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Attitude Stabilization of a Rigid Spacecraft with Two Controls!
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Abstract Rigid spacecraft models with two controls can not be locally asymptotically stabilized by
continuous pure-state feedbacks. Available stabilization methods include the method using time-
varying feedbacks and the method using discontinuous feedbacks. Most of the existing time-var-
ying control results suffer {rom the drawback that the designed control laws are very complex.
Moreover, the control laws using smooth time-varying feedback do not stabilize the system at ex-
ponential convergence rate. A smooth time-varying controller is developed by introducing an assis-
tant state variable and using feedback hnearization technique. Besides the advantage of design sim-
plicity, the states of the closed loop system converge at exponential rate, The validity of our meth-
od is demonstrated by simulation results.
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1 Introduction

The control of underactuated mechanical systems, 1, e. , systems with fewer inputs
than degrees of {reedom, 1s an interesting problem. The interest may come from two as-
pects. One is the appeal for controlling a system with fewer actuators especially when fail-
ure of an actuator in a mechanical system occurs. The other aspect 1s that using fewer ac-
tuators to implement control of the same object allows to reduce cost, weight, as well a-
occurrence of component failures,

Due to the reduced dimension of the input space, the controllability of the system
need to be studied. Moreover, even when the controllability is guaranteed, the stabiliza-
tion problem for underactuated systems is usually more difficult. Thus, the control prob-
lem of underactuated mechanical systems has attracted growing attention in recent years.
Examples of these systems are underactuated rigid spacecrafts with two controlst'™%, un-
deractuated autonomous surface vessels'*', underactuated autonomous underwater vehi-
clest® , ete.

The underactuated rigid spacecraft system is one of the underactuated systems that
have been intensely investigated. It is well known that if the system is fully actuated, 1.
e. » In the case of three controls, then the attitude of this system is fully controlied and can
be easily stabilized using smooth feedbacks'®). The present paper focuses on the attitude
stabilization of underactuated rigid spacecraft with only two controls., Obviously, to a
space flight system, the control problem in an underactuated status is very important,
However, if the system 1s underactuated, 1. e. , in the case of two controls, it has been
pointed out that the system can not be locally asymptotically stabilized by means of smooth
pure state feedback"!’.

One of main solutions of tackling this problem is using time-varying feedbacks'!~*’. In
[1], explicit smooth periodic time-varying feedbacks have been proposed by using center
manifold theory, time-averaging and Lyapunov techniques. However, these time varying
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feedbacks using periodic signals produce very slow (non-exponential) convergence of sys-
tem states. To yield exponential stabilization, two nonsmooth time-varying methods have
been proposed respectively in { 2] and | 3] using homogeneous method and Lyapunov tech-
nique. Nevertheless, the designed control laws are very complex.

In | 7~8], by using an assistant state variable methoc, smooth aperiodic time-varying
exponentially convergent control laws have been developed tor a class of nonholonomic
systems including (extended) chained system, (extended) power form system, Brockett
system, etc. In this paper, combining this method and feedback linearization technique to-
gether, we show that smooth aperiodic time-varying control laws with exponential conver-
gence can be developed to locally asymptotically stabilize the attitude of rigid spacecraft to the e-
quilibrium. Moreover, the design procedure is very simple. The validity of our method will be
demonstrated by simulation results.

2 The rigid spacecraft model
The complete attitude motion of a rigid spacecraift can be described by the following

kinematic and dynamic equations'" ;

R = S(w)R, Jo =S o+ [, . 0] (1)
where RE SO(3) denotes the rotation matrix representing the attitude, w=|w;, w, w;|"
the angular velocity vector, J=diag(j,,j;,75) the inertia matrix of the spacecraft, j,j,
and j; the principal moments of inertia, 7, and 7, the control torques applied to the rigid

(0 W; — W, |
body, and S= | —w; 0 w; | the matrix representation of the cross product.
o — ) 0

. &

In order to control system (1), a preliminary step is to parametrize the attitude kine-
fnatics. Available parametrizations include Eulerian angles, Euler parameters (quaterni-
on), and Cayley-Rodrigues parameters''’. In contradistinction, the Cayley-Rodrigues pa-
rameters method not only can yield polynomial equations but also is a mininal parametriza-
tion method(using only three parameters), which 1s coavenient for control and stabiliza-
tion problems. The reader is referred to _1 | for the detailed formulation of this parametri-
zations. Introducing Cayley-Rodrigues parameters to parametrization of the attitude kine-

matics equation of system (1), one obtains'" .

(7 “(a,) [ 0 w, —w,) [z, (2,17

Ty | = %‘ W, {4 | — Wy 0 W 2z |+ (w2 +wp a2 + w333) | X (2)
(X3 || Wy - Wy — W 0 J lxs) L3 ) _
W) = CLWr W3 + Uy Wy = CoW W5 -1~ Uy y Wy = C3W) W75

where 1, ,x,, and x; are Cayley-Rodrigues parameters,u;, =17, /j, st =0, /j2c1 =(js —j3)/
J1s sz(fB —7i ).r’(fz s (3 :(jl "‘jz)/j:s'

[t should be pointed out that under this parametrization the above derived equations
are only local description of the attitude of the rigid spacecraft. It is natural to assume that
j1— 7,70, 1. e. » c370, otherwise, system (2) is neither controllable nor stabilizable. Our
task in this paper is to find smooth time-varying feedback control laws «, and u, which ex-
ponentially stabilize system (2).

3 Design of control laws
Letr={x1 x2 x3]7s p=wn(x, +21235) +w, (o, 12— x3). After a suitable change
of coordinates of the form
w, =w (1+z2H)+p, u = AQ+2)(u +cww) +wxw +p (3)
Le s u=—cww+(u, —w o, —p)/(A+22), =, —p)/(1+x), system (2) can be
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wntten as

Ty 2%"';’1 ’ Cﬁl — El (43)‘

. 17 w - T3+ pri s

1a:?jw~WNr+L;ﬁm+4ﬂihe p1+¢;2J (4b)

Cf'Jz :CZ T1+_I‘f(u3 + uz (4.(:)
1

1 w _ Lo — PT 11X

L3 :’2‘{“’3 -+ Wy 13 1_1_11:%1?2 ~+ ((UTI)I3 | P 21 __1_1;; 3:| (4d)

W3 =03 Tl_}_—_xi;wz (4e)
1

with cﬁz[cﬁl/(l—l—xf) W, w3:|T.
3.1 Control law for u«,, u,

Notice that the subsystem (@, ,x,) 1n equation (4) is a controllable linear time-invari-
ant system. Introducing an assistant state x,(¢) such that £,=ux,, one obtains:

‘ ig:xlyil ={31/2,é’1 2211 (5)
Take the following feedback control law
uy, =— koxo — Ry — Ry (6)

where the gain vector K, =[k, £k, k; | is chosen such that the eigenvalues of the closed-
loop system (5~6) are assigned to be three different negative real numbers —{,, —{, y—{;
with £, >, >1,>0. Then states x,(¢),x;(¢) and @, () can be expressed in the following
form

2o (1) =mee ™' +mye 1t - mye

x,(t) =— Lymge ' — L ymye ' — lymye ™ (7)

@, (t) =2(limge ™ + UEmye™ 4+ lim,e %)
where m, ,m,, and m, are some real constants which are determined by k,,%, %4, and the
inttial values of system states x,(0),x,(0), and w;(0). Moreover, m, i1s given by

= 57— sz —5 (20020 €0) 4 20 +1)2,(0) +, (0] (8)

The results show that by introducing an assistant state variable and using augmented
state feedback described by equation (6), we can make the augmented closed loop system

(5~6) asymptotically stable, Given initial values of x;(0) and w, (0), to make x; (#) and
w, (t) converge at definite exponential rate e %*, 1. e. , the coefficients of ¢ %’ in the de-

scriptions of z,(¢),x,(2), and w, (¢) in equation (7) are non-zero, requires my,>*0Q accord-
ing to equation (7). This requirement can not be satisified through linear feedback consis-

ting of only states x; (¢) and w, (¢) but can be satisified through selecting a suitable initial
value of the assistant state x, (#). Observing equation (8), one can find that given any

fixed initial values z; (0) and w, (0), states x,(¢) and w,(z) can always be set to converge

at definte exponential rate if we choose suitable x,(0). For example, selecting x,(0) such
that

g

7, (0) £— (204 + 1), (0) 4+ @, (0) J/(24, 1) (9)

can make m, nonzero and x; (¢) and @, (¢) converge to zero at definte exponential rate e %,
Remark 1. For any bounded imitial states x; (0) and @, (0), we can always choose an

2, (0) independent of z, (0) and w, (0) to make m, #0. Assume that, for instance,
|2, (0) | <q,» |@,(0)]|<gq,, where ¢, >>0,g, >0 are some known constants; then from

(8) we know that m,7#0 if we choose x,(0) such that | x,(0) |>lel [ 2(0L+1)q +q. ).
1462

Here, let us consider the slow converging mode in states z, (¢) and @, (¢). To this
end, let z(¢) =m,l,e "' and we have z (1) =—1[,2(z). Substituting z(¢) into equation (7)
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vields
(L) = [*—“ ] +f1 (I)]L”(I)5 w, (1) = [2Z;. +f2(f)]2(t) (10)
where
mily —a e Mole —w,—1 > (ml Ii -t mals ——ie
1) — 1 7% 2 T _ 17t AR
fr (D) molge mgioe fa (0) : mgfﬂe mgte )

3.2 Control law for u,

Since the control law for u, (¢) has been designed, states z,(¢), x,{(¢), and w, () now
can be taken as time functions. Introducing the {ollowing substitutions
VI = Ty Yo = Wra Y3 = X3/%y Yo = W3/2 (11)
to the reduced system which consists of coordinates (x, (1), 23, (¢) yw, (£) ,wy (1)), one ob-
tains from equation (4),

Vi :"-‘%‘:yz — 12y 1(312.?3!3 + (@' x)y, Pgiyi ii;lyl} (12a)

Yz =¢; ?1+“I?2y4 Uz (12b)

o =lovi + g |yt G zuixf)yl H @ oy HEEEESE  azo

o =loys z(liﬁ)yz_qz(lixf)yz (12d)

Here p can be rewritten as p=2zp where p =v, (y; +x,2v:) +yv. (x1v,/2—v;). @' x can
(w, — p)x,

also be rewritten as w' x = g + 1y v, + 2 yv3y,. Denote y=[y; v v5 v
i

Under a suitable partition, system (12) can be rewritten as a linear time-varying system
with a high order perturbation as follows:

y=((A+A B))y+ Bu, + f{t,y) (13)
where
I X, w; 0 W) X, 2
e L4 2(1 4+ x9) 2(1 + ) 2
2 0 0 0 C2 W2
| 2
A O 0 O 0 DAL ()= __ i 1 + x; ,
'_—Z{} 1 Zr} —l—- Z @ 1 | A1 T O
. ? ' 22 214 2z 7 " 22 2(1 4 x7)
- C3Lg O 0 6‘3(51
r; O
L | 1+ 29z 2¢sbo V )
0 —“2_[(}’1}’2 + 2y — (2 pys +izpy) /(1 + x) ]
B~ |! G,y = — 6z py/ (14 x0)
8 —,}[(ylyz + 2y ) ys + (pyr —x2py:) /(A 4 xi) ]
L — 3Py /(1 4+ 21) -

It can be verified that (A,B) i1s a controllable pair if [,c;50, which has been presumed to
be satisfied in Section 2. The control law for u; is designed as follows
u, (t) ?—""k:«;m—*hyz“ka}é‘—kﬁ}’q (14)
where the gain vector K, =1{ /A, ,k, ks s ks | 1s selected such that the matrix A— BK is
a Hurwitz matrix.
Rewriting equations (6) and (14) with coordinates of system (2), one thus obtains
the feedback control laws for system (2)

kgxg "I_kl.:c‘_[ + (kg "{—&»‘11'1)[&)1(1 +.I§) +P] +ﬁ

Uy — ¢ Wy Wy (15)

1 4+ 22
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u, (1) =— kax, —b,w, — k:x;/2— bswy /2 (16)
Lemma 17, Consider a linear time-varying system 2 =(A+A, ) x+(B+B; () uw.
Suppose the system satisfies the following properties:
1) (A,B) is a stabilizable pair,
2) Il A () || de<Too, [ 1] By (2) || dt<<oe, 1imA, (2) =0, limB,; () =0.

{—oo $— o0

Then there exists a state feedback u=— Kx which makes the closed system umformly
exponentially stable, where K is selected such that A—BK 1s a Hurwitz matrix.

Lemma 2'%!, Consider a nonlinear system # =A()x+ f(¢z,x) with f(¢,2):CLIXR",R" ],
and f(t,x)=x if and only if x=0. If the system satisfies one of the following conditions

a) for each ¥V &e>0, there exists a(e) >0 such that

| fGe, o) | <elz|, Yz € D= [x] ||$|[<‘7]’ t € [ty +00),
b | /) z|—=0, V=0, as |z]|—=0,
then we can conclude that the nonlinear system is locally exponentially stable if the associ-
ated system # =A(t)x is exponentially stable,
Theorem 1. System (1) can be locally asymptotically exponentially stabilized by (15~

16).

Proof, From the design procedure of u, , one can easily know that states x; (¢) and w, (¢) are
all made globally convergent at a fixed exponential decay rate, i. e, e %*, if the initial value
of assistant state x,(z) is selected according to equation (9). By taking a coordinate trans-
formation y, =x,, vy, =@; 4 y; =x3/2y Y. =wy/2 to the reduced system, the transformed
system (12) can be rewritten as system (13) which is a linear time-varying system with a

high order perturbation. System (13) satisfies the following properties: (A, B) 1s a con-
trollable pair and |5 || A, () || de<<oo, 1limA, (2) =0.

According to Lemma 1, the control law (14) can exponentrally stabilize the associated
system of (13), i.e., y=(A4+ A, (¢)) y+ Bu,. Note that the components of f(z,y) in

(13) consist of y,,7y:+y3 v, of degrees no less than 3 and bounded time functions z,x; yw,.
It can be easily verified that | f(z,2)||/|z|—0, ¥ =0, as | x| —0, which means the sat-
isfaction of the condition of Lemma 2. So system (13) is locally exponentially stable due to
Lemma 2. Thus, (x;,w,,x; ,w;) converge locally to zero with exponential decay. Accord-
ing to (3), one obtains that w, () also locally converges to zero with exponential decay.
The theorem 1s thus proved.

Lo
2, — 1)1 — 1)
| 20, 20 () F+ 2L+ 1) 2, (8) @, (2) |, which can substitute for 2(¢) for the convenience of
physical realization of the control system. This also means the final control laws may only
consist of system states and the assistant state x, (¢), without time t in the explicit expression.

Remark 2. From Eqgs. (7)~(9), one might tind that z(z) equals to

4 Simulation results

We illustrate the results of the paper with a simulation example of a rigid spacecraft
with two independent control torques. The model parameters are given by j; =300kg » m°*, j, =
200kg * m?, and j, =100kg * m?, respectively , so that ¢, =0. 33, ¢c,=—1, ¢;=1. The re-
sults ot the simulation for a sample initial condition given by x,(0) ,2,(0) ,x; (0)=—1.0,
0.2,0.5y, w,(0),w0,(0),03(0)=—1.5,—1.6,—0. 6 rad/m are shown in Figs. 1~3. Here
select ,(0)=2. The gain vector K, was chosen to be K,=[8.96 18.88 5.6}, which
implies Iy 44, ,0,=2.8,2.0,0.8,m;=2.31. K,=[—22.2 7 29.4 29, 23] which locates
the eigenvalues of the matrix A—BK, at —2.0,—1.6,—1.2,—0. 6. The controls laws
given by Eqs. (15~16) were used. The time responses of the states of the closed loop are
shown in Figs. 1 and 2. The control torques r; and 7, are shown in Fig. 3.
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Fig. 3 Control torques rt,,r,

S Conclusions
The attitude stabilization problem of a rigid spacecraft using two controls has been

considered. The results of this paper show that smooth time-varying controllers with ex-
ponential decay can be developed to stabilize the states of the closed loop system to the e-
quilibrium by introducing an assistant state and using the teedback linearization technique.
The design procedure is simple and convenient, The elfectiveness of the proposed feedback
control laws has been illustrated through a simulation example.
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