem:

Theorem 2. For a prescribed scalar d̄ > 0, the singular
delay system (4) is regular, impulse free, and stable for any
constant time delay d satisfying 0 ≤ d ≤ d̄, if there exist
symmetric positive-definite matrices P1, Q, Z and matrices
S, P2, P3, X11, X12, X22, Y1, and Y2 such that both (8)
and the following linear matrix inequality hold.

2
64

Ω11 Ω12 PT
2 AT

d − Y1E
T

∗ −P3 − PT
3 + d̄X22 + d̄Z PT

3 AT
d − Y2E

T

∗ ∗ −Q

3
75 < 0

(17)
where R ∈ Rn×l is any matrix satisfying ER = 0 and
Ω11 = PT

2 AT + AP2 + d̄X11 + Q + Y1E
T + EY T

1

Ω12 = EP1 + SRT − PT
2 + AP3 + EY T

2 + d̄X12

Remark 4. Sufficient conditions of Theorem 1 and The-
orem 2 may lead to different results. Hence, we can sepa-
rately apply Theorem 1 and Theorem 2 and then choose
the less conservative one.

Next, based on Theorem 1, we give the following delay-
dependent robust stability criterion.

Theorem 3. For a prescribed scalar d̄ > 0, the un-
certain singular delay system (1) is robustly stable for any
constant time delay d satisfying 0 ≤ d ≤ d̄, if there exist
scalar ε > 0 and symmetric positive-definite matrices P1,
Q, Z and matrices S, P2, P3, X11, X12, X22, Y1, and Y2

such that the linear matrix inequalities (8) and (18) hold.

2
6664

Ξ11 Ξ12 PT
2 Ad − Y1E + εNT

1 N2 PT
2 M

∗ Ξ22 PT
3 Ad − Y2E PT

3 M

∗ ∗ −Q + εNT
2 N2 0

∗ ∗ ∗ −εI

3
7775 < 0

(18)
where R ∈ Rn×l is any matrix satisfying ETR = 0 and
Ξ11 = PT

2 A + ATP2 + d̄X11 + Q + Y1E + ETY T
1 + εNT

1 N1

Ξ12 = ETP1 + SRT − PT
2 + ATP3 + ETY T

2 + d̄X12

Ξ22 = −P3 − PT
3 + d̄X22 + d̄Z

Proof. Using Schur complement, we obtain from (18)
that

Ω + ε−1MMT + εNTN < 0 (19)

where Ω is same as that on the left side of (7) and M =
[ MTP2 MTP3 0 ]T, N = [N1 0 N2].
By Lemma 2, it follows from (19) that

2
64

Ψ11 Ψ12 PT
2 (Ad + ∆Ad)− Y1E

∗ Ξ22 PT
3 (Ad + ∆Ad)− Y2E

∗ ∗ −Q

3
75 < 0 (20)
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where
Ψ11 = PT

2 (A + ∆A) + (A + ∆A)TP2 + d̄X11 + Q+
Y1E + ETY T

1

Ψ12 = ETP1 + SRT−PT
2 + (A + ∆A)TP3 + ETY T

2 + d̄X12

According to Theorem 1 and Definition 3, we have the de-
sired result immediately. ¤

Now, we are in the position to present the result on the
problem of delay-dependent robust stabilization.

Theorem 4. For a prescribed scalar d̄ > 0, the uncer-
tain singular delay system (1) is robustly stabilizable for
any constant time delay d satisfying 0 ≤ d ≤ d̄, if there
exist scalars ε > 0 and ε, symmetric positive-definite ma-
trices P1, Q, Z and matrices S, P2, X, X11, X12, X22, Y1

and Y2 such that the linear matrices inequalities (8) and
(21) hold,

2
666664

Π11 Π12 PT
2 AT

d − Y1ET (N1P2 + N3X)T (N2P2)
T

∗ Π22 εPT
2 AT

d − Y2ET ε(N1P2 + N3X)T ε(N2P2)
T

∗ ∗ −Q + εMMT 0 0

∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ −εI

3
777775

< 0

(21)

where R ∈ Rn×l is any matrix satisfying ER = 0 and
Π11 = PT

2 AT + XTBT + AP2 + BX + d̄X11 + Q+
Y1E

T + EY T
1 + εMMT

Π12 = EP1 + SRT − PT
2 + ε(AP2 + BX) + EY T

2 + d̄X12

Π22 = −εP2 − εPT
2 + d̄X22 + d̄Z

In this case, a desired state feedback controller is given by

uuu(t) = XP−1
2 xxx(t) (22)

Proof. Setting εP2 = P3 and X = KP2 and using Schur
complement, we obtain from (21) that

Ξ + εMMT + ε−1NTN < 0 (23)

where

Ξ =

2
64

Ψ11 Ψ12 PT
2 Ad − Y1E

T

∗ Ψ22 PT
3 Ad − Y2E

T

∗ ∗ −Q

3
75

M =

"
MT 0 0

0 0 MT

#T

N =

"
N1P2 + N3KP2 N1P3 + N3KP3 0

N2P2 N2P3 0

#

and
Ψ11 = PT

2 (A + BK)T + (A + BK)P2 + d̄X11 + Q+
Y1E

T + EY T
1

Ψ12 = EP1 + SRT − PT
2 + (A + BK)P3 + EY T

2 + d̄X12

Ψ22 = −P3 − PT
3 + d̄X22 + d̄Z

By Lemma 2, it follows from (23) that

2
64

Θ11 Θ12 PT
2 (Ad +4Ad)T − Y1E

T

∗ Ψ22 PT
3 (Ad +4Ad)T − Y2E

T

∗ ∗ −Q

3
75 < 0 (24)

where
Θ11 = PT

2 AT
K + AKP2 + d̄X11 + Q + Y1E

T + EY T
1

Θ12 = EP + SRT − PT
2 + AKP3 + EY T

2 + d̄X12

AK = A + BK +4A +4BK
According to Theorem 2 and Definition 3, the desired result
follows immediately. ¤

4 Numerical examples

In this section, some examples are provided to illustrate
the effectiveness and the less conservatism of the obtained
results.

Example 1. Consider the following singular delay
system[10]

"
1 0

0 0

#
ẋxx(t) =

"
0.5 0

0 −1

#
xxx(t) +

"
−1.1 1

0 0.5

#
·

xxx(t− d)

In this example, we choose RRR = [0 1]T. The upper
bounds on the time delay from Theorem 1 and Theorem 2
are shown in Table 1. For comparison, the table also lists
the upper bounds obtained from the criteria in [3, 4, 9∼16].
It can be seen that our methods are less conservative.

Table 1 Comparison of delay-dependent stability conditions of

Example 1

Methods [3,9,11] [4,12] [13] [14] [15,16] [10]
Theorem

1 & 2

Maximum
– 0.5567 0.8708 0.9091 0.9680 1.0423 1.0660

d̄ allowed

Example 2. Consider the following uncertain singular
delay system.

Eẋxx(t) = (A +4A)xxx(t) + (Ad +4Ad)xxx(t− d)

where

E =

"
2 0

0 0

#
, A =

"
1 0

0 −2

#
, Ad =

"
−2.4 2

0 1

#

and the uncertain matrices 4A and 4Ad satisfy ‖4A‖ ≤
λ, ‖4Ad‖ ≤ λ(λ > 0). This system is of the form in system
(1) with uuu(t) = 0. Then, we can write M = λI, N1 =
N2 = 0.5I.

In this example, we choose RRR = [0 1]T. Table 2 gives
the comparison of the maximum allowed delay d̄ for various
parameter λ. It is clear that the conditions in this paper
gives better results than those in [12, 13].

Table 2 Comparison of delay-dependent stability conditions of

Example 2

λ 0.25 0.30 0.35 0.40 0.45 0.50

[12] 0.4209 0.3939 0.3637 0.3279 0.2817 0.2106

[13] 0.8087 0.7942 0.7689 0.7262 0.6521 0.5054

Theorem 3 0.8514 0.8249 0.7924 0.7438 0.6641 0.5110

Example 3. Consider the uncertain singular delay sys-
tem (1) with parameters as follows.

E =

2
64

1 1 0

1 −1 1

2 0 1

3
75 , A =

2
64

2 1 1

−1 0 1

0.5 0 1

3
75
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Ad =

2
64
−1.5 0.5 −0.8

1 1 0.5

0.7 0.5 1

3
75 , B =

2
64

1 2

1.5 0

0 1

3
75

MMM =
h

0.4 0.3 0.1
iT

, NNN1 =
h

0.2 0.4 0.5
i

NNN2 =
h

0.3 0.7 0.5
i
, NNN3 =

h
0.4 0.5

i

In this example, we choose RRR = [−1 1 2]T. For ε =
0.5, Theorem 4 yields d̄ = 3.1, and the corresponding state
feedback gain is

K =

"
−2.3593 0.7100 4.9681

−2.3048 −1.4295 −5.5923

#

Also, for ε = 1, d̄ = 1.32 and

K =

"
−0.1183 0.6422 1.2963

−3.7556 −2.2408 −4.5535

#

5 Conclusion

In this paper, the problem of delay-dependent robust sta-
bilization for singular delay systems with norm bounded
parametric uncertainties has been studied. A delay-
dependent robust stability condition is presented and a
design procedure of the desired state feedback controller
is given. All the obtained results are formulated in terms
of strict LMIs involving no decomposition of the system
matrices, which makes the design procedure relatively sim-
ple and reliable. Neither model transformation nor bound-
ing technique is needed in the development of the results.
Numerical examples show that the results of the proposed
methods are less conservative than those of the existing
methods.
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