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Projected Hessian Algorithm with Backtracking
Interior Point Technique for
Linear Constrained Optimization
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Abstract: We propose a new trust region projected Hessian algorithm with nonmonotonic backtracking interi-
or point technique for linear constrained optimization. Based on performing QR decomposition of an affine scal-
ing equality constraint matrix, the conducted subproblem in the algorithm is the general trust region subprob-
lem defined by minimizing a quadratic function subject only to an ellipsoidal constraint. By using both trust re-
gion strategy and line search technique, each iterate switches to backtracking interior point step generated by
the trust region subproblem. The global convergence and fast local convergence rate of the proposed algorithm
are established under some reasonable conditions. A nonmonotonic criterion is used to speed up the conver-

gence progress in some ill— conditioned cases.
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1 Introduction

We analyze the trust region interior point algorithm for solving the linear equality constrained op-

timization problem:
min f(zx) s.t. Az =6b, x =0,

where f: R* - R is smooth and nonlinear, but not necessarily convex, A € R™" is a matrix and b €
R™ is a vector. Recently, COLEMAN and LI in [[1] presented an interior double-trust region algo-
rithm for minimization problem with simple bounds on the variables. Trust region method is a well—
accepted technique in nonlinear optimization to assure global convergence. However, the search direc-
tion must be strictly feasible which should bring about the difficulty of computation, and the total
computation for completing one iteration might be expensive. A combination idea of the trust region

and line search method (see [4]) motivates to switch to the line search technique by employing the
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backtracking steps at trial step which may be unaccepted in trust region strategy, since the trial step

should provide a direction of sufficient descent. The nonmonotonic line search and trust region tech-

niques for solving unconstrained optimization are respectively proposed by Grippo et. al in [3] and
Deng et. al in [2]. The nonmonotonic idea also motivates to further study the trust region projected
reduced Hessian algorithm with backtracking interior point technique for solving (1. 1) in this paper,
because monotonicity may cause a series of very small steps if the contours of objective function f are
a family of curves with large curvature. In the paper, based on performing QR decomposition of an af-
fine scaling equality constraint matrix, the conducted subproblem in the algorithm is the general trust
region subproblem defined by minimizing a quadratic function subject only to an ellipsoidal constraint.

The paper is organized as follows. In Section 2, we describe the algorithm which combines the
techniques of trust region, interior point, backtracking step and nonmonotonic search. In Section 3,
the weak global convergence of the proposed algorithm is established. Some further convergence prop- i

erties such as strong global convergence and local convergence rate are discussed in Section 4.

2 Algorithm

In this section, we propose a trust region projected Hessian method with nonmonotonic back-
tracking interior technique for linear constrained optimization. The backtracking step generated by the
trust region subproblem involves choosing a scaling matrix D, and a quadratic model ¢; (d*) . We moti-
vate our choice of scaling matrix by examining the optimality conditions for (1.1) and get the reduced
Hessian by performing QR decomposition of an affine scaling equality constraint matrix,

Optimality conditions for problem (1.1) are well established. Assuming feasibility, first-order
necessary conditions for x. to be a local minimizer are that there exist 0<{v. & R"andA.€& R™ such that

g. +AA, —v, =0, Az, =b, vixz, =0. 2.n
Equivalently,
{(g. +A™), =0, H(x.), >0 2.2
(g. +A™2),; =0, if(x.);, =0
where (g. +ATA.); and (x. ), are the ith components of (g. + ATA,) and x. , respectively, We now
define a vector function ¥(x): R" — R" and the ith component of the vector function defined compo-
nentwise as follows:
z, if(g+A™), =0,
—1 if(g+A™), <0.

def

7.(x) & { 2.3)

Defining D(x) & diag{ |7, ()| T, |7, ()] 7}, which arise naturally from examining the first—order
necessary conditions for the problem (1.1)

D (z){glz) +ATA} = 0, Az = b, (2. 4)
where the Lagrange multiplier A is the solution vector of the least squares problem

mjn | ATA + g(x) || peoy2-

By solving the normal equation of the above problem, we have

AMzx) =— AA@NTADE(2). (2.5
where set A(x) & D(z)'A and g(x) ¢ D(x)'g(z) . We define the following sets:

FE (L ER |Ar =6, 2>0),and F* E{z € R | Az = b, >0}
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so that Fis the set of feasible points and #° is the set of 'strictly feasible interior points. In the sequel,
we assume that # is bounded and #° is nonempty, system (2. 4) is continuous but not everywhere dif-
ferentiable. Nondifferentiability occurs when 7, = 0. Discontinuity of ¥, may also occur when (g +
A™A), = 0. Assume that x; € F°, a Newton step for (2. 4) satisfies

(Di?V* f(xe) 4 diag {g: + ATA} JDdy + Di?ATAA =— D% (g +ATA), Ady, = 0 (2.6) .
where diag{g: +ATA,} = diag{(ge + A™A:) 1, (ge +ATA,).} and J(x) € R™" is the Jacobian matrix
of [¥(x)| whenever [¥(z)] is differentiable. Each diagonal component of the diagonal matrix J” equals
zero or 1.

Let (z4,4,) be the kth iteration of the Newton process, which is defined by
(B0)= ()" (54)
so that (2. 6) can be rewritten as follows
(DP* V* f(z,) + diag{g: + A™A:) ], )dy =— Di? (g + AT 41)
Tip1 = X +dyy Ady = 0. 2.7

Multiplying the two sides of the first equation (2.7) by D,, and defining
def

- def —  def —
d. = Dyd;, §k=DZ‘gu A= kl'

H: E D'V f(z)D;'y Co ¥ diaglg, +A™A) JT, (2.8)
we can obtain that (2. 8) is equivalent to
(—Hk +Ck)ak = (Ek +KZAH1), Zkak = 07 Tl — T +D;lgk (2. 9)
Assuming A(x) has full row rank m , then QR decomposition can be performed, that is,
= _ Y(x)
A(x) = [ R(x), Ojl:Z(r)] (2.10)

where [ggi;] is an orthogonal matrix, R(z) is a nonsingular lower triangular matrix of orderm . The

row vectors of Z(x) form an orthonormal basis for the null subspace MA(x)) , i. e., A(D)Z(2)T =
0. The rows of Y(x) form an orthonormal basis of the range Z(A(x)7) . The central idea is to rewrite

the first equation in the system (2. 9) as
Zk(ﬁk +(—:/¢)Ek == ZI:E&-

Using the orthogonal matrix [;Ei;] y (2.9) can be rewritten as
[Zk(H%j_Ck)][YkT Z]l:lz/:] d, —— l:Zkng]
that is,
Z«(H,+COYI Z (H.+C)Zlqrd: Zigs
R S FA
di = Yld} + Z[di, zw1 = x + Di'd,. (2.11)

This system now reduces to solving

(Z«(H,+CZ)d; =— Zig:» di = Zldi, zn = z. + Di'd,, (2.12)

since di = 0 is the solution of R,d} = 0 and replacing Z;, (H, +C;)Z] by an approximation matrix M, ,

the trust region subproblem is as follows
(1) min §(@") £ (Z.g)T+ 3 @M

s.t. ld=ll <A
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where M, ¥ Z, it (Vfi+diag {gi+A"A}JDD:'ZT, and A, is a trust region radius. The Lagrange
multiplier A, can be obtained by solving the upper triangular equation

R,,, r/\H-l =Y 8. (2.13)

Based on solving the about general trust region subproblem ( S, ), we give the following lemma

(see [5]) which establishes the necessary and sufficient condition concerning v, and di, when df solves
the subproblem ( S; ). The lemma also implies that z; is a local minimizer of (1. 1) if and only ifdf =
0 is a solution of the subproblem ( S, ).
Lemma 2,1 d; is a solution of subproblem ( S; ) if and only if there exists 0 <{v, € R™™, such
that
(M +vl)d; = —Zge» wai— Idill) =0 (2.14) s
holds and M, + v I, is positive semidefinite. ;
Next we develop a trust region projected Hessian algorithm which combines nonmonotonic line
search interior technique based on the trust region subproblem ( S, ). |
Algorithm

Initialization step
Choose parameters 8 € (0,%). o€ (0L,D, 0y <n<],0<” <7, <1<7,e>0and

positive integer M. Letm(0) = 0. Choose a symmetric matrix B, . Select an initial trust region radius
Ao > 0 and a maximal trust region radius A,,,, 2> A, » give a starting strictly feasible interior point z, €
F°. Setk <0, go to the main step.
Main step

1. Evaluate f; = f(z4)» g = V f(z;) , Dy and A,. Make a QR decomposition &; to get Y, Z;
and R; given in (2. 10),

2. f |Z:g.ll <<e, stop with the approximate solution z; .

3. Solve subproblem

(S,) min @ (3*) & (Z.gﬁ)72=+%(22)73,2=
s.t. 1]l < A

. where B, is either M, or its approximation. Let dj denote the solution of the subproblem (S;) .
4. Setd, = ZId;, dy = Di'd; and f(x,) = max { f(xw;) } . Choosea, =1, w, w?, +++, until

0 i< (k)
the following inequality is satisfied
o+ andy) < flaiw) + @ Bgi diy with x, +aid, >0, (2.15)
5. Set
o {a,,d,,. if 2, +aidi >0, (2. 16)
$.a,d, otherwise,

T = Zp + Ay 2.17)

Here assume that for some constant ¢, € (0,1), ¢, € [$,1), . —1=0Cld: | ).

6. Calculate

Pred(h,) = — @ (ZiDhs), (2.18)
A;;d(hk) - f(-I[(L)) -— f(IL ‘+‘ hb) y (2. 19)
;,  Ared(h) (2. 20)

P = Pred(hy) '

— E[E T
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and take
(7 Qs V240:10, if ﬁh S/
Ay = (Y Avs A fpn <pe<n,

Qs min{Ys Avs Amc}]s i pe =
7. Take m(k+1) = min{m(k) +1, M}, and update B, to obtain B,,,. Then set £ <%+ 1 and go
to step 1.

Remark The scalar @, given in step 4 denotes the step size along d, to the boundary x, + a,d, =

. df . Ty ; . Ty, del
0,i.e.,a =min{=2 | d,,;<<0,i=1,,m} and 22£ =

dh.x' dh,i

ith components of vectors x, and d, , respectively. A key property of this scalar a, is that an arbitrary

+ oo ifd,,; = 0, where z,,; and d,,; are the

step a,d, to the point x; + a,d, does not violate any nonnegative constraints., Further, it is easy to see
that the usual monotone algorithm can be viewed as a special case of the proposed algorithm when
M =0,

3 Global convergence

Throughout this section we assume that f:R” — R! is twice continuously differentiable and bound-
ed from below. Givenz, € % , the algorithm generates a sequence {z,} < R". In our analysis, the
level set of fis denoted by Hx,) = { £ € R" | f(x) < f(xy)» Az = b, z =0} .

The following assumption is commonly used in convergence analysis of most methods for linear e-
quality constrained optimization.

Assumption 1 Sequence {z,} generated by the algorithm is contained in a compact set ¥ z,) on
R" . Matrix A has full row-rank m.

It is well known from solving the trust region algorithms that in order to assure the global con-
vergence of the proposed algorithm, it is a sufficient condition to show that at the kth iteration the
predicted reduction defined by — @, (d7) obtained by the step df from trust region subproblem, satisfies
a sufficient descent condition (see [5]). Furthermore, we can also obtain that the direction of the trial
step is a sufficiently descent direction (see [6]).

Lemma 3.1 Let the step d be the solution of the trust region subproblem. Then there existat

> 0, and a T, > 0 such that the step di satisfies the following sufficient descent conditions;

~ @D >l Zg. ] min (o, LEEL, (3.1
_ _ . g
gid, = gidi = (Z,g)Tdi <— 1y [ thk” min {A, —"—“'”” ‘th‘h”“ s 3.2

for allg,, B, and A, . Infactt = % and 7, = % .
Assumption 2 B, and D' (z) V’f(z) D™ (z) are bounded, i. e. , there exist a4, and a4 > 0 such
that | B. | <&, VY kyand | D))" V2f(2)D() | <b, V =z € Hxo).
Similar to the proofs of Lemma 4. 1 and Theorem 4. 2 in [6], we can also obtain the following
main result,
Lemma 3.2 Assume that Assumptions 1—2 hold. If there exists ane > 0 such that
I Zg ll =€ (3.3

o T TR S T L ¥
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for all 2 , then there is an @ > 0 such that
A[,?a, V k. (3.4)
Now we present only the following main result of the global convergence of the proposed algorithm

whose proofs are omitted in the paper because of the limited space.

Theorem 3.4 Assume that Assumptions 1~2 hold. Let {z,} < R" be a sequence generated by
the algorithm. Assume that the strict complementary of problem (1. 1) at every limit point holds.
Then

ll{nmf “ Zkgk " = O.

4 Local Convergent Rate

In order to get a stronger result and obtain the local convergent rate, we require more assump-
tions, However, because the paper is bounded, we present also only these main results of the pro-
posed algorithm whose proofs are omitted.

Let the set of active constraints be denoted by
def

I(x) =(l | I,‘=Ovi=1,"'vn}, 4.1)
which associates the optimization subproblem
(P); min f(z); s.t. Ar = b, z, = 0. (4. 2)

Assumption 3 For all I © {1,---,n} , the first order optimality system associated to (P), has no
nonisolated solutions and the strict complementary of problem (1. 1) holds.
Assumption 4 The constraints of (1. 1) are qualified in the sense that (A™A);, = 0, Vi ¢ I(Z)
implies that A = 0,
Assuming that (X, 9) is associated with a unique pair Z which satisfies Assumption 3. Define the
set of strictly active constraints as
def

J(Z)={i|9>0,i=1,-,n} (4.3)

and the extended critical cone as b
def !

Fx)={deER | Ad =0,d. =0,:€ J(@). (4. 4)
Assumption 5 The solution z. of problem (1. 1) satisfies the strong second order condition, that
is, there exists an a > 0 such that
p"Hip = alpll® V p€ T (z0) (4.5)
where H, = V2 f(x,) . This is a sufficient condition for the strong regularity.

Assumption 6

lim J$Bx — Z:Di ' HiD' ZDdi || _
oo [EA

Theorem 4.1 Assume that Assumptions 2~6 hold. Let {x,} be a sequence generated by the al-

0. (4.6)

gorithm., Then d, — 0. Furthermore, if z; is close enough tox. , and z. is a strict local minimum of

the problem (1.1), thenz, » z. .
Theorem 4,2 Assume that Assumptions 2~6 hold. Let {x;} be a sequence generated by the al-

gorithm. Then
!im (Zgell = 0. (4.7)

Theorem 4.3 Assume that Assumptions 2~6 hold. Then for sufficiently large £ , the step o, =
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1 and the trust region constraint is inactive, that is, there exists aA > 0 such thatA, >A, V 2 > K,
where K’ is a large enough index.

Theorem 4. 3 means that the local convergence rate for the proposed algorithm depends on the re-
duced Hessian of objective function at x. and the local convergence rate of the step d, . If d; becomes
the projected quasi-Newton step, then the sequence {x,} generated by the algorithm converges x. is

superlinear.
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