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Self-tuning Information Fusion Kalman Predictor
Weighted by Diagonal Matrices and Its Convergence

Analysis
DENG Zi-Li1 LI Chun-Bo1

Abstract For the multisensor systems with unknown noise statistics, using the modern time series analysis method, based
on on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for
correlation function, estimators of the noise variances are obtained, and under the linear minimum variance optimal information
fusion criterion weighted by diagonal matrices, a self-tuning information fusion Kalman predictor is presented, which realizes the
self-tuning decoupled fusion Kalman predictors for the state components. Based on the dynamic error system, a new convergence
analysis method is presented for self-tuning fuser. A new concept of convergence in a realization is presented, which is weaker
than the convergence with probability one. It is strictly proved that if the parameter estimation of the MA innovation models is
consistent, then the self-tuning fusion Kalman predictor will converge to the optimal fusion Kalman predictor in a realization, or
with probability one, so that it has asymptotic optimality. It can reduce the computational burden, and is suitable for real time
applications. A simulation example for a target tracking system shows its effectiveness.
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1 Introduction

The multisensor information fusion Kalman filtering has
widely applied to many fields including guidance, defense,
robotics, integrated navigation, target tracking, GPS po-
sitioning, communication, and signal processing, and has
received great attention in recent years. It is only effec-
tive when the model parameters and noise statistics are
exactly known. This restricts its practical applications.
In many realistic applications, the model parameters and
noise statistics are completely or partially unknown[1∼3].
For the state or signals with unknown model parameters
and/or noise statistics, several self-tuning filters have been

presented[2∼5]. Their basic principle is that the optimal fil-
ter with a recursive identifier of the autoregressive moving
average (ARMA) innovation model will yield a self-tuning

filter[2∼5]. But, so far, the convergence of self-tuning fil-
ter has not been proved strictly, and the strict convergence
analysis approach has not been presented. Recently, for
the distributed fusion (weighted fusion) Kalman filters, the
optimal fusion criteria weighted by matrices, diagonal ma-
trices, and scalars have been presented in the linear mini-
mum variance sense[6,7], where the optimal fusion criterion
weighted by diagonal matrices is equivalent to the optimal
fusion criterion weighted by scalars for the state compo-
nents, which realizes a decoupled fused estimation for the
state components in the sense that only the component
estimators with the same physical sense are weighted by
scalar to obtain the fused component estimator which is
independent of other component estimators. The modern
time series analysis method proposed by Deng, et al [5,6]

provides an important methodology for solving optimal and
self-tuning filtering problems. Its basic tool is the AMRA
innovation model. Compared with the classical Kalman fil-
tering method[8], the Riccati equation is avoided, and based
on on-line identification of the ARMA innovation, the self-
tuning filter can be designed[5]. In this paper, for the mul-
tisensor systems with unknown noise statistics, using the
modern time series analysis method, based on on-line iden-
tification of the moving average (MA) innovation models,
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applying the optimal fusion criterion weighted by diagonal
matrices, a self-tuning information fusion Kalman predictor
is presented, which realizes the self-tuning decoupled fusion
Kalman predictors for the state components. If the interest
is to find the fuser for a component of the state, then the
proposed decoupled fusers can avoid the computation of lo-
cal and fused predictors for other components, so that the
computational burden can be reduced. In addition, com-
pared with the Kalman fuser with the matrix weights[7],
the Kalman fuser with the diagonal matrix weights avoids
the on-line computation of a high-dimension inverse ma-
trix, and only requires a less computational burden. The
convergence analysis of a self-tuning fuser is a very difficult
open problem. A new convergence analysis method is pre-
sented in this paper. First, a new concept of convergence
in a realization is presented, which is weaker than conver-
gence with the probability one. In the second place, the
general mathematical method and tool for solving the con-
vergence problems are presented based on a dynamic error
system. Thirdly, it is strictly proved for the first time that
if the parameter estimation of the MA innovation models
is consistent, the self-tuning fusion Kalman predictor will
converge to the optimal fusion Kalman predictor in a reali-
zation, or with probability one.

2 Optimal fusion steady-state
Kalman predictor weighted by
diagonal matrices

Consider the multisensor linear discrete-time stochastic
system

x(t + 1) = Φx(t) + Γw(t) (1)

yi(t) = Hix(t) + vi(t), i = 1, · · · , L (2)

where x(t) ∈ Rn, yi(t) ∈ Rmi , w(t) ∈ Rr, vi(t) ∈ Rmi are
the state, measurement, process noise, and measurement
noise of the ith sensor subsystem, respectively, and Φ, Γ ,
and Hi are constant matrices with compatible dimensions.

Assumption 1. w(t) and vi(t) are uncorrelated white
noises with zero mean and

E[w(t)wT(k)] = Qwδtk, E[w(t)vT
j (k)] = 0

E[vi(t)v
T
j (k)] = Qvj δijδtk,∀t, k, i, j = 1, · · · , L

(3)
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where E denotes the mathematical expectation, the super-
script T denotes the transpose, δαβ is the Kronecker delta
function, i.e. δαα = 1, δαβ = 0(α �= β).

Assumption 2. (Φ,Hi) is a completely observable pair
with the observability index βi, and (Φ, Γ ) is a complete
controllable pair, or Φ is a stable matrix (i.e all eigenvalues
of Φ lie inside the unit circle).

Assumption 3. Φ, Γ , and Hi are known, the noise
variance matrices Qw and Qvi are completely or partially
unknown.

Assumption 4. The measurement data yi(t) are
bounded, i.e. a realization of the stochastic process yi(t) is
bounded, so that ‖ yi(t) ‖≤ c, ∀t, i = 1, · · · , L, with con-
stant c, and ‖ · ‖ denotes the norm of the vetor.

From (1) and (2) we have yi(t) = Hi(In −
q−1Φ)−1Γq−1w(t)+ vi(t), where q−1 is the backward shift
operator, q−1w(t) = w(t − 1), and In is the n × n unit
matrix. Introducing the left-coprime factorization

Hi(In − q−1Φ)−1Γq−1 = A−1
i (q−1 )Bi(q

−1 ) (4)

where Ai(q
−1) and Bi(q

−1) are polynomial matrices having
the form Xi(q

−1) = Xi0 + Xi1q
−1 + · · ·+ Xinxiq

−nxi , with
Xinxi �= 0, Xij = 0(j > nxi), Ai0 = Imi , and Bi0 = 0, we
obtain the local ARMA innovation models

Ai(q
−1)yi(t) = Di(q

−1)εi(t), i = 1, 2, · · · , L (5)

where Di(q
−1) = Di0 +Di1q

−1 + · · ·+ Dindiq
−ndi is stable

(i.e. all zeros of detDi(t) lie outside the unit circle), Di0 =
Imi , and the innovation process εi(t) ∈ Rmi is white noise
with zero mean and variance matrix Qεi, and

Di(q
−1)εi(t) = Bi(q

−1)w(t) + Ai(q
−1)vi(t) (6)

where Di(q
−1) and Qεi can be obtained by the Gevers-

Wouters algorithm[6].
Lemma 1. For the multisensor system (1) and (2) with

known model parameters and noise statistics, the ith sensor
subsystem has the local N -step-ahead steady-state Kalman
predictor of x(t + N)(N ≥ 1) as

x̂i(t + N |t) = ΦN−1 x̂i(t + 1|t) (7)

x̂i(t + 1|t) = Ψpi x̂i (t |t − 1) + Kpiyi(t)

Ψpi = Φ − KpiHi
(8)

Kpi =

2
6664

Hi

HiΦ
...

HiΦ
βi−1

3
7775

+ 2
6664

Mi1

Mi2

...
Mi,βi

3
7775 (9)

where the pseudo-inverse is defined as X+ = (XTX)−1XT.
The matrices Mij can recursively be computed as

Mij = −Ai1Mi,j−1 − · · · − AinaiMi,j−nai + Dij (10)

where we define that Mij = 0(j < 0). Defining the steady-
state local prediction error cross-covariances as Pij(N) =
E[x̃i(t+N |t)x̃T

j (t+N |t)], i, j = 1, · · · , L, with x̃i(t+N |t) =
x(t + N) − x̂i(t + N |t), we have the relation

Pij(N) =

ΦN−1ΣijΦ
(N−1)T +

NX
k=2

ΦN−kΓQwΓTΦ(N−k)T

N ≥ 2

(11)

with the definition Σij = Pij (1). Σij satisfy the Lyapunov
equation

Σij = ΨpiΣijΨ
T
pj + ΓQwΓT + KpiQviδijK

T
pj

i, j = 1, · · · , L
(12)

which can be solved by iteration[6]. The proof of Lemma 1
was given in [6].

Lemma 2. For the multisensor system (1) and (2) with
known model parameters and noise statistics, the optimal
information fusion steady-state Kalman predictor weighted
by diagonal matrices is given as

x̂0(t + N |t) =
LX

j=1

Ωj (N )x̂j (t + N |t)

Ωj (N ) = diag(ωj1(N ), · · · , ωjn (N ))

(13)

Denoting the local and optimal fused Kalman predictors in
the component form as

x̂j(t + N |t) = [x̂j1(t + N |t), · · · , x̂jn(t + N |t]T

x̂0(t + N |t) = [x̂01(t + N |t), · · · , x̂0n(t + N |t)]T
(14)

the decoupled optimal fused Kalman predictors for the
state components are given by

x̂0i(t + N |t) =

LX
j=1

ωji(N)x̂ji(t + N |t), i = 1, · · · , n (15)

where the optimal weighting coefficient vectors ωi(N) =
[ω1i(N), · · · , ωLi(N)], i = 1, · · · , n, are given by

ωi(N) = [eT(P ii(N))−1e]−1eT(P ii(N))−1, i = 1, · · · , n (16)

where eT = [1, · · · , 1], and P ii(N) = (P
(ii)
kj (N)), k, j =

1, · · · , L, is the L×L matrix whose (k, j) element P
(ii)
kj (N)

is the (i, i) diagonal element of Pkj(N). Defining P0i(N) =
E[x̃2

0i(t+N |t)] with x̃0i(t+N |t) = xi(t+N)− x̂0i(t+N |t),
and x(t + N) = [x1(t + N), · · · , xn(t + N)]T, we have

P0i(N) = [eT(P ii(N))−1e]−1, i = 1, · · · , n (17)

and we have the accuracy relation that P0i(N) ≤
P ii

jj(N), i = 1, · · · , n; j = 1, · · · , L. The proof of Lemma
2 was given in [6].

3 Self-tuning decoupled fusion
Kalman predictor weighted by
diagonal matrices

Theorem 1. For multisensor system (1) and (2) with
Assumptions 1 ∼ 3, the unknown noise variance matrices
Qw and Qvi can be obtained by solving the following matrix
equations

ndiX
j=τ

DijQεiD
T
i,j−τ =

nbiX
j=τ

BijQwBT
i,j−τ +

naiX
j=τ

AijQviA
T
i,j−τ

τ = 0, 1, · · · , ndi, i = 1, · · · , L

(18)
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where Aij and Bij are known, and Dij and Qεi are assumed
to be known.

Proof. Computing the correlation functions of the two
sides of MA process (6) yields (18). Let θi denote an
ni × 1 column vector which consists of all unknown ele-
ments in Qw and Qvi. For the fixed i, expanding (18)(τ =
0, · · · , ndi) for each element of matrices, equations (18) can
be rewritten as an equivalent set of linear equations

∆iθi = δi, i = 1, · · · , L (19)

where the matrix ∆i is known, the vetor δi is obtained from
the elementary operations of elements of Dij(j = 1, · · · , ndi

and Qεi, i.e., δi is a continuous function of elements of
Dij(j = 1, · · · , ndi) and Qεi, which is denoted by δi =
fi(Di1, · · · , Dindi , Qεi). Since θi satisfies (19), the linear
equaitons (19) have consistency. If ∆i has full column rank,
i.e. rank∆i = ni, then ∆i has the same row rank, so that
for fixed i, from (19) we can select ni linear independent
equations as

∆i0θi = δi0, δi0 = fi0(Di1, · · · , Dindi , Qεi) (20)

where ∆i0 is known ni × ni non-singular matrix, δi0 is the
ni × 1 vector and fi0 is a continuous function. From (20),
θi can be solved as

θi = ∆−1
i0 δi0 (21)

�
When only Qw and Qvi(i = 1, · · · , L) are unknown,

Ai(q
−1) and Bi(q

−1) are known. Introducing the new mea-
surement processes zi(t) as zi(t) = Ai(q

−1)yi(t), then (5)
becomes the MA innovation models

zi(t) = Di(q
−1)εi(t), i = 1, · · · , L (22)

The unknown MA parameter matrices Dij can be estimated

by a recurive identifier [9], and in the convergence analysis
we assume that the MA parameter estimation is consistent,

i.e. D̂ij → Dij , as t → ∞, where D̂ij denotes the estimate

of Dij at time t, and time t is omitted, i.e. D̂ij means

D̂ij(t). From (22), the estimate ε̂i(t) of innovation process
εi(t) at time t is defined as

ε̂i(t) = zi(t) − D̂i1 ε̂i(t − 1) − · · · − D̂indi ε̂i(t − ndi) (23)

which yields the relation

zi(t) = D̂i(q
−1)ε̂i(t) (24)

where we define the estimate D̂i(q
−1) of Di(q

−1) at time t

as D̂i(q
−1) = Imi + D̂i1q

−1 + · · · + D̂indiq
−ndi , and define

the sampled covariance estimate Q̂εi of Qεi at time t as

Q̂εi =
1

t

tX
j=1

ε̂i(j)ε̂
T
i (j) (25)

Substituting the estimates D̂ij and Q̂εi into (20) yields

the estimates θ̂i and δ̂i0 at time t as

θ̂i = ∆−1
i0 δ̂i0, δ̂i0 = fi0(D̂i1, · · · , D̂indi , Q̂εi) (26)

Hence, based on the ith subsystem, from (26) we obtain

the estimates Q̂wi and Q̂vi of Qw and Qvi at time t.

Based on all subsystems, the estimate Q̂w of Qw at time t
is defined as

Q̂w =
1

L

LX
i=1

Q̂wi (27)

The self-tuning decoupled fusion Kalman predictor con-
sists of the following three steps:

Step 1. Applying a recursive identifier[9] of the MA in-

novation models (22), the estimates D̂ij of Dij can be ob-

tained, and substituting D̂ij into (23)∼(27), (9)∼(13) and

(16) yields estimates Q̂εi, Q̂w, Q̂vi, M̂ij , K̂pi, Ψ̂pi, P̂ij(N),

Σ̂ij , ω̂ji(N) and Ω̂j(N).
Step 2. From (7) and (8), the local self-tuning Kalman

predictors are given as

x̂s
i (t + 1|t) = Ψ̂pix̂

s
i (t|t − 1) + K̂piyi(t)

x̂s
i (t + N |t) = ΦN−1 x̂ s

i (t + 1|t), N > 1
(28)

Step 3. From (13), the self-tuning fused Kalman pre-
dictor weighted by diagonal matrices is given as

x̂s
0(t + N |t) =

LX
j=1

Ω̂j(N)x̂s
j(t + N |t) (29)

The above three steps are repeated at each time t.
Remark 1. In order to reduce the on-line computa-

tional burden of solving the Lyapunov equations (12) with

estimates Q̂w and Q̂vi by iteration, we can select a com-
puting period (dead band) Td of (12). In a dead band Td,

the estimates Σ̂ij are not changed, so that the estimates

Ω̂i(N) are also not changed in Td.

4 The convergence analysis of
self-tuning fused Kalman pre-
dictor

The known measurement data yi(t) can be viewed as a
realization of the measurement stochastic process yi(t).

Definition 1. If based on known measurement data,

the estimate D̂ij of the MA parameter Dij converges to

the true value Dij , i.e. D̂ij → Dij , as t → ∞, then we call

that the estimate D̂ij converges to Dij in a realization.
Definition 2. If the self-tuning Kalman perdictors

x̂s
i (t + N |t) and steady-state Kalman predictor x̂i(t + N |t)

obtained based on known measurement data have the re-
lation that [x̂s

i (t + N |t) − x̂i(t + N |t)] → 0, as t → ∞,
i = 1, · · · , L, then we call that x̂s

i (t + N |t) converges to
x̂i(t + N |t) in a realization.

Definition 3. If the self-tuning and optimal fused
Kalman predictors x̂s

0(t + N |t) and x̂0(t + N |t) obtained
based on known measurement data yi(t)(i = 1, · · · , L) have
the relation [x̂s

0(t+N |t)− x̂0(t+N |t)] → 0, as t → ∞, then
we call that x̂s

0(t + N |t) converges to x̂0(t + N |t) in a reali-
zation.

Remark 2. The convergence in a realization or a
realization-based convergence is weaker than the conver-
gence with probability one. If the convergence with prob-
ability one holds, according to the statistical inference
principle, for known measurement data as a realization of
the measurement process, the convergence in a realization
holds. Inversely, if for each realization, except the real-
izations with probability zero, the convergence in a realiza-
tion holds, then the convergence with probability one holds.
But, if the convergence in a realization holds, generally, we
do not conclude whether the convergence with probability
one holds.

Remark 3. The concept of convergence in a realization
has an important application value. Because in many ap-
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plication problems, we only know a realization of a stochas-
tic process, for example, meteorological data, hydrological
data.

Lemma 3. Consider a time-varying dynamic error sys-
tem

δ(t) = F (t)δ(t− 1) + u(t) (30)

where t ≥ 0, the output (dynamic error) δ(t) ∈ Rn, the
input u(t) ∈ Rn. Assume that F (t) → F , as t → ∞, where
F is a stable matrix, and u(t) is bounded, i.e. ‖ u(t) ‖≤
c1, t ≥ 0, with constant c1. Then δ(t) is bounded.

Proof. See Appendix A.
Corollary 1. Assume that δ(t) ∈ Rm satisfies the time-

varying non-homogeneous difference equation

Λ̂(q−1)δ(t) = u(t) (31)

where the input u(t) ∈ Rm is bounded, and we define that

Λ̂(q−1) = Im + Λ̂1(t)q
−1 + · · · + Λ̂nλ (t)q−nλ

Λ(q−1) = Im + Λ1q
−1 + · · · + Λnλq−nλ

(32)

Assume that Λ̂i(t) → Λi, as t → ∞, i = 1, · · · , nλ, and
Λ(q−1) is stable. Then the output δ(t) also is bounded.

Proof. See Appendix A.
Lemma 4. Consider a stable dynamic error system

δ(t) = Fδ(t − 1) + u(t) (33)

where t ≥ 0, δ(t) ∈ Rn, u(t) ∈ Rn. Assume that F is a
stable matrix, and u(t) → 0 as t → ∞. Then δ(t) → 0, as
t → ∞.

Proof. See Appendix A.
Corollary 2. Consider a dynamic error system de-

scribed by a stable non-homogenous different equation

Λ(q−1)δ(t) = u(t) (34)

where u(t) ∈ Rm, δ(t) ∈ Rm, Λ(q−1) as defined in (32) is
stable, and u(t) → 0, as t → ∞. Then δ(t) → 0, as t → ∞.

Proof. See Appendix A.
Theorem 2. For the multisensor system (1) and (2)

with Assumptions 1 ∼ 4, if

D̂ij → Dij , as t → ∞,

in a realization, i = 1, · · · , L, j = 1, · · · , ndi

(35)

then the innovation estimator ε̂i(t) defined in (23) con-
verges to εi(t) in the sense that

[ε̂i(t) − εi(t)] → 0, as t → ∞
i = 1, · · · , L, in a realization

(36)

Proof. Setting D̂ij = Dij +∆D̂ij , D̂i(q
−1) = Di(q

−1)+

∆D̂i(q
−1), ∆D̂i(q

−1) = ∆D̂i1q
−1+· · ·+∆D̂indiq

−ndi , from

(35) we have that ∆D̂ij → 0, D̂i(q
−1) → Di(q

−1), and

∆D̂i(q
−1) → 0, as t → ∞. Defining δi(t) = ε̂i(t) − εi(t),

and subtracting (22) from (24) yields the dynamic error
system

Di(q
−1)δi(t) = ui(t), ui(t) = −∆D̂i(q

−1)ε̂i(t) (37)

From Assumption 4 we have that zi(t) is bounded. Apply-
ing (24), the stability of Di(q

−1) and Corollary 1 yields that
ε̂i(t) is bounded. Hence from (37) we have that ui(t) → 0,
as t → ∞. From (37), applying Corollary 2 and the sta-
bility of Di(q

−1) yields that δi(t) → 0, as t → ∞, i.e.(36)

holds. �
Theorem 3. For the multisensor system (1) and (2)

with Assumptions 1 ∼ 4, if (35) holds, we have

Q̂εi → Qεi, as t → ∞, in a realization (38)

Proof. Since white noise εi(t) is a stationary stochastic

process, according to the ergodicity[9], we have

1

t

tX
j=1

εi(j)ε
T
j (j) → Qεi, as t → ∞, with probability 1 (39)

According to the statistical inference principle, we conclude
that (39) holds in a realization.

Applying (25) and δi(t) = ε̂i(t) − εi(t), we have

Q̂εi − Qεi =

1

t

tX
j=1

[εi(j)δ
T
i (j) + δi(j)ε

T
i (j) + δi(j)δ

T
i (j)]+

1

t

tX
j=1

εi(j)ε
T
i (j) − Qεi

(40)

Notice that ‖ εi(t) ‖≤‖ δi(t) ‖ + ‖ ε̂i(t) ‖. Since δi(t) → 0,
as t → ∞, δi(t) is bounded. Hence applying the bound-
edness of ε̂i(t) yields that εi(t) is bounded. Therefore, we
have that [εi(j)δ

T
i (j) + δi(j)ε

T
i (j) + δi(j)δ

T
i (j)] → 0, as

j → ∞, and from (39) and (40) we have that (38) holds in
a realization. �

Theorem 4. For the multisensor system (1) and (2)
with Assumptions 1 ∼ 4, if (35) holds, then

Q̂w → Qw, Q̂vi → Qvi, K̂pi → Kpi, Ψ̂pi → Ψpi ,

Ω̂i(N) → Ωi(N ), as t → ∞, in a realization
(41)

Proof. Since fi0 is a continuous function of the elements
of Dij(i = 1, · · · , ndi) and Qεi, from (20) and (26), apply-

ing (35) and (38) yields that θ̂i → θi, i.e. Q̂wi → Qw,

Q̂vi → Qvi, and applying (27) yields that Q̂w → Qw in a
realization. From (10), each element of Mij is a continu-
ous function of elements of Dij(j = 1, · · · , ndi), applying

(35) yields that M̂ij → Mij in a realization. From (9),
each element of Kpi is a continuous function of elements of

Mij(j = 1, · · · , βi), so that K̂pi → Kpi, and Ψ̂pi → Ψpi in a
realization. For the Lyapunov equation (12), applying the

existence theorem for implicit function[10], in a sufficiently
small neighborhood, each element of Σij is a continuous
function of elements of Ψpi ,Ψpj ,Kpi ,Kpj , Qw and Qvi, so

that Σ̂ij → Σij , and from (11), P̂ij(N) → Pij(N) in a
realization. From (13) and (16), each element of Ωi(N )
is a continuous function of elements of Pkj(N), so that

Ω̂i(N) → Ωi(N ) in a realization. �
Theorem 5. For the multisensor system (1) and (2)

with Assumptions 1 ∼ 4, if (35) holds, then the local self-
tuning Kalman predictor x̂s

i (t+N |t) converges to the local
steady-state Kalman predictor x̂i(t+N |t) in the sense that

[x̂s
i (t + N |t) − x̂i(t + N |t)] → 0

as t → ∞, in a realization
(42)

Proof. Setting K̂pi = Kpi + ∆K̂pi, Ψ̂pi = Ψpi + ∆Ψ̂pi ,

from (41) we have that ∆K̂pi → 0, ∆Ψ̂pi → 0 in a realiza-
tion. Denoting δi(t) = x̂s

i (t + 1|t)− x̂i(t + 1|t), subtracting
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(8) from (28) yields a dynamic error system

δi(t) = Ψpiδi(t − 1) + ui(t)

ui(t) = ∆Ψ̂pix̂
s
i (t|t − 1) + ∆K̂piyi(t)

(43)

In (28), applying Assumption 4 and K̂pi → Kpi yields that

K̂piyi(t) is bounded, and noting that Ψ̂pi → Ψpi , and Ψpi

is a stable matrix[8], according to Lemma 3, x̂s
i (t + N |t)

is bounded in a realization. Hence ui(t) → 0 in (43), and
applying Lemma 4 yields that δi(t) → 0, and from (8) and
(28) we have that (42) holds. �

Theorem 6. For the multisensor system (1) and (2)
with Assumptions 1 ∼ 4, if (35) holds, then the self-tuning
fused Kalman predictor weighted by diagonal matrices con-
verges to the optimal fused Kalman predictor weighted by
diagonal matrices in the sense that

[x̂s
0(t + N |t) − x̂0(t + N |t)] → 0

as t → ∞, in a realization
(44)

Proof. Setting Ω̂i(N) = Ωi(N )+∆Ω̂i(N ), from (41) we

have that ∆Ω̂i(N ) → 0. Subtracting (13) from (29) yields

x̂s
0(t + N |t) − x̂0(t + N |t) =

LX
i=1

Ωi(N )[x̂ s
i (t + N |t) − x̂i(t + N |t)]+

LX
i=1

∆Ω̂i(N)x̂s
i (t + N |t)

(45)

Applying (42), ∆Ω̂i(N) → 0, and boundedness of x̂s
i (t +

N |t) yields that (44) holds. �
Theorem 7. For the multisensor system (1) and (2)

with Assumptions 1 ∼ 3, if D̂ij converges to Dij with
probability one, and the measurement processes yi(t)(i =
1, · · · , L) are bounded with probability one, then the self-
tuning fused Kalman predictor converges to the optimal
fused Kalman predictor with probability one, i.e.,

[x̂s
0(t + N |t) − x̂0(t + N |t)] → 0, as t → ∞, w.p.1 (46)

Proof. From Theorem 6, except the realizations with
probability zero, for each realization of the measurement
processes yi(t)(i = 1, · · · , L), (44) holds which yields that
(46) holds. �

Remark 4. Theorem 7 shows that the problem of the
stochastic convergence with probability one can be con-
verted into the problem of the non-stochastic or determi-
nate convergence in a realization.

Remark 5. From the point of view of methodology, the
problem of the convergence in a realization is converted into
the stability problems of dynamic error system: the stabil-
ity of bounded input to bounded output, and the stability
of infinite small input to infinite small output. The conver-
gence problem in a realization is essentially a determinate
(non-stochastic) limit problem which can easily be solved
by a strict mathematical tool as shown in Lemmas 3 ∼ 4,
and Corollaries 1 ∼ 2.

5 Simulation example

Consider the target tracking system (1) and (2) with 3
sensors, and

Φ =

2
41 T0 0.5T 2

0

0 1 T0

0 0 1

3
5 ,Γ =

2
40
0
1

3
5 , Hi =

»
1 0 0
0 1 0

–

i = 1, 2, 3

(47)

where T0 is the sampling period, x(t)=[x1(t), x2(t), x3(t)]
T

is the state, the components x1(t), x2(t) and x3(t) are the
position, velocity, and acceleration of target at the sample
time tT0, respectively, n = 3, L = 3, mi = 2, w(t) and vi(t)
are independent Gaussian white noises with zero mean and
unknown variances σ2

w and Qvi, respectively. The problem
is to find the self-tuning fused Kalman predictor weighted
by diagonal matrices, x̂s

0(t + 2|t). In simulation we take
T0 = 1, σ2

w = 0.36, Qv1 = σ2
v1I2, Qv2 = σ2

v2I2, Qv3 =
σ2

v3I2, σ
2
v1 = 0.01, σ2

v2 = 0.02, σ2
v3 = 0.04. Introducing

the left-coprime factorization (4) yields the MA innovation

models of subsystems as[11]

zi(t) = (I2 + Di1q
−1 + Di2q

−1)εi(t)

zi(t) =j»
1 0
0 1

–
+

»−1 −1.5T0

0 −2

–
q−1 +

»
0 0.5T0

0 1

–
q−2

ff
yi(t)

(48)

The simulation results are shown in Fig.1 ∼ Fig.13. The
convergence of the estimates Dij obtained by a modified

recursive extended least squares (MRELS) method[11] is
shown in Fig.1 ∼ Fig.6, where the curved lines denote the
estimates, the straight lines denote the true values. The

convergence of estimates σ̂2
w and Q̂vi = σ̂2

viI2 is shown
in Fig.7 ∼ Fig.9. The error curves between the self-
tuning and optimal fused Kalman predictors are shown in
Fig.10 ∼ Fig.12, where we see that the self-tuning fused
Kalman predictor converges to the optimal fused Kalman
predictor, so that it has the asymptotic optimality. The
curves of accumulated error squares for the self-tuning local
and fused Kalman predictors are shown in Fig.13, where we
see that the accuracy of the self-tuning fused Kalman pre-
dictor is higher than that of each local self-tuning Kalman
predictor.

6 Conclusion

For the multisensor system with unknown noise statis-
tics, by the modern time series analysis method, a self-
tuning information fusion Kalman predictor weighted by
diagonal matrices has been presented based on on-line iden-
tification of the MA innovation models. It has been realized
the self-tuning decoupled Kalman predictors for state com-
ponents. The estimators of the noise variances are obtained
by solving the matrix equations for correlation function. A
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Fig. 1 The convergence of MA param-

eter estimate D̂11 for sensor 1

Fig. 2 The convergence of MA param-

eter estimate D̂12 for sensor 1

Fig. 3 The convergence of MA param-

eter estimate D̂21 for sensor 2

Fig. 4 The convergence of MA param-

eter estimate D̂22 for sensor 2

Fig. 5 The convergence of MA param-

eter estimate D̂31 for sensor 3

Fig. 6 The convergence of MA param-

eter estimate D̂32 for sensor 3

Fig. 7 The convergence of estimate
σ̂2

vi,i = 1, 3 for sensor i
Fig. 8 The convergence of estimate σ̂2

v2
for sensor 2

Fig. 9 The convergence of estimate σ̂2
w

Fig. 10 The error curve between self-
tuning and optimal fused Kalman posi-
tion predictors

Fig. 11 The error curve between self-
tuning and optimal fused Kalman veloc-
ity predictors

Fig. 12 The error curve between self-
tuning and optimal fused Kalman accel-
eration predictors
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(a) The curves of accumulated error squares of local and fused
self-tuning Kalman position predictors

(b) The curves of accumulated error squares of local and fused
self-tuning Kalman velocity predictors

(c) The curves of accumulated error squares of local and fused
self-tuning Kalman acceleration predictors

– – – – – : The curves of accumulated error squares of self-
tuning Kalman predictor for sensor 1
– · – · – · : The curves of accumulated error squares of self-
tuning Kalman predictor for sensor 2
· · – · · – : The curves of accumulated error squares of self-
tuning Kalman predictor for sensor 3
––——— : The curves of accumulated error squares of self-
tuning Kalman fused predictor weighted by diagonal matri-
ces

Fig. 13 The curves of accumulated error squares of posi-
tion, velocity, and acceleration for local and fused self-tuning
Kalman predictors

new concept of convergence in a realization is presented,
which is weaker than the convergence with probability one.
The new convergence analysis method and tool based on
the dynamic error systems have been presented. It has
been proved strictly that the self-tuning fused Kalman pre-
dictor converges to the optimal fused Kalman predictor in
a realization or with probability one, so that it has the
asymptotic optimality. The proposed self-tuning fuser and
its convergence theory, method, and tool open up a new
field – self-tuning information fusion filtering theory and

applications for systems with unknown model parameters
and noise statistics.
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Appendix A

Proof of Lemma 3. Let λ1, · · · , λn be the eigenvalues of F .
Since F is a stable matrix, then | λi |< 1, i = 1, · · · , n, so that
its spectral radius ρ = max(| λ1 |, · · · , | λn |) < 1. Applying
the matrix theory[12], there exists a matrix norm ‖ · ‖ such that
‖ F ‖= ρ + µ = ρ0 < 1, µ > 0. Setting F (t) = F + ∆F (t),
from F (t) → F we have that ∆F (t) → 0, as t → ∞. Hence
taking α > 0 such that α < 1− ρ0, there exists t0 > 0 such that
‖ ∆F (t) ‖< α, as t > t0. Defining ρm = ρ0 + α, we have that
0 < ρm < 1, and ‖ F (t) ‖≤‖ F ‖ + ‖ ∆F (t) ‖< ρ0+α = ρm < 1,
as t > t0. By the iteration for (30), we obtain the relation

δ(t) = F (t, t0)δ(t0) +
tX

i=t0+1

F (t, i)u(i) (A1)

with the definitions that F (t, t) = In, F (t, i) = F (t)F (t −
1) · · ·F (i + 1), t > i. Thus ‖ F (t, i) ‖≤‖ F (t) ‖ · · · ‖ F (i + 1) ‖<
ρt−i

m , and

‖ δ(t) ‖≤‖ F (t, t0) ‖‖ δ(t0) ‖ +
tX

t=t0+1

‖ F (t, i) ‖‖ u(i) ‖≤

ρt−t0
m ‖ δ(t0) ‖ +

tX
i=t0+1

ρt−i
m c1

(A2)

Noting that 0 < ρm < 1, we have that 0 < ρ
t−t0
m < 1, and

tX
i=t0+1

ρt−i
m =

t−t0−1X
j=0

ρj
m =

1 − ρ
t−t0
m

1 − ρm

<
1

1 − ρm

(A3)

From (A2) and (A3) we easily yield the boundedness of δ(t). �
Proof of Corollary 1. The different equation (31) has the

state space model

x(t) = Λ̂(t)x(t − 1) + b(t) (A4)

with the definitions

x(t) =

2
6664

δ(t)
δ(t − 1)

...
δ(t − nλ + 1)

3
7775 , Λ̂(t) =

2
66664

−Λ̂1(t) · · · · · · −Λ̂nλ
(t)

Im 0
..
.

..

.
0 · · · Im 0

3
77775

b(t) =

2
6664

u(t)
0
.
..
0

3
7775 ,Λ =

2
6664

−Λ1 · · · · · · −Λnλ
Im 0
...

...
0 · · · Im 0

3
7775

(A5)

Since u(t) is bounded, then b(t) is bounded. Noting[11] that
det(I − q−1Λ) = detΛ(q−1), where Λ(q−1) is defined in (32),
the stability of Λ(q−1) yields that Λ is a stable matrix. From

Λi(t) → Λi, we have that Λ̂(t) → Λ, as t → ∞. Applying
Lemma 3 for (A4) yields that x(t) is bounded, and from (A5),

δ(t) is bounded. �
Proof of Lemma 4. Iterating (33) yields the relation

δ(t) = F tδ(0) +
t−1X
j=0

F ju(t − j) (A6)

Because F is a stable matrix, it has the spectral radius ρ, 0 ≤
ρ < 1, and there exists a matrix norm ‖ · ‖ such that ‖ F ‖=
ρ + µ = ρ0 < 1, µ > 0. From (A6) it follows that

‖ δ(t) ‖≤ ρt
0 ‖ δ(0) ‖ +

t−1X
j=0

ρj
0 ‖ u(t − j) ‖ (A7)

Noting that 0 < ρ0 < 1, it follows that ρt
0 → 0, as t → ∞.

Applying the assumption that u(t) → 0, as t → ∞, we have
that ‖ u(t) ‖→ 0, as t → ∞. Hence for arbitrarily small ε > 0,
there exist tρ and tµ such that ρt

0 < ε, as t > tρ, ‖ u(t) ‖< ε, as

t > tu. Here ρ0 is a fixed number, so that tρ only depends on ε.
Consider the decomposition

t−1X
j=0

ρj
0 ‖ u(t − j) ‖=

tρX
j=0

ρj
0 ‖ u(t − j) ‖ +

t−1X
j=tρ+1

ρj
0 ‖ u(t − j) ‖

(A8)

It is obvious that u(t) is bounded, i.e. ‖ u(t) ‖≤ c2 with constant
c2, t ≥ 0. When t > tδ = tu + tρ, we have that

tρX
j=0

ρj
0 ‖ u(t − j) ‖< ε

tρX
j=0

ρj
0 =

ε(1 − ρ
tρ+1
0 )

1 − ρ0
<

ε

1 − ρ0

t−1X
j=tρ+1

ρj
0 ‖ u(t − j) ‖< c2

t−1X
j=tρ+1

ρj
0 =

c2ρ
tρ+1
0 (1 − ρ

t−tρ−1
0 )

1 − ρ0
<

c2ε

1 − ρ0

(A9)

Hence taking t > tδ, from (A7) ∼ (A9) we have that ‖ δ(t) ‖≤
c3ε, with constant c3 =‖ δ(0) ‖ +[(1 + c2)/(1 − ρ0)] which is
independent of ε. Since ε > 0 can be taken as an arbitarily small
number, then ‖ δ(t) ‖ can be arbitarily small for sufficiently large
t, t > tδ , i.e. δ(t) → 0, as t → ∞. �

Proof of Corollary 2. The difference equation (34) has the
state space model

x(t) = Λx(t − 1) + b(t) (A10)

where x(t), b(t) and Λ are defined in (A5). The stability of
Λ(q−1) and the relation[11] det(I − q−1Λ) = detΛ(q−1) yield
that Λ is a stable matrix. The assumption that u(t) → 0, as
t → ∞, and (A5) yield that b(t) → 0, as t → ∞. Applying
Lemma 4 for (A10) yields that x(t) → 0, as t → ∞, and from
(A5) we have that δ(t) → 0, as t → ∞. �


