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Further Result on Robust Stabilization for Uncertain
Nonlinear Time-delay Systems

JIAO Xiao-Hong1 SHEN Tie-Long2 SUN Yuan-Zhang3

Abstract The systematic recursive design method of the robust stabilizing controller for general uncertain nonlinear time-delay
systems is investigated in this paper. A delay-independent state feedback control law can be obtained by recursively constructing
Lyapunov-Razumikhin function. It is shown that by some design techniques the obstacle that is intrinsic to the application of the
Razumikhin condition can be removed such that the design of the robust stabilizing control law is free of any restriction for the
systems.
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1 Introduction

Motivated by the systematic design method[1] for non-
linear nondelay systems stabilization based on Lyapunov
function, how to extend nonlinear time-delay systems is
naturally regarded as an interesting and challenging re-
search topic. In recent years, many research efforts in
this area have been made. However, most of the results
were based on the linear matrix inequalities (LMI) method,
that is to say, in these results the considered nonlinear sys-
tems were essentially handled as linear systems with non-
linear uncertainties satisfying the linear matching condi-
tions. Several researches such as [2,3] were based on the
essence of nonlinear time-delay systems. A functional based
version of recursive approach was first presented in [2],
but the stabilizing controller proposed could not be ob-
tained constructively[4]. Based on the control Lyapunov-
Razumikhin function, another version of recursive method
was provided in [3]. However, the control law can only be
constructed through checking the existence of the domina-
tion function. Thus, as pointed out by [3] itself, it is a dif-
ficult task for higher dimensional systems. Apparently, for
time-delay systems described by the functional differential
equations[5], it is not a trivial extension of the recursive
design of nonlinear nondelay systems. In [6∼9] some at-
tempts have been made to solve this issue. A recursive de-
sign based on Lyapunov-Razumikhin function was given in
[6] for a class of time-delay systems with restriction, where
the bounding functions of the uncertain related-delay func-
tions were required to be only related to x1t. In [8], with the
help of the proposed LaSalle-Yoshizawa-like theorem, this
result was further extended to the adaptive stabilization
for a class of nonlinear time-delay systems. The restriction
was relaxed in [9] by the requirement for the related-delay
functions to satisfy the linear growth condition. However,
how to recursively design a stabilizing controller for general
nonlinear time-delay systems without any restriction is still
an open nontrivial problem.

This paper addresses the methodology and makes a dis-
cussion on the results of [6∼9] in order to further develop
novel results on general nonlinear time-delay systems. A
Lyapunov-Razumikhin function based version of a similar
backstepping approach is developed for the general nonlin-
ear time-delay systems. It is shown that a robust stabi-
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lizing controller can be explicitly constructively obtained
by properly using the Razumikhin condition without ad-
ditional conditions. And the constructed controller is in-
dependent of the state-delay. Thus, the value of the delay
is allowed to be unknown. We call it a similar backstep-
ping approach to mean that there exists some distinctive
difference from the conventional backstepping method. In
comparison to the backstepping design for the nonlinear
nondelay systems, one more difficulty arises in the new
problem setting for time-delay systems. The difficulty is
caused by two aspects. One is that due to the use of the
Razumikhin condition the triangular structure form of the
system is changed. The other is that the coordinate trans-
formation has effect on the Razumikhin condition. Thus,
the key to recursive design for time-delay systems is how
to overcome this obstacle to explicitly obtain a robust sta-
bilizing controller.

2 Problem statement

The nonlinear time-delay systems considered are de-
scribed by

ẋxx = FFF (xxx,xxxt) + GGG(xxx)u, xxx0(τ ), τ ∈ [−r, 0] (1)

where xxx ∈ Rn represents the state, xxxt := xxx(t + τ ) the de-
layed state, and τ ∈ [−r, 0], r > 0 is a constant represent-
ing the largest value of delay. u∈R is control input. FFF (·)
and GGG(·) are smooth functions with appropriate dimensions
with FFF (000,000)=000, GGG(xxx) �=000,∀xxx. For FFF (xxx,xxxt), the following
decomposition is reasonable

FFF (xxx,xxxt) = fff(xxx) + f̃ff(xxx,xxxt)xxxt

with fff(xxx) = FFF (xxx,000), and f̃ff(xxx,xxxt) can be found

analytically[10]. Thus, (1) can be rewritten as

ẋxx = fff(xxx) + eee(xxx,xxxt) + GGG(xxx)u (2)

where eee(xxx,xxxt) := f̃ff(xxx,xxxt)xxxt and fff(000)=000, eee(xxx,000)=000. With

the help of a certain geometric condition[1], (2) can be
changed into the following form�����

����

ẋ1 = x2 + f1(x1) + e1(x1, x1t)
ẋ2 = x3 + f2(x̃2) + e2(x̃2, x̃2t)

...
ẋn = u + fn(x̃n) + en(x̃n, x̃nt)

(3)

where x̃i = [x1x2 · · ·xi]
T, x̃it = [x1t · · ·xit]

T (i = 1, · · · , n).
fi(·) are smooth functions, fi(0) = 0, and ei(·) reason-
ably satisfy the following conditions with known functions
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bij(·) > 0 and class K functions µij(·) (i = 1, · · · , n, j =
1, · · · , i):

|ei(x̃i, x̃it)| ≤
i�

j=1

bij(x̃i)µij(|xjt|) (4)

It should be noted that ei(·) may represent the uncertain-
ties if only it satisfies (4).

The robust stabilization problem addressed in this pa-
per is, for the general system (3), how to find a smooth
feedback controller u = c(xxx), which is independent of the
delayed state, such that the closed loop system is globally
asymptotically stable at xxx = 000.

To this end, the following technical lemma will serve as a
basis for the explicit construction of the robust stabilizing
controller.

Lemma 1. Consider nonlinear time-delay systems

ẋxx = fff(xxx,xxxt), xxx0(τ ), τ ∈ [−r, 0] (5)

If there exist a continuous function V (xxx) and K∞ functions
κ1(·), κ2(·) and κ3(·) such that

κ1(‖xxx‖) ≤ V (xxx) ≤ κ2(‖xxx‖) (6)

V̇ (xxx) ≤ −κ3(‖xxx‖), if max
−r≤τ≤0

V (xxxt(τ )) < pV (xxxt(0)) (7)

the solution xxx(t)=000 of (5) is globally asymptotically stable,
where p>1 is a given constant, max

−r≤τ≤0
V (xxxt(τ ))<pV (xxxt(0))

is called Razumikhin condition.
This lemma is a case of the Razumikhin stability theorem

in [5] since a linear function ps with a constant p > 1 is used
to replace the function p(s) (p(s) > s, ∀s > 0).

3 Main result

For simplicity of presenting the basic idea, the case with
scalar x of (2) is first considered.

Theorem 1. For the scalar case of (2), a delay inde-
pendent state feedback controller is given by

u = − 1

g(x)

�
f(x) +

1

2
xb2(x) +

1

2
q2xµ̃2(q|x|) + x

�
(8)

The resulting closed-loop system is globally asymptotically
stable at x = 0, where q > 1 is a given constant, and the
function µ̃(·) satisfies the function decomposition µ(s) =
sµ̃(s).

Proof. Choose a candidate for Lyapunov-Razumikhin
function as follows.

V (x) =
1

2
x2 (9)

Since |e(x, xt)| ≤ b(x)µ(|xt|), the time derivative of V along
any trajectories of the system satisfies

V̇ (x) ≤ x[f(x) + g(x)u] + |x|b(x)µ(|xt|) (10)

When the Razumikhin condition |xt| < q|x| holds, the time
derivative of V becomes

V̇ (x) ≤ x

�
g(x)u + f(x) +

1

2
xb2(x) +

1

2
q2xµ̃(q|x|)

�
(11)

Therefore, a feedback law defined by (8) gives

V̇ (x) ≤ −x2, if ‖xt(τ )‖ < q‖xt(0)‖, τ ∈ [−r, 0] (12)

Thus, by Lemma 1, the asymptotical stability follows
from (9) and (12). �

Now the design method presented in Theorem 1 is ex-
tended to the higher order systems (3). To demonstrate the
idea of recursive design, the result on the two-dimensional
system of (3) is presented.

Theorem 2. For the two-dimensional system of (3), a
delay independent stabilizing controller

u =−z1−f2+
∂α1

∂x1
[x2+f1]−1

2
z2b

2
21−1

2
z2

����∂α1

∂x1

����
2

b2
11−

1

2
z2b

2
22

�
2�

l=1

ν̃2
221(nq|zl|)+1

	
− 2q2z2−

z2

2�
i=1

i�
j=1

4(3−i)j2q2µ̃2
ij(j2q|z2|)−z2

(13)
can be recursively obtained, where q>1, α1(x1) is a smooth
function determined in the design procedure.

Proof. First, note that in the recursive design,
Lyapunov-Razumikhin function of the whole system will
be in a quadratic form on the new coordinate z under the
change of the coordinate

z1 = x1, z2 = x2 − α1(x1) (14)

with α1(0) = 0. Then, the Razumikhin condition becomes

max
−r≤τ≤0

V (zzzt(τ )) < pV (zzzt(0)) (15)

It is equivalent to the following condition with a given con-
stant q =

√
p > 1

‖zzzt(τ )‖ < q‖zzzt(0)‖, τ ∈ [−r, 0] (16)

First Step. For the x1-subsystem with x2 viewed as a
virtual control signal, we define a positive definite function
V1(x1) as

V1(z1) =
1

2
z2
1 (17)

then, we obtain the derivative of V1 as follows.

V̇1 ≤ z1{x2 + f1(x1)} +
1

2
z2
1b2

11(x̃1) +
1

2
µ2

11(|x1t|)

When the Razumikhin condition (16) holds, |x1t| = |z1t| ≤
‖zzzt‖ < q‖zzz‖ holds, thus, we get

V̇1 ≤ z1

�
x2 + f1(x1) +

1

2
z1b

2
11(x̃1)

�
+

1

2
µ2

11(q‖zzz‖) (18)

It is clear that the last term cannot be cancelled with the
virtual control law α1(x1). But, by the virtual control
law α1(x1), additional function terms on z1 must be con-
tained in order to ensure the derivative of the Lyapunov-
Razumikhin function in the final step to be negative. Thus,
the virtual control law is chosen as

α1=−f1−1

2
x1b

2
11−2q2z1−z1

2�
i=1

i�
j=1

4(3−i)j2q2µ̃2
ij(j2q|z1|)−z1

(19)
where µ̃ij(·) satisfies the decompositions µij(s) = sµ̃ij(s),
which makes the derivative of V1 satisfy

V̇1 ≤z1z2+
1

2
µ2

11(q‖zzz‖)−2q2z2
1−

2�
i=1

i�
j=1

(3−i)µ2
ij(j2q|z1|)−z2

1

(20)
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whenever the Razumikhin condition holds.

Second Step. For the whole system, define

V (z1, z2) = V1(z1) +
1

2
z2
2 (21)

Then, along the trajectories of the system (x1, z2), the time
derivative of V is

V̇ ≤ z2

�
u + f2 − ∂α1

∂x1
[x2 + f1]

�
+ |z2|

����∂α1

∂x1

���� b11µ11(|x1t|)+
|z2|[b21µ21(|x1t|) + b22µ22(|x2t|)] + V̇1

(22)
A problem arises, i.e. how to use the Razumikhin condi-

tion in µ22(|x2t|). Let

M2 := |z2|b22(x̃2)µ22(|x2t|)
and note that x2t = z2t + α1(x1t), where α1(·) has been
determined in the former step. Then one can find a class
of K functions c11(·) such that |α1(x1t)| ≤ c11(|x1t|). Thus,
we have

M2 ≤ 1

2
z2
2b2

22(x̃2)+
1

2
µ2

22(2|z2t|)+|z2|b22(x̃2)ν221(|x1t|) (23)

where ν221(s) := µ22(2c11(s)), s ≥ 0. Substituting (23)
into (22) and considering |x1t| < q‖zzz‖ and |z2t| < q‖zzz‖
when the Razumikhin condition holds, we obtain

V̇≤z2



u+f2−∂α1

∂x1
[x2+f1]+

1

2
z2(b

2
21+b2

22)+
1

2
z2

����∂α1

∂x1

����
2

b2
11

�
+

1

2

2�
i=1

i�
j=1

µ2
ij(jq‖zzz‖) + |z2|b22ν221(q‖zzz‖) + V̇1

(24)
Obviously, another problem arises: how to deal with

N2 := |z2|b22(x̃2)ν221(q‖zzz‖). The difficulty lies in the fact
that the function ν221(·) is not dealt with in the same way
as the functions µij(·) since ν221(·) is closely related to α1(·)
designed in the former step. Thus, to overcome this diffi-
culty, we handle N2 as follows.

N2 ≤ |z2|b22(x̃2)

2�
l=1

ν221(2q|zl|) ≤

1

2
z2
2b2

22(x̃2)
2�

l=1

ν̃2
221(2q|zl|) +

2�
l=1

2q2z2
l

(25)

where ν̃221(·) satisfies the decomposition ν221(s)=sν̃221(s).
The first term in the last inequality of (25) can be cancelled
with the virtual control law in this step. In the second
term, the quadratic form of z2 can be cancelled in this step
and the quadratic form of z1 can be dominated by the pre-
designed additional term in α1(·). These features are just
the distinctive difference from the backstepping design of
nonlinear non-delay systems. Substituting (25) and (20)
into (24) yields

V̇ ≤z2



u+z1+f2−∂α1

∂x1
[x2+f1]+

1

2
z2b

2
21+

1

2
z2

����∂α1

∂x1

����
2

b2
11

�
+

1

2
z2
2b2

22

�
2�

l=1

ν̃2
221(2q|zl|)+1

	
+2q2z2

2−z2
1+

2�
i=1

i�
j=1

3− i

2
µ2

ij(jq‖zzz‖)−
2�

i=1

i�
j=1

(3 − i)µ2
ij(j2q|z1|)

(26)

whenever the Razumikhin condition holds. Therefore, a
feedback law defined by (13) renders

V̇ (z1, z2) ≤ −z2
1 − z2

2 if ‖zzzt(τ )‖ < q‖zzzt(0)‖, τ ∈ [−r, 0]
(27)

Thus, by Lemma 1, the asymptotical stability follows
from (21) and (27). �

From the design presented by Theorem 2, it can be seen
that the key of the recursive design is how to deal with
the system without triangular structure due to the use of
the Razumikhin condition and the effect of the coordinate
transformation on the Razumikhin condition, so that the
derivative of the Lyapunov-Razumikhin function for the
whole system along the closed-loop system trajectories sat-
isfying the Razumikhin condition is negative. Recursive
application of the proposed design step described above
leads to backstepping method for system (3).

Theorem 3. Consider system (3) with (4). A stabilizing
controller u = c(x1, · · · , xn), which is independent of delay,
can be recursively obtained.

See Appendix A for the proof.

4 Numerical example

To illustrate the proposed recursive method, we deter-
mine a robust asymptotically stabilizing feedback control
for the two-dimensional system�

ẋ1 = x2 + f1(x1) + e1(x1, x1t)
ẋ2 = u + f2(x1, x2) + e2(x1, x1t, x2, x2t)

(28)

where f1(x1) = x2
1 +2x1, f2(x1, x2) = x1x2 + x2

1 +x2
2, e1(·)

and e2(·) are unknown functions satisfying

|e1(x1, x1t)| ≤ 1

2
|x1t|

|e2(x, xt)| ≤ 1

2
(1 + x2

1)|x1t| + 1

2
|x2t|

(29)

i.e. e1(·) and e2(·) are bounded by (4) with the bounding
functions

b11(x1) = 1, b21(x) = 1 + x2
1, b22(x) = 1

µij(s) = 1
2
s (i, j = 1, 2)

(30)

Hence, by applying Theorem 2 to the system, we obtain
a robust stabilizing controller (q = 1.005):

u=−x1−f2+
∂α1

∂x1
(x2+f1)−1

2
z2(1 + x2

1)
2−1

2
z2

�
∂α1

∂x1

2

−
16.16z2(z

2
1 + z2

2) − 302.43z2

(31)
where α1(x1) = −x2

1 − 12.09x1, z2 = x2 − α1(x1).
When the initial conditions are chosen as

φ1(τ ) = 0.1eτ , φ2(τ ) = −0.8 sin(τ +
π

2
), τ ∈ [−0.2, 0]

(32)
and the uncertainties satisfying the bounding condition
(29) with the bounding functions (30) are described by

e1(x1, x1t) =
1

2
x1t, e2(x, xt) = x1x1t +

1

2
x2t (33)

The simulation of the closed loop system consisting of (28)
and the robust feedback controller (31) is shown in Fig. 1.
This simulation demonstrates that the system with the
delay-related uncertainty can be stabilized with a satis-
factory dynamic performance by the robust feedback con-
troller constructed recursively.
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Fig. 1 The response curse of the closed-loop system

5 Conclusion

The robust stabilization problem for general nonlin-
ear time-delay systems is investigated. A Lyapunov-
Razumikhin function based version of similar backstepping
approach is developed. The key feature of this approach
is that in the recursive design, the subsystems forced by
the virtual control laws at each step are not necessarily
stable but contain the additional signals dominating the
delay-related uncertainties such that in the final step the
derivative of the Lyapunov-Razumikhin function is nega-
tive whenever the Razumikhin condition holds.
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Appendix A

Proof of Theorem 3. First, note that in the recursive
design, Lyapunov-Razumikhin function of the whole system
will be of a quadratic form on the new coordinate zzz under
the change of the coordinate

zi = xi − αi−1(x̃i−1), i = 1, · · · , n

with α0 = 0 and αi−1(0) = 0. Then, the Razumikhin
condition becomes

max
−r≤τ≤0

V (zzzt(τ )) < pV (zzzt(0))

It is equivalent to the following condition with a given con-
stant q =

√
p > 1

‖zzzt(τ )‖ < q‖zzzt(0)‖, τ ∈ [−r, 0] (A1)
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First Step. For x1-subsystem, similar to the proof of
Theorem 2, the derivative of V1 defined as (17) can be
obtained as (18) when Razumikhin condition (A1) holds.
Noticing zzz∈Rn, we choose

α1(x̃1) = −f1−1

2
x1b

2
11−

n�
s=2

s�
i=2

i�
j=2

(j−1)n2q2

2
z1−z1−

z1

n�
i=1

i�
j=1

(n+1−i)

2
j2n3q2µ̃2

ij(jnq|z1|) (A2)

to make the derivative of V1 satisfy the following form
whenever the Razumikhin condition holds.

V̇1 ≤ z1z2+
1

2
µ2

11(q‖zzz‖)−
n�

s=2

s�
i=2

i�
j=2

j−1

2
n2q2z2

1−
n�

i=1

i�
j=1

n(n+1−i)

2
µ2

ij(jnq|z1|)−z2
1 (A3)

Second Step. Similarly, for the z2-subsystem with x3 =
z3+α2(x̃2), the time derivative of V2 defined as (21) can
be derived as the form (24) when the Razumikhin condi-
tion holds. But, since zzz ∈ Rn, it is slightly different from
Theorem 2 in dealing with N2:

N2 ≤ |z2|b22(x̃2)



2�

l=1

ν221(nq|zl|) +
n�

l=3

ν221(nq|zl|)
�

≤ 1

2
z2
2b2

22(x̃2)

2�
l=1

ν̃2
221(nq|zl|) +

n − 2

2
z2
2b2

22(x̃2)+

1

2

2�
l=1

n2q2z2
l +

1

2

n�
l=3

ν2
221(nq|zl|) (A4)

where ν221(s)= sν̃221(s). The last inequality in (A4) con-
sists of three parts. The treatment of the first two parts,
namely the first three terms, is the same as that in Theo-
rem 2. The third part that is the fourth term will be dealt
with in the later steps. Substituting (A4) and (A3) into
(24), we obtain

V̇2≤−z2
1+z2



z3+α2+z1+f2−∂α1

∂x1
[x2+f1]+

1

2
z2

����∂α1

∂x1

����
2

b2
11

�
+

1

2
z2
2b2

21+
1

2
z2
2b2

22

�
2�

l=1

ν̃2
221(nq|zl|)+n−1

	
+

2�
l=1

n2q2

2
z2

l −
n�

s=2

s�
i=2

i�
j=2

(j−1)n2q2

2
z2
1+

2�
i=1

i�
j=1

3−i

2
µ2

ij(jq‖zzz‖)+

1

2

n�
l=3

ν2
221(nq|zl|)−

n�
i=1

i�
j=1

n(n+1−i)

2
µ2

ij(jnq|z1|) (A5)

whenever the Razumikhin condition holds. Therefore, a
virtual feedback law defined by

α2(x̃2)=−z1−f2+
∂α1

∂x1
[x2+f1]−1

2
z2b

2
21−1

2
z2

����∂α1

∂x1

����
2

b2
11−

1

2
z2b

2
22

�
2�

l=1

ν̃2
221(nq|zl|)+n−1

	
−

n�
s=2

s�
i=2

i�
j=2

(j−1)n2q2

2
z2−

z2

n�
i=1

i�
j=1

j2n3q2(n+1−i)

2
µ̃2

ij(jnq|z2|)−z2 (A6)

is such that

V̇2 ≤ z2z3 +
1

2

n�
l=3

ν2
221(nq|zl|) +

2�
i=1

i�
j=1

3−i

2
µ2

ij(jq‖zzz‖)−

2�
l=1

z2
l −

n�
i=1

i�
j=1

2�
l=1

n(n+1−i)

2
µ2

ij(jnq|zl|)−

n�
s=3

s�
i=2

i�
j=2

(j−1)n2q2

2

2�
l=1

z2
l (A7)

whenever the Razumikhin condition holds.

Induction Step. Suppose at the (k−1)-th step (3≤k≤n),
there are a set of virtual control laws αi(x̃i), (i=1, · · · , k−1)
and a positive definite function Vk−1(z̃k−1) such that

V̇k−1(z̃k−1) ≤ zk−1zk+

k−1�
i=2

i�
j=2

j−1�
s=1

n�
l=k

k−i

2
ν2

ijs(nq|zl|)+
k−1�
i=1

i�
j=1

k−i

2
µ2

ij(jq‖zzz‖)−
n�

s=k

s�
i=2

i�
j=2

(j−1)n2q2

2

k−1�
l=1

z2
l −

n�
i=1

i�
j=1

k−1�
l=1

n(n+1−i)

2
µ2

ij(jnq|zl|)−
k−1�
l=1

z2
l (A8)

whenever the Razumikhin condition holds, where νijs(·):=
µij(jη(j−1)s(·)) and η(j−1)s(·) is a class K functions satis-

fying |αj−1(x̃j−1)|≤
j−1�
s=1

c(j−1)s(|xs|)=
j−1�
s=1

η(j−1)s(|zs|) with

the class K function c(j−1)s(·).
Thus, in the following we will show that for the k-th

subsystem of (3) the time derivative of Vk also satisfies the
inequality form as (A8) if the positive definite function Vk

is defined as

Vk(z̃k) = Vk−1(z̃k−1) +
1

2
z2

k (A9)

The time derivative of Vk along the trajectories of (3) can
be calculated as

V̇k ≤V̇k−1+zk



xk+1+fk−

k−1�
i=1

∂αk−1

∂xi
[xi+1+fi]

�
+

1

2
z2

kb2
k1+

1

2
z2

k

k−1�
i=1

����∂αk−1

∂xi

����
2

b2
i1+

1

2

k�
i=1

µ2
i1(|x1t|)+Mk (A10)

where

Mk = |zk|
k−1�
i=2

����∂αk−1

∂xi

����
i�

j=2

bijµij(|xjt|)+|zk|
k�

j=2

bkjµkj(|xjt|)

Notice

zi=xi−αi−1, |αj−1(x̃(j−1)t)| ≤
j−1�
s=1

η(j−1)s(|zst|)
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with class K functions η(j−1)s(·). Then,

Mk ≤ 1

2
z2

k

k�
j=2

b2
kj+

1

2

k�
j=2

µ2
kj(j|zjt|)+1

2

k−1�
i=2

i�
j=2

µ2
ij(j|zjt|)+

1

2
z2

k

k−1�
i=2

i�
j=2

����∂αk−1

∂xi

����
2

b2
ij + |zk|

k�
j=2

j−1�
s=1

bkjνkjs(|zst|)+

|zk|
k−1�
i=2

i�
j=2

j−1�
s=1

����∂αk−1

∂xi

���� bijνijs(|zst|) (A11)

Substituting (A11) into (A10), we have

V̇k≤V̇k−1+zk



xk+1+fk−

k−1�
i=1

∂αk−1

∂xi
(xi+1+fi)

�
+

1

2
z2

k

k�
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1

2
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k
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i=1

i�
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∂xi

����
2

b2
ij+

1

2

k�
i=1

i�
j=1

µ2
ij(jq‖zzz‖)+Nk (A12)

where

Nk=|zk|
�

k�
j=2

j−1�
s=1

bkjνkjs(q‖zzz‖)+
k−1�
i=2

i�
j=2

j−1�
s=1

����∂αk−1
∂xi

���� bijνijs(q‖zzz‖)
	

From the property of the class K function, Young′s Inequal-
ity and the function decomposition, it follows that

Nk≤
k�

i=2

i�
j=2

(j−1)n2q2

2

k�
l=1

z2
l +

1

2

k�
i=2

i�
j=2

j−1�
s=1

n�
l=k+1

ν2
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1

2
z2

k

k−1�
i=2

i�
j=2

j−1�
s=1

����∂αk−1
∂xi

����
2

b2
ij

�
k�

l=1

ν̃2
ijs(nq|zl|)+n−k

	
+

1

2
z2

k

k�
j=2

j−1�
s=1

b2
kj

�
k�

l=1

ν̃2
kjs(nq|zl|)+n− k

	
(A13)

Consider (A12), (A13), and (A8). According to a virtual
feedback law defined by

αk(x̃k)=−zk−1−fk+
k−1�
i=1

∂αk−1

∂xi
[xi+1+fi]| −1

2
zk

k�
j=1

b2
kj−

1

2
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i=2
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j=2
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2
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ν̃2
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−

1

2
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k�
j=2

j−1�
s=1

b2
kj

�
k�

l=1

ν̃2
kjs(nq|zl|)+n−k

	
−

zk

k−1�
i=2

i�
j=2

j−1�
s=1

(k− i)n2q2

2
ν̃2

ijs(nq|zk|)−zk−

1

2
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i=1

i�
j=1

����∂αk−1
∂xi

����
2

b2
ij−

n�
s=k

s�
i=2

i�
j=2

(j−1)n2q2

2
zk−

zk

n�
i=1

i�
j=1

j2n3q2(n+1− i)

2
µ̃2

ij(jnq|zk|) (A14)

renders the derivative of Vk satisfy (A8) (k−1→k) whenever
the Razumikhin condition holds.

Obviously, this recursive procedure will terminate at the

n-th step, where V (z̃n)=
1

2

n�
j=1

z2
j . According to the virtual

control law αn(x̃n) (let k=n in (A14)) the derivative of V
satisfies

V̇ ≤ zn(u−αn(x̃n))+
n�

i=1

i�
j=1

n+1− i

2
µ2

ij(jq‖zzz‖)−
n�

l=1

z2
l −

n�
i=1

i�
j=1

n�
l=1

n(n+1− i)

2
µ2

ij(jnq|zl|)

whenever the Razumikhin condition holds. Hence, by
choosing the feedback control law u = αn(x̃n) and by using

‖zzz‖≤
n�

l=1

|zl|, µij(jq

n�
l=1

|zl|) ≤
n�

l=1

µij(jnq|zl|)

we obtain

V̇ ≤ −‖zzz‖2 if ‖zzzt(τ )‖ < q‖zzzt(0)‖, τ ∈ [−r, 0] (A15)

Thus, the asymptotical stability follows from Lemma 1. �


